Search tips
Search criteria

Results 1-25 (3981)

Clipboard (0)

Select a Filter Below

Year of Publication
more »
1.  T-cell metabolism in autoimmune disease 
Cancer cells have long been known to fuel their pathogenic growth habits by sustaining a high glycolytic flux, first described almost 90 years ago as the so-called Warburg effect. Immune cells utilize a similar strategy to generate the energy carriers and metabolic intermediates they need to produce biomass and inflammatory mediators. Resting lymphocytes generate energy through oxidative phosphorylation and breakdown of fatty acids, and upon activation rapidly switch to aerobic glycolysis and low tricarboxylic acid flux. T cells in patients with rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE) have a disease-specific metabolic signature that may explain, at least in part, why they are dysfunctional. RA T cells are characterized by low adenosine triphosphate and lactate levels and increased availability of the cellular reductant NADPH. This anti-Warburg effect results from insufficient activity of the glycolytic enzyme phosphofructokinase and differentiates the metabolic status in RA T cells from those in cancer cells. Excess production of reactive oxygen species and a defect in lipid metabolism characterizes metabolic conditions in SLE T cells. Owing to increased production of the glycosphingolipids lactosylceramide, globotriaosylceramide and monosialotetrahexosylganglioside, SLE T cells change membrane raft formation and fail to phosphorylate pERK, yet hyperproliferate. Borrowing from cancer metabolomics, the metabolic modifications occurring in autoimmune disease are probably heterogeneous and context dependent. Variations of glucose, amino acid and lipid metabolism in different disease states may provide opportunities to develop biomarkers and exploit metabolic pathways as therapeutic targets.
PMCID: PMC4324046
2.  Non-canonical NF-κB signaling in rheumatoid arthritis: Dr Jekyll and Mr Hyde? 
The nuclear factor-κB (NF-κB) family of transcription factors is essential for the expression of pro-inflammatory cytokines, but can also induce regulatory pathways. NF-κB can be activated via two distinct pathways: the classical or canonical pathway, and the alternative or non-canonical pathway. It is well established that the canonical NF-κB pathway is essential both in acute inflammatory responses and in chronic inflammatory diseases, including rheumatoid arthritis (RA). Although less extensively studied, the non-canonical NF-κB pathway is not only central in lymphoid organ development and adaptive immune responses, but is also thought to play an important role in the pathogenesis of RA. Importantly, this pathway appears to have cell type-specific functions and, since many different cell types are involved in the pathogenesis of RA, it is difficult to predict the net overall contribution of the non-canonical NF-κB pathway to synovial inflammation. In this review, we describe the current understanding of non-canonical NF-κB signaling in various important cell types in the context of RA and consider the relevance to the pathogenesis of the disease. In addition, we discuss current drugs targeting this pathway, as well as future therapeutic prospects.
PMCID: PMC4308835
3.  Proteasome inhibitors as experimental therapeutics of autoimmune diseases 
Current treatment strategies for rheumatoid arthritis (RA) consisting of disease-modifying anti-rheumatic drugs or biological agents are not always effective, hence driving the demand for new experimental therapeutics. The antiproliferative capacity of proteasome inhibitors (PIs) has received considerable attention given the success of their first prototypical representative, bortezomib (BTZ), in the treatment of B cell and plasma cell-related hematological malignancies. Therapeutic application of PIs in an autoimmune disease setting is much less explored, despite a clear rationale of (immuno) proteasome involvement in (auto)antigen presentation, and PIs harboring the capacity to inhibit the activation of nuclear factor-κB and suppress the release of pro-inflammatory cytokines such as tumor necrosis factor alpha and interleukin-6. Here, we review the clinical positioning of (immuno) proteasomes in autoimmune diseases, in particular RA, systemic lupus erythematosus, Sjögren’s syndrome and sclerodema, and elaborate on (pre)clinical data related to the impact of BTZ and next generation PIs on immune effector cells (T cells, B cells, dendritic cells, macrophages, osteoclasts) implicated in their pathophysiology. Finally, factors influencing long-term efficacy of PIs, their current (pre)clinical status and future perspectives as anti-inflammatory and anti-arthritic agents are discussed.
PMCID: PMC4308859
4.  Parietal and intravascular innate mechanisms of vascular inflammation 
Sustained inflammation of the vessel walls occurs in a large number of systemic diseases (ranging from atherosclerosis to systemic vasculitides, thrombotic microangiopathies and connective tissue diseases), which are ultimately characterized by ischemia and end-organ failure. Cellular and humoral innate immunity contribute to a common pathogenic background and comprise several potential targets for therapeutic intervention. Here we discuss some recent advances in the effector and regulatory action of neutrophils and in the outcome of their interaction with circulating platelets. In parallel, we discuss novel insights into the role of humoral innate immunity in vascular inflammation. All these topics are discussed in light of potential clinical and therapeutic implications in the near future.
PMCID: PMC4308901
5.  Pirfenidone gel in patients with localized scleroderma: a phase II study 
Localized scleroderma is an inflammatory disease in its first stages and a fibrotic process in later stages, principally mediated by the transforming growth factor β. To date, there is no standard treatment. The objective of this study was to determine the effectiveness and safety of 8% pirfenidone gel in patients with localized scleroderma.
This was an open phase II clinical trial that included 12 patients. Treatment with pirfenidone was indicated, three times daily for 6 months. Patients were evaluated clinically with the modified Localized Scleroderma Skin Severity Index (mLoSSI), as well with a durometer and histologically using hematoxylin and eosin stain and Masson’s trichrome stain.
The baseline mLoSSI average scores were 5.83 ± 4.80 vs. 0.83 ± 1.75 (P = 0.002) at 6 months. The initial durometer induration of the scleroderma plaques was 35.79 ± 9.10 vs. 32.47 ± 8.97 at 6 months (P = 0.05). We observed histopathological improvement with respect to epidermal atrophy, inflammation, dermal or adipose tissue fibrosis and annex atrophy from 12.25 ± 3.25 to 9.75 ± 4.35 (P = 0.032). The 8% pirfenidone gel application was well tolerated, and no side effects were detected.
This is the first study on the therapeutic use of pirfenidone gel in localized scleroderma. It acts on both the inflammatory and the fibrotic phases. Considering its effectiveness, good safety profile and the advantage of topical application, pirfenidone is a treatment option in this condition.
PMCID: PMC4310025  PMID: 25533576
6.  Peripheral blood CD4+CD25+CD127low regulatory T cells are significantly increased by tocilizumab treatment in patients with rheumatoid arthritis: increase in regulatory T cells correlates with clinical response 
Tocilizumab (TCZ), an anti-interleukin-6 receptor antibody, is clinically effective against rheumatoid arthritis (RA), and several reports have indicated how TCZ influences a number of mechanisms underlying RA pathogenesis. However, it is still unclear whether TCZ affects inflammatory cells in peripheral blood and whether any such changes are associated with clinical response. We evaluated associations between proportions of subsets of peripheral immune cells and clinical response in patients with RA treated with TCZ.
Thirty-nine consecutive patients with RA who started to receive TCZ as their first biologic between March 2010 and April 2012 were enrolled. The proportions of several subsets of peripheral cells with their levels of expression of differentiation markers, activation markers and costimulatory molecules were measured sequentially from baseline to week 52 by flow cytometry analysis.
Clinical Disease Activity Index (CDAI) remission was achieved in 53.8% of patients at week 52 of TCZ therapy. The proportions of CD4+CD25+CD127low regulatory T cells (Treg) and HLA-DR+ activated Treg cells significantly increased with TCZ therapy (P < 0.001 and P < 0.001, respectively), whereas proportions of CD3+CD4+CXCR3−CCR6+CD161+ T helper 17 cells did not change over the 52 weeks. The proportions of CD20+CD27+ memory B cells, HLA-DR+CD14+ and CD69+CD14+ activated monocytes, and CD16+CD14+ monocytes significantly decreased (P < 0.001, P < 0.001, P < 0.001 and P < 0.001, respectively). Among them, only the change in Treg cells was inversely correlated with the change in CDAI score (ρ = −0.40, P = 0.011). The most dynamic increase in Treg cells was observed in the CDAI remission group (P < 0.001).
This study demonstrates that TCZ affected proportions of circulating immune cells in patients with RA. The proportion of Treg cells among CD4+ cells correlated well with clinical response.
Electronic supplementary material
The online version of this article (doi:10.1186/s13075-015-0526-4) contains supplementary material, which is available to authorized users.
PMCID: PMC4332922  PMID: 25604867
7.  Deficiency of fibroblast activation protein alpha ameliorates cartilage destruction in inflammatory destructive arthritis 
Inflammatory destructive arthritis, like rheumatoid arthritis (RA), is characterized by invasion of synovial fibroblasts (SF) into the articular cartilage and erosion of the underlying bone, leading to progressive joint destruction. Because fibroblast activation protein alpha (FAP) has been associated with cell migration and cell invasiveness, we studied the function of FAP in joint destruction in RA.
Expression of FAP in synovial tissues and fibroblasts from patients with osteoarthritis (OA) and RA as well as from wild-type and arthritic mice was evaluated by immunohistochemistry, fluorescence microscopy and polymerase chain reaction (PCR). Fibroblast adhesion and migration capacity was assessed using cartilage attachment assays and wound-healing assays, respectively. For in vivo studies, FAP-deficient mice were crossed into the human tumor necrosis factor transgenic mice (hTNFtg), which develop a chronic inflammatory arthritis. Beside clinical assessment, inflammation, cartilage damage, and bone erosion were evaluated by histomorphometric analyses.
RA synovial tissues demonstrated high expression of FAP whereas in OA samples only marginal expression was detectable. Consistently, a higher expression was detected in arthritis SF compared to non-arthritis OA SF in vitro. FAP-deficiency in hTNFtg mice led to less cartilage degradation despite unaltered inflammation and bone erosion. Accordingly, FAP−/− hTNFtg SF demonstrated a lower cartilage adhesion capacity compared to hTNFtg SF in vitro.
These data point to a so far unknown role of FAP in the attachment of SF to cartilage, promoting proteoglycan loss and subsequently cartilage degradation in chronic inflammatory arthritis.
PMCID: PMC4335697  PMID: 25600705
8.  A comparison of the predictive accuracy of three screening models for pulmonary arterial hypertension in systemic sclerosis 
There is evidence that early screening for pulmonary arterial hypertension (PAH) in systemic sclerosis (SSc) improves outcomes. We compared the predictive accuracy of two recently published screening algorithms (DETECT 2013 and Australian Scleroderma Interest Group (ASIG) 2012) for SSc-associated PAH (SSc-PAH) with the commonly used European Society of Cardiology/European Respiratory Society (ESC/ERS 2009) guidelines.
We included 73 consecutive SSc patients with suspected PAH undergoing right heart catheterization (RHC). The three screening models were applied to each patient. For each model, contingency table analysis was used to determine sensitivity, specificity, and positive (PPV) and negative (NPV) predictive values for PAH. These properties were also evaluated in an ‘alternate scenario analysis’ in which the prevalence of PAH was set at 10%.
RHC revealed PAH in 27 (36.9%) patients. DETECT and ASIG algorithms performed equally in predicting PAH with sensitivity and NPV of 100%. The ESC/ERS guidelines had sensitivity of 96.3% and NPV of only 91%, missing one case of PAH; these guidelines could not be applied to three patients who had absent tricuspid regurgitant (TR) jet. The ASIG algorithm had the highest specificity (54.5%). With PAH prevalence set at 10%, the NPV of the models was unchanged, but the PPV dropped to less than 20%.
In this cohort, the DETECT and ASIG algorithms out-perform the ESC/ERS guidelines, detecting all patients with PAH. The ESC/ERS guidelines have limitations in the absence of a TR jet. Ultimately, the choice of SSc-PAH screening algorithm will also depend on cost and ease of application.
Electronic supplementary material
The online version of this article (doi:10.1186/s13075-015-0517-5) contains supplementary material, which is available to authorized users.
PMCID: PMC4332896  PMID: 25596924
9.  CD55 deposited on synovial collagen fibers protects from immune complex-mediated arthritis 
CD55, a glycosylphosphatidylinositol-anchored, complement-regulating protein (decay-accelerating factor), is expressed by fibroblast-like synoviocytes (FLS) with high local abundance in the intimal lining layer. We here explored the basis and consequences of this uncommon presence.
Synovial tissue, primary FLS cultures, and three-dimensional FLS micromasses were analyzed. CD55 expression was assessed by quantitative polymerase chain reaction (PCR), in situ hybridization, flow cytometry, and immunohistochemistry. Reticular fibers were visualized by Gomori staining and colocalization of CD55 with extracellular matrix (ECM) proteins by confocal microscopy. Membrane-bound CD55 was released from synovial tissue with phospholipase C. Functional consequences of CD55 expression were studied in the K/BxN serum transfer model of arthritis using mice that in addition to CD55 also lack FcγRIIB (CD32), increasing susceptibility for immune complex-mediated pathology.
Abundant CD55 expression seen in FLS of the intimal lining layer was associated with linearly oriented reticular fibers and was resistant to phospholipase C treatment. Expression of CD55 colocalized with collagen type I and III as well as with complement C3. A comparable distribution of CD55 was established in three-dimensional micromasses after ≥3 weeks of culture together with the ECM. CD55 deficiency did not enhance K/BxN serum-induced arthritis, but further exaggerated disease activity in Fcgr2b−/− mice.
CD55 is produced by FLS and deposited on the local collagen fiber meshwork, where it protects the synovial tissue against immune complex-mediated arthritis.
Electronic supplementary material
The online version of this article (doi:10.1186/s13075-015-0518-4) contains supplementary material, which is available to authorized users.
PMCID: PMC4325944  PMID: 25596646
10.  Increasing expression of substance P and calcitonin gene-related peptide in synovial tissue and fluid contribute to the progress of arthritis in developmental dysplasia of the hip 
Developmental dysplasia of the hip (DDH) is a common musculoskeletal disorder that has pain and loss of joint function as major pathological features. In the present study, we explored the mechanisms of possible involvement and regulation of substance P (SP) and calcitonin gene-related peptide (CGRP) in the pathological and inflammatory processes of arthritis in DDH.
Blood, synovial tissue and fluid samples were collected from patients diagnosed with different severities of DDH and from patients with femoral neck fracture. Levels of SP, CGRP and inflammatory cytokines in synovium and synovial fluid (SF) in the different groups were evaluated by immunohistochemistry, real-time PCR and enzyme-linked immunosorbent assay (ELISA). Correlations between neuropeptides and inflammatory cytokines in SF were evaluated by partial correlation analysis. The proinflammatory effects of SP and CGRP on synoviocytes obtained from patients with moderate DDH were investigated in vitro by real-time PCR and ELISA. The mechanisms of those effects were evaluated by Western blot analysis and nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) DNA binding assay.
Significantly increased levels of neuropeptides and inflammatory cytokines were observed in synovium and SF from patients in the severe DDH group compared with the moderate DDH and control groups. In moderate DDH samples, SP in SF correlated with tumor necrosis factor (TNF)-α, and CGRP in SF correlated with TNF-α and interleukin (IL)-10. In the severe DDH group, SP in SF correlated with interleukin (IL)-1β, TNF-α and IL-10. CGRP in SF correlated with TNF-α. Additionally, SP might have had obvious proinflammatory effects on synoviocytes through the activation of NF-κB.
The upregulation of SP and CGRP in synovium and SF might participate in the inflammatory process of arthritis in DDH. The activation of the NF-κB pathway seems indispensable in the proinflammatory effect of SP on synoviocytes. This original discovery may indicate a potential clinical drug target and the development of innovative therapies for DDH.
PMCID: PMC4320827  PMID: 25578529
11.  Application of the 2012 Systemic Lupus International Collaborating Clinics classification criteria to patients in a regional Swedish systemic lupus erythematosus register 
In 2012, the Systemic Lupus International Collaborating Clinics (SLICC) network presented a new set of criteria (SLICC-12) to classify systemic lupus erythematosus (SLE). The present study is the first to evaluate the performance of SLICC-12 in an adult European study population. Thus, SLICC-12 criteria were applied to confirmed SLE cases in our regional SLE register as well as to individuals with a fair suspicion of systemic autoimmune disease who were referred to rheumatology specialists at our unit.
We included 243 confirmed SLE patients who met the 1982 American College of Rheumatology (ACR-82) classification criteria and/or the Fries ‘diagnostic principle’ (presence of antinuclear antibodies on at least one occasion plus involvement of at least two defined organ systems) and 55 controls with possible systemic autoimmune disease, including the presence of any SLE-related autoantibody.
SLICC-12 showed a diagnostic sensitivity of 94% (95% confidence interval (CI), 0.90 to 0.96) compared with 90% (95% CI, 0.85 to 0.93) for the updated set of ACR criteria from 1997 (ACR-97), whereas ACR-82 failed to identify every fifth true SLE case. However, the disease specificity of SLICC-12 reached only 74% (95% CI, 0.60 to 0.84) and did not change much when involvement of at least two different organs was required as an indicator of systemic disease. In addition, SLICC-12 misclassified more of the controls compared to ACR-82, ACR-97 and Fries.
Establishing a standard definition of SLE continues to challenge lupus researchers and clinicians. We confirm that SLICC-12 has advantages with regard to diagnostic sensitivity, whereas we found the diagnostic specificity to be surprisingly low. To accomplish increased sensitivity and specificity figures, a combination of criteria sets for clinical SLE studies should be considered.
PMCID: PMC4318183  PMID: 25575961
12.  Separate and overlapping specificities in rheumatoid arthritis antibodies binding to citrulline- and homocitrulline-containing peptides related to type I and II collagen telopeptides 
Our objective was to find out if there are antibodies binding to homocitrulline-containing type I and II collagen carboxyterminal telopeptides in sera of patients with rheumatoid arthritis (RA), and if these antibodies cross-react with citrulline and homocitrulline in the same peptide sequence.
A total of 72 RA and 72 control sera were analyzed for binding using enzyme-linked immunosorbent assay to citrulline- or homocitrulline-containing type I and II collagen carboxyterminal telopeptides, as well as to cyclic citrullinated peptide (CCP) and to mutated citrullinated vimentin (MCV). Specificities of the antibodies were tested using inhibition-ELISA.
Of the RA sera, 39 (54%) and 41 (57%) were positive for binding to CCP and MCV, respectively. Further, 34 (47%) and 30 (42%) of the patients had specific antibodies binding to and being inhibited by citrulline-containing type I collagen telopeptides and by citrulline-containing type II collagen carboxyterminal telopeptides, respectively. The corresponding figures regarding homocitrulline-containing type I and homocitrulline-containing type II collagen telopeptides were 16 (22%) and 14 (19%). Most of the patients, who were seropositive for citrullinated peptides, showed binding in multiple assays. A total of 10 (14%) RA patients were positive for all the tested peptide pairs, while 28 (39%) of them had antibodies that contained overlapping specifities between citrulline and homocitrulline in the same peptide sequence.
Antibodies to both citrulline and homocitrulline containing type I and II collagen telopeptides can be found in sera of RA patients. These antibodies are not constant from one RA patient to another, but contain separate or overlapping specificities within the same peptide sequence varying between individuals. Our results suggest some relationship between citrulline and homocitrulline-recognizing antibodies, since homocitrulline antibodies exist mainly in individuals seropositive to anti-CCP and anti-MCV.
Electronic supplementary material
The online version of this article (doi:10.1186/s13075-014-0515-z) contains supplementary material, which is available to authorized users.
PMCID: PMC4320812  PMID: 25573503
13.  A genetic study on C5-TRAF1 and progression of joint damage in rheumatoid arthritis 
The severity of joint damage progression in rheumatoid arthritis (RA) is heritable. Several genetic variants have been identified, but together explain only part of the total genetic effect. Variants in Interleukin-6 (IL-6), Interleukin-10 (IL-10), C5-TRAF1, and Fc-receptor-like-3 (FCRL3) have been described to associate with radiographic progression, but results of different studies were incongruent. We aimed to clarify associations of these variants with radiographic progression by evaluating six independent cohorts.
In total 5,895 sets of radiographs of 2,493 RA-patients included in six different independent datasets from the Netherlands, Sweden, Spain and North-America were studied in relation to rs1800795 (IL-6), rs1800896 (IL-10), rs2900180 (C5-TRAF1) and rs7528684 (FCRL3). Associations were tested in the total RA-populations and in anti-citrullinated peptide antibodies (ACPA)-positive and ACPA-negative subgroups per cohort, followed by meta-analyses. Furthermore, the associated region C5-TRAF1 was fine-mapped in the ACPA-negative Dutch RA-patients.
No associations were found for rs1800795 (IL-6), rs1800896 (IL-10) and rs7528684 (FCRL3) in the total RA-population and after stratification for ACPA. Rs2900180 in C5-TRAF1 was associated with radiographic progression in the ACPA-negative population (P-value meta-analysis = 5.85 × 10−7); the minor allele was associated with more radiographic progression. Fine-mapping revealed a region of 66Kb that was associated; the lowest P-value was for rs7021880 in TRAF1. The P-value for rs7021880 in meta-analysis was 6.35 × 10−8. Previous studies indicate that the region of rs7021880 was associated with RNA expression of TRAF1 and C5.
Variants in IL-6, IL-10 and FCRL3 were not associated with radiographic progression. Rs2900180 in C5-TRAF1 and linked variants in a 66Kb region were associated with radiographic progression in ACPA-negative RA.
Electronic supplementary material
The online version of this article (doi:10.1186/s13075-014-0514-0) contains supplementary material, which is available to authorized users.
PMCID: PMC4318544  PMID: 25566937
14.  Interleukin-17A promotes functional activation of systemic sclerosis patient-derived dermal vascular smooth muscle cells by extracellular-regulated protein kinases signalling pathway 
Arthritis Research & Therapy  2014;16(6):4223.
Dermal vascular smooth muscle cells (DVSMCs) are important for vascular wall fibrosis in microangiopathy of systemic sclerosis (SSc). T helper 17 cell-associated cytokines, particularly interleukin-17A (IL-17A), have been demonstrated to play a role in the pathogenesis of SSc. However, the effect of IL-17A on the DVSMCs in microangiopathy of SSc has not been established. In the present study, we investigated the effect of IL-17A on the SSc patient-derived DVSMCs.
DVSMCs from patients with SSc and healthy subjects were incubated using IL-17A or serum derived from patients with SSc. Subsequently, the proliferation, collagen synthesis and secretion, and migration of DVSMCs were analysed using a cell counting kit-8 (CCK-8), dual-luciferase reporter assay, real-time reverse transcription-polymerase chain reaction (RT-PCR), Western blot, enzyme-linked immunosorbent assay (ELISA) and transwell assay. The protein phosphorylation of signalling pathways in the process of IL-17A-mediated DVSMC activation was investigated and validated by specific signalling pathway inhibitor.
IL-17A and serum from patients with SSc could promote the proliferation, collagen synthesis and secretion, and migration of DVSMCs. IL-17A neutralising antibody could inhibit the IL-17A-induced activation of DVSMCs. Additionally, IL-17A induced the activation of extracellular-regulated protein kinases 1/2 (ERK1/2) in DVSMCs, and ERK1/2 inhibitor could block the IL-17A-elicited activation of DVSMCs.
Our results suggested that IL-17A derived from patients with SSc might induce the proliferation, collagen synthesis and secretion, and migration of DVSMCs via ERK1/2 signalling pathway, raising the likelihood that IL-17A and ERK1/2 might be promising therapeutic targets for the treatment of SSc-related vasculopathy.
Electronic supplementary material
The online version of this article (doi:10.1186/s13075-014-0512-2) contains supplementary material, which is available to authorized users.
PMCID: PMC4316765  PMID: 25551434
15.  The epigenome of synovial fibroblasts: an underestimated therapeutic target in rheumatoid arthritis 
Perturbed epigenetic landscape and deregulated microRNA networks are central to the permanent activation and aggressiveness of synovial fibroblasts in rheumatoid arthritis. Current anti-cytokine therapies, although effectively halting synovitis, cannot reverse the stably activated destructive phenotype of rheumatoid arthritis synovial fibroblasts, offering rather limited protection against ongoing joint destruction in rheumatoid arthritis. Targeting the deregulated epigenome of rheumatoid arthritis synovial fibroblasts is key to developing joint-protective strategies in rheumatoid arthritis. To date, different pathogenic mechanisms have been identified that can profoundly impact the epigenetic derangements in rheumatoid arthritis synovial fibroblasts, including increased consumption of S-adenosylmethionine, a principal methyl donor in DNA methylation reactions, together with deregulation of crucial DNA- and histone-modifying enzymes. Re-establishing globally disturbed DNA methylation patterns in rheumatoid arthritis synovial fibroblasts by supplementing S-adenosylmethionine while preventing its leakage into polyamine cycles may be a promising therapeutic strategy in rheumatoid arthritis and the first epigenetic treatment to target rheumatoid arthritis synovial fibroblasts at the scene of the crime. Given the dynamic nature and reversibility of epigenetic modifications, their involvement in human diseases and recent perspectives on epigenetic therapies in cancer, epigenetic targeting of rheumatoid arthritis synovial fibroblasts should be within future reach.
PMCID: PMC4075141  PMID: 25165988
17.  Why is there persistent disease despite biologic therapy? Importance of early intervention 
This short article hypothesizes that the major reason for persistent disease despite biologic therapy is the inappropriately late timing of therapy with biologic agents. There is clear evidence to support this hypothesis. This short review will indicate that patients treated at an earlier phase of disease can achieve a clinical remission rate of 70% and a response rate of above 95%.
PMCID: PMC4075238  PMID: 25167379
18.  The disease formerly known as rheumatoid arthritis 
Rheumatoid arthritis is a complex disease where predetermined and stochastic factors conspire to confer disease susceptibility. In light of the diverse responses to targeted therapies, rheumatoid arthritis might represent a final common clinical phenotype that reflects many pathogenic pathways. Therefore, it might be appropriate to begin thinking about rheumatoid arthritis as a syndrome rather than a disease. Use of genetics, epigenetics, microbiomics, and other unbiased technologies will probably permit stratification of patients based on mechanisms of disease rather than by clinical phenotype.
PMCID: PMC4075245  PMID: 25167330
19.  The quest for personalized B-cell depletion therapy in rheumatic disease 
Although B cell depletion therapy (BCDT) is now a well-accepted therapeutic option in autoimmune rheumatic disease, a significant proportion of patients remain resistant to therapy. .19pt?>A more challenging clinical problem is the high rate of relapse after B cell reconstitution, as well as the difficulty in predicting the exact timing of that relapse. In this article, we consider the immunological mechanisms that may account for the heterogeneity of clinical response to BCDT. Understanding how BCDT alters the balance between different B cell subsets, some pathogenic and some regulatory, may help us correctly target BCDT to the right patients, and thereby improve treatment responses in rheumatic disease.
PMCID: PMC4075349  PMID: 25166212
20.  Modulation of peripheral T-cell function by interleukin-7 in rheumatoid arthritis 
Interleukin-7 (IL-7) is a cytokine essential for T-cell lymphopoiesis, survival and polarization with an emerging role in autoimmunity. We previously demonstrated reduced levels of circulating IL-7 in rheumatoid arthritis (RA), although high amounts are expressed in joints, suggesting differences between systemic and synovial effects. We observed healthy levels of IL-7 in 48% of RA patients in clinical remission (CR) and aimed to investigate the consequences of IL-7 deficiency on T-cell responses.
We used RA patients with active disease and in CR presenting various levels of IL-7, to investigate its modulatory effects on T cells by analysing responses to phyto-haemagglutinin (PHA), expression of polarization or survival factors, or suppression by regulatory T cells (Tregs).
IL-7 levels were normal (>10 pg/ml) in 48% of RA patients in CR. Amongst 63 CR patients followed up for 18 months, lack of IL-7 recovery was observed in 13 out of 15 (86%) patients experiencing relapse but only 11 out of 48 (23%) of those who did not (P = 0.0002). Binary regressions showed high significance for below normal IL-7 levels for self-reported maternal family history of arthritis (odds ratio (OR): 7.66, P = 0.006) and a trend for smoking (OR: 3.33, P = 0.068) with no further demographic or clinical associations. Serum IL-7 correlated with restored CD4+T-cell response to PHA (rho = 0.879); this was not related to an increase in T-cell proliferation capacity or expression of survival factors B-cell lymphoma 2 (BCL2) and BCL2-associated protein X (BAX). Expression of Th1 polarization factor (TBET) was also dependent on exposure to IL-7 in vivo (rho = 0.600). In contrast CD25highTregs’ response to PHA was not affected by in vivo IL-7, but their suppression capabilities were related to circulating IL-7 (rho = 0.589). Co-stimulation with IL-7 (mimicking the joint environment) increased responsiveness of CD4+T-cells to PHA, lowering the ability of CD25highTregs to suppress them.
Our data demonstrate that IL-7 has a critical role in modulating T-cell function in vivo, possibly explaining opposing effects observed systemically and in the joint. Lack of IL-7 recovery in CR by maintaining a suppressed immune system may be a determinant factor in the occurrence of relapse.
Electronic supplementary material
The online version of this article (doi:10.1186/s13075-014-0511-3) contains supplementary material, which is available to authorized users.
PMCID: PMC4298067  PMID: 25533722
21.  Gluten-free diet in the management of patients with irritable bowel syndrome, fibromyalgia and lymphocytic enteritis 
An evaluation of the effect of 1 year of a gluten-free diet was performed in patients with irritable bowel syndrome and fibromyalgia syndrome displaying lymphocytic enteritis. Gluten withdrawal produced a slight but significant improvement of the functional symptoms, suggesting that gluten might be partly responsible for this clinical picture. This hypothesis should be confirmed by a double-blind placebo-controlled trial since it cannot be ruled out that the studied patients displayed a subjective sensation of improvement due to the placebo effect of gluten withdrawal. Further investigations are needed before recommending gluten withdrawal in patients with fibromyalgia and lymphocytic enteritis.
PMCID: PMC4308852  PMID: 25602179
22.  Antinociceptive effects of lacosamide on spinal neuronal and behavioural measures of pain in a rat model of osteoarthritis 
Alterations in voltage-gated sodium channel (VGSC) function have been linked to chronic pain and are good targets for analgesics. Lacosamide (LCM) is a novel anticonvulsant that enhances the slow inactivation state of VGSCs. This conformational state can be induced by repeated neuronal firing and/or under conditions of sustained membrane depolarisation, as is expected for hyperexcitable neurones in pathological conditions such as epilepsy and neuropathy, and probably osteoarthritis (OA). In this study, therefore, we examined the antinociceptive effect of LCM on spinal neuronal and behavioural measures of pain, in vivo, in a rat OA model.
OA was induced in Sprague Dawley rats by intraarticular injection of 2 mg of monosodium iodoacetate (MIA). Sham rats received saline injections. Behavioural responses to mechanical and cooling stimulation of the ipsilateral hind paw and hindlimb weight-bearing were recorded. In vivo electrophysiology experiments were performed in anaesthetised MIA or sham rats, and we recorded the effects of spinal or systemic administration of LCM on the evoked responses of dorsal horn neurones to electrical, mechanical (brush, von Frey, 2 to 60 g) and heat (40°C to 50°C) stimulation of the peripheral receptive field. The effect of systemic LCM on nociceptive behaviours was assessed.
Behavioural hypersensitivity ipsilateral to knee injury was seen as a reduced paw withdrawal threshold to mechanical stimulation, an increase in paw withdrawal frequency to cooling stimulation and hind limb weight-bearing asymmetry in MIA-treated rats only. Spinal and systemic administration of LCM produced significant reductions of the electrical Aβ- and C-fibre evoked neuronal responses and the mechanical and thermal evoked neuronal responses in the MIA group only. Systemic administration of LCM significantly reversed the behavioural hypersensitive responses to mechanical and cooling stimulation of the ipsilateral hind paw, but hind limb weight-bearing asymmetry was not corrected.
Our in vivo electrophysiological results show that the inhibitory effects of LCM were MIA-dependent. This suggests that, if used in OA patients, LCM may allow physiological transmission but suppress secondary hyperalgesia and allodynia. The inhibitory effect on spinal neuronal firing aligned with analgesic efficacy on nociceptive behaviours and suggests that LCM may still prove worthwhile for OA pain treatment and merits further clinical investigation.
PMCID: PMC4308925  PMID: 25533381
24.  Asymmetries and relationships between dynamic loading, muscle strength, and proprioceptive acuity at the knees in symptomatic unilateral hip osteoarthritis 
High joint loading, knee muscle weakness, and poor proprioceptive acuity are important factors that have been linked to knee osteoarthritis (OA). We previously reported that those with unilateral hip OA and bilateral asymptomatic knees are more predisposed to develop progressive OA in the contralateral knee relative to the ipsilateral knee. In the present study, we evaluate asymmetries in muscle strength and proprioception between the limbs and also evaluate relationships between these factors and joint loading that may be associated with the asymmetric evolution of OA in this group.
Sixty-two participants with symptomatic unilateral hip OA and asymptomatic knees were evaluated for muscle strength, joint position sense and dynamic joint loads at the knees. Muscle strength and proprioception were compared between limbs and correlations between these factors and dynamic joint loading were evaluated. Subgroup analyses were also performed in only those participants that fulfilled criteria for severe hip OA.
Quadriceps muscle strength was 15% greater, and in the severe subgroup, proprioceptive acuity was 25% worse at the contralateral compared to ipsilateral knee of participants with unilateral hip OA (P <0.05). In addition, at the affected limb, there was an association between decreased proprioceptive acuity and higher knee loading (Spearman’s rho = 0.377, P = 0.007) and between decreased proprioceptive acuity and decreased muscle strength (Spearman’s rho = −0.328, P = 0.016).
This study demonstrated asymmetries in muscle strength and proprioception between the limbs in a unilateral hip OA population. Early alterations in these factors suggest their possible role in the future development of OA at the contralateral ‘OA-predisposed knee’ in this group. Furthermore, the significant association observed between proprioception, loading, and muscle strength at the affected hip limb suggests that these factors may be interrelated.
PMCID: PMC4298074  PMID: 25496937

Results 1-25 (3981)