PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (40)
 

Clipboard (0)
None

Select a Filter Below

Year of Publication
Document Types
1.  Effects of Vascular-Endothelial Protein Tyrosine Phosphatase Inhibition on Breast Cancer Vasculature and Metastatic Progression 
Background
The solid tumor microvasculature is characterized by structural and functional abnormality and mediates several deleterious aspects of tumor behavior. Here we determine the role of vascular endothelial protein tyrosine phosphatase (VE-PTP), which deactivates endothelial cell (EC) Tie-2 receptor tyrosine kinase, thereby impairing maturation of tumor vessels.
Methods
AKB-9778 is a first-in-class VE-PTP inhibitor. We examined its effects on ECs in vitro and on embryonic angiogenesis in vivo using zebrafish assays. We studied the impact of AKB-9778 therapy on the tumor vasculature, tumor growth, and metastatic progression using orthotopic models of murine mammary carcinoma as well as spontaneous and experimental metastasis models. Finally, we used endothelial nitric oxide synthase (eNOS)–deficient mice to establish the role of eNOS in mediating the effects of VE-PTP inhibition. All statistical tests were two-sided.
Results
AKB-9778 induced ligand-independent Tie-2 activation in ECs and impaired embryonic zebrafish angiogenesis. AKB-9778 delayed the early phase of mammary tumor growth by maintaining vascular maturity (P < .01, t test); slowed growth of micrometastases (P < .01, χ2 test) by preventing extravasation of tumor cells (P < 0.01, Fisher exact test), resulting in a trend toward prolonged survival (27.0 vs 36.5 days; hazard ratio of death = 0.33, 95% confidence interval = 0.11 to 1.03; P = .05, Mantel–Cox test); and stabilized established primary tumor blood vessels, enhancing tumor perfusion (P = .03 for 4T1 tumor model and 0.05 for E0771 tumor model, by two-sided t tests) and, hence, radiation response (P < .01, analysis of variance; n = 7 mice per group). The effects of AKB-9778 on tumor vessels were mediated in part by endothelial nitric oxide synthase activation.
Conclusions
Our results demonstrate that pharmacological VE-PTP inhibition can normalize the structure and function of tumor vessels through Tie-2 activation, which delays tumor growth, slows metastatic progression, and enhances response to concomitant cytotoxic treatments.
doi:10.1093/jnci/djt164
PMCID: PMC3748004  PMID: 23899555
2.  The zebrafish as a tool to identify novel therapies for human cardiovascular disease 
Disease Models & Mechanisms  2014;7(7):763-767.
Over the past decade, the zebrafish has become an increasingly popular animal model for the study of human cardiovascular disease. Because zebrafish embryos are transparent and their genetic manipulation is straightforward, the zebrafish has been used to recapitulate a number of cardiovascular disease processes ranging from congenital heart defects to arrhythmia to cardiomyopathy. The use of fluorescent reporters has been essential to identify two discrete phases of cardiomyocyte differentiation necessary for normal cardiac development in the zebrafish. These phases are analogous to the differentiation of the two progenitor heart cell populations in mammals, termed the first and second heart fields. The small size of zebrafish embryos has enabled high-throughput chemical screening to identify small-molecule suppressors of fundamental pathways in vasculogenesis, such as the BMP axis, as well as of common vascular defects, such as aortic coarctation. The optical clarity of zebrafish has facilitated studies of valvulogenesis as well as detailed electrophysiological mapping to characterize the early cardiac conduction system. One unique aspect of zebrafish larvae is their ability to oxygenate through diffusion alone, permitting the study of mutations that cause severe cardiomyopathy phenotypes such as silent heart and pickwickm171, which mimic titin mutations observed in human dilated cardiomyopathy. Above all, the regenerative capacity of zebrafish presents a particularly exciting opportunity to discover new therapies for cardiac injury, including scar formation following myocardial infarction. This Review will summarize the current state of the field and describe future directions to advance our understanding of human cardiovascular disease.
doi:10.1242/dmm.016170
PMCID: PMC4073266  PMID: 24973746
Cardiovascular; Drug discovery; Zebrafish
3.  Intravital correlated microscopy reveals differential macrophage and microglial dynamics during resolution of neuroinflammation 
Disease Models & Mechanisms  2014;7(7):857-869.
Many brain diseases involve activation of resident and peripheral immune cells to clear damaged and dying neurons. Which immune cells respond in what way to cues related to brain disease, however, remains poorly understood. To elucidate these in vivo immunological events in response to brain cell death we used genetically targeted cell ablation in zebrafish. Using intravital microscopy and large-scale electron microscopy, we defined the kinetics and nature of immune responses immediately following injury. Initially, clearance of dead cells occurs by mononuclear phagocytes, including resident microglia and macrophages of peripheral origin, whereas amoeboid microglia are exclusively involved at a later stage. Granulocytes, on the other hand, do not migrate towards the injury. Remarkably, following clearance, phagocyte numbers decrease, partly by phagocyte cell death and subsequent engulfment of phagocyte corpses by microglia. Here, we identify differential temporal involvement of microglia and peripheral macrophages in clearance of dead cells in the brain, revealing the chronological sequence of events in neuroinflammatory resolution. Remarkably, recruited phagocytes undergo cell death and are engulfed by microglia. Because adult zebrafish treated at the larval stage lack signs of pathology, it is likely that this mode of resolving immune responses in brain contributes to full tissue recovery. Therefore, these findings suggest that control of such immune cell behavior could benefit recovery from neuronal damage.
doi:10.1242/dmm.014886
PMCID: PMC4073275  PMID: 24973753
Brain; Intravital microscopy; Leukocytes; Microglia; Neurodegeneration; Zebrafish
4.  A zebrafish model of chordoma initiated by notochord-driven expression of HRASV12 
Disease Models & Mechanisms  2013;7(7):907-913.
Chordoma is a malignant tumor thought to arise from remnants of the embryonic notochord, with its origin in the bones of the axial skeleton. Surgical resection is the standard treatment, usually in combination with radiation therapy, but neither chemotherapeutic nor targeted therapeutic approaches have demonstrated success. No animal model and only few chordoma cell lines are available for preclinical drug testing, and, although no druggable genetic drivers have been identified, activation of EGFR and downstream AKT-PI3K pathways have been described. Here, we report a zebrafish model of chordoma, based on stable transgene-driven expression of HRASV12 in notochord cells during development. Extensive intra-notochordal tumor formation is evident within days of transgene expression, ultimately leading to larval death. The zebrafish tumors share characteristics of human chordoma as demonstrated by immunohistochemistry and electron microscopy. The mTORC1 inhibitor rapamycin, which has some demonstrated activity in a chordoma cell line, delays the onset of tumor formation in our zebrafish model, and improves survival of tumor-bearing fish. Consequently, the HRASV12-driven zebrafish model of chordoma could enable high-throughput screening of potential therapeutic agents for the treatment of this refractory cancer.
doi:10.1242/dmm.013128
PMCID: PMC4073279  PMID: 24311731
HRASV12; Cancer; Chordoma; Drug treatment; Rapamycin; Zebrafish
5.  An In Vivo Zebrafish Screen Identifies Organophosphate Antidotes with Diverse Mechanisms of Action 
Journal of biomolecular screening  2012;18(1):108-115.
Organophosphates are a class of highly toxic chemicals that includes many pesticides and chemical weapons. Exposure to organophosphates, either through accidents or acts of terrorism, poses a significant risk to human health and safety. Existing antidotes, in use for over 50 years, have modest efficacy and undesirable toxicities. Therefore, discovering new organophosphate antidotes is a high priority. Early life stage zebrafish exposed to organophosphates exhibit several phenotypes that parallel the human response to organophosphates, including behavioral deficits, paralysis, and eventual death. Here, we have developed a high-throughput zebrafish screen in a 96-well plate format to find new antidotes that counteract organophosphate-induced lethality. In a pilot screen of 1200 known drugs, we identified 16 compounds that suppress organophosphate toxicity in zebrafish. Several in vitro assays coupled with liquid chromatography/tandem mass spectrometry–based metabolite profiling enabled determination of mechanisms of action for several of the antidotes, including reversible acetylcholinesterase inhibition, cholinergic receptor antagonism, and inhibition of bioactivation. Therefore, the in vivo screen is capable of discovering organophosphate antidotes that intervene in distinct pathways. These findings suggest that zebrafish screens might be a broadly applicable approach for discovering compounds that counteract the toxic effects of accidental or malicious poisonous exposures.
doi:10.1177/1087057112458153
PMCID: PMC4053346  PMID: 22960781
Xenopus; zebrafish; in vivo screening; mass spectrometry; high-content screening
6.  cables1 Is Required for Embryonic Neural Development: Molecular, Cellular, and Behavioral Evidence From the Zebrafish 
SUMMARY
In vitro studies have suggested that the Cables1 gene regulates epithelial cell proliferation, whereas other studies suggest a role in promoting neural differentiation. In efforts to clarify the functions of Cables1 in vivo, we conducted gain- and loss-of-function studies targeting its ortholog (cables1) in the zebrafish embryo. Similar to rodents, zebrafish cables1 mRNA expression is detected most robustly in embryonic neural tissues. Antisense knockdown of cables1 leads to increased numbers of apoptotic cells, particularly in brain tissue, in addition to a distinct behavioral phenotype, characterized by hyperactivity in response to stimulation. Apoptosis and the behavioral abnormality could be rescued by co-expression of a morpholino-resistant cables1 construct. Suppression of p53 expression in cables1 morphants partially rescued both apoptosis and the behavioral phenotype, suggesting that the phenotype of cables1 morphants is due in part to p53-dependent apoptosis. Alterations in the expression patterns of several neural transcription factors were observed in cables1 morphants during early neurulation, suggesting that cables1 is required for early neural differentiation. Ectopic overexpression of cables1 strongly disrupted embryonic morphogenesis, while overexpression of a cables1 mutant lacking the C-terminal cyclin box had little effect, suggesting functional importance of the cyclin box. Lastly, marked reductions in p35, but not Cdk5, were observed in cables1 morphants. Collectively, these data suggest that cables1 is important for neural differentiation during embryogenesis, in a mechanism that likely involves interactions with the Cdk5/p35 kinase pathway.
doi:10.1002/mrd.21263
PMCID: PMC4016823  PMID: 21268180
7.  Changing the Scale and Efficiency of Chemical Warfare Countermeasure Discovery Using the Zebrafish 
Drug discovery today. Disease models  2013;10(1):10.1016/j.ddmod.2013.05.001.
As the scope of potential chemical warfare agents grows rapidly and as the diversity of potential threat scenarios expands with non-state actors, so a need for innovative approaches to countermeasure development has emerged. In the last few years, the utility of the zebrafish as a model organism that is amenable to high-throughput screening has become apparent and this system has been applied to the unbiased discovery of chemical warfare countermeasures. This review summarizes the in vivo screening approach that has been pioneered in the countermeasure discovery arena, and highlights the successes to date as well as the potential challenges in moving the field forward. Importantly, the establishment of a zebrafish platform for countermeasure discovery would offer a rapid response system for the development of antidotes to the continuous stream of new potential chemical warfare agents.
doi:10.1016/j.ddmod.2013.05.001
PMCID: PMC3834265  PMID: 24273586
8.  Zebrafish models of cerebrovascular disease 
Perturbations in cerebral blood flow and abnormalities in blood vessel structure are the hallmarks of cerebrovascular disease. While there are many genetic and environmental factors that affect these entities through a heterogeneous group of disease processes, the ultimate final pathologic insult in humans is defined as a stroke, or damage to brain parenchyma. In the case of ischemic stroke, blood fails to reach its target destination whereas in hemorrhagic stroke, extravasation of blood occurs outside of the blood vessel lumen, resulting in direct damage to brain parenchyma. As these acute events can be neurologically devastating, if not fatal, development of novel therapeutics are urgently needed. The zebrafish (Danio rerio) is an attractive model for the study of cerebrovascular disease because of its morphological and physiological similarity to human cerebral vasculature, its ability to be genetically manipulated, and its fecundity allowing for large-scale, phenotype-based screens.
doi:10.1038/jcbfm.2014.27
PMCID: PMC3982096  PMID: 24517974
aneurysm; arteriovenous malformation; cavernous malformation; moyamoya; stroke; zebrafish
9.  AUTOMATED QUANTIFICATION OF ZEBRAFISH TAIL DEFORMATION FOR HIGH-THROUGHPUT DRUG SCREENING 
Zebrafish (Danio rerio) is an important vertebrate model organism in biomedical research thanks to its ease of handling and translucent body, enabling in vivo imaging. Zebrafish embryos undergo spinal deformation upon exposure to chemical agents that inhibit DNA repair. Automated image-based quantification of spine deformation is therefore attractive for whole-organism based assays for use in early-phase drug discovery. We propose an automated method for accurate high-throughput measurement of tail deformations in multi-fish micro-plate wells. The method generates refined medial representations of partial tail-segments. Subsequently, these disjoint segments are analyzed and fused to generate complete tails. Based on estimated tail curvatures we reach a classification accuracy of 91% on individual animals as compared to known control treatment. This accuracy is increased to 95% when combining scores for fish in the same well.
doi:10.1109/ISBI.2013.6556621
PMCID: PMC3909804  PMID: 24499782
Curvature extraction; high-throughput screening; quantitative microscopy; zebrafish (Danio rerio)
10.  Photochemical activation of TRPA1 channels in neurons and animals 
Nature chemical biology  2013;9(4):257-263.
Optogenetics is a powerful research tool because it enables high-resolution optical control of neuronal activity. However, current optogenetic approaches are limited to transgenic systems expressing microbial opsins and other exogenous photoreceptors. Here, we identify optovin, a small molecule that enables repeated photoactivation of motor behaviors in wild type animals. Surprisingly, optovin's behavioral effects are not visually mediated. Rather, photodetection is performed by sensory neurons expressing the cation channel TRPA1. TRPA1 is both necessary and sufficient for the optovin response. Optovin activates human TRPA1 via structure-dependent photochemical reactions with redox-sensitive cysteine residues. In animals with severed spinal cords, optovin treatment enables control of motor activity in the paralyzed extremities by localized illumination. These studies identify a light-based strategy for controlling endogenous TRPA1 receptors in vivo, with potential clinical and research applications in non-transgenic animals, including humans.
doi:10.1038/nchembio.1183
PMCID: PMC3604056  PMID: 23396078
11.  Efficient In Vivo Genome Editing Using RNA-Guided Nucleases 
Nature biotechnology  2013;31(3):227-229.
Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) systems have evolved in bacteria and archaea as a defense mechanism to silence foreign nucleic acids of viruses and plasmids. Recent work has shown that bacterial type II CRISPR systems can be adapted to create guide RNAs (gRNAs) capable of directing site-specific DNA cleavage by the Cas9 nuclease in vitro. Here we show that this system can function in vivo to induce targeted genetic modifications in zebrafish embryos with efficiencies comparable to those obtained using ZFNs and TALENs for the same genes. RNA-guided nucleases robustly enabled genome editing at 9 of 11 different sites tested, including two for which TALENs previously failed to induce alterations. These results demonstrate that programmable CRISPR/Cas systems provide a simple, rapid, and highly scalable method for altering genes in vivo, opening the door to using RNA-guided nucleases for genome editing in a wide range of organisms.
doi:10.1038/nbt.2501
PMCID: PMC3686313  PMID: 23360964
12.  Identification of non-visual photomotor response cells in the vertebrate hindbrain 
Non-visual photosensation enables animals to sense light without sight. However, the cellular and molecular mechanisms of non-visual photobehaviors are poorly understood, especially in vertebrate animals. Here, we describe the photomotor response (PMR), a robust and reproducible series of motor behaviors in zebrafish that is elicited by visual wavelengths of light, but does not require the eyes, pineal gland or other canonical deep-brain photoreceptive organs. Unlike the relatively slow effects of canonical non-visual pathways, motor circuits are strongly and quickly (seconds) recruited during the PMR behavior. We find that the hindbrain is both necessary and sufficient to drive these behaviors. Using in vivo calcium imaging, we identify a discrete set of neurons within the hindbrain whose responses to light mirror the PMR behavior. Pharmacological inhibition of the visual cycle blocks PMR behaviors, suggesting that opsin-based photoreceptors control this behavior. These data represent the first known light-sensing circuit in the vertebrate hindbrain.
doi:10.1523/JNEUROSCI.3689-12.2013
PMCID: PMC3600642  PMID: 23447595
13.  Behavioral barcoding in the cloud: Embracing data-intensive digital phenotyping in neuropharmacology 
Trends in Biotechnology  2012;30(8):421-425.
Summary
For decades, studying the behavioral effects of individual drugs and genetic mutations has been at the heart of efforts to understand and treat nervous system disorders. High-throughput technologies adapted from other disciplines (e.g. high-throughput chemical screening, genomics) are changing the scale of data acquisition in behavioral neuroscience. Massive behavioral datasets are beginning to emerge, particularly from zebrafish labs, where behavioral assays can be performed rapidly and reproducibly in 96-well, high-throughput format. Mining these datasets and making comparisons across different assays are major challenges for the field. Here, we review behavioral barcoding, a process by which complex behavioral assays are reduced to a string of numeric features, facilitating analysis and comparison within and across datasets.
doi:10.1016/j.tibtech.2012.05.001
PMCID: PMC3401323  PMID: 22652049
14.  Heritable and Precise Zebrafish Genome Editing Using a CRISPR-Cas System 
PLoS ONE  2013;8(7):e68708.
We have previously reported a simple and customizable CRISPR (clustered regularly interspaced short palindromic repeats) RNA-guided Cas9 nuclease (RGN) system that can be used to efficiently and robustly introduce somatic indel mutations in endogenous zebrafish genes. Here we demonstrate that RGN-induced mutations are heritable, with efficiencies of germline transmission reaching as high as 100%. In addition, we extend the power of the RGN system by showing that these nucleases can be used with single-stranded oligodeoxynucleotides (ssODNs) to create precise intended sequence modifications, including single nucleotide substitutions. Finally, we describe and validate simple strategies that improve the targeting range of RGNs from 1 in every 128 basepairs (bps) of random DNA sequence to 1 in every 8 bps. Together, these advances expand the utility of the CRISPR-Cas system in the zebrafish beyond somatic indel formation to heritable and precise genome modifications.
doi:10.1371/journal.pone.0068708
PMCID: PMC3706373  PMID: 23874735
15.  Using the Zebrafish Photomotor Response for Psychotropic Drug Screening 
Methods in cell biology  2011;105:517-524.
Because psychotropic drugs affect behavior, we can use changes in behavior to discover psychotropic drugs. The original prototypes of most neuroactive medicines were discovered in humans, rodents and other model organisms. Most of these discoveries were made by chance, but the process of behavior based drug discovery can be made more systematic and efficient. Fully automated platforms for analyzing the behavior of embryonic zebrafish capture digital video recordings of animals in each individual well of a 96-well plate before, during, and after a series of stimuli. To analyze systematically the thousands of behavioral recordings obtained from a large-scale chemical screen, we transform these behavioral recordings into numerical barcodes, providing a concise and interpretable summary of the observed phenotypes in each well. Systems-level analysis of these behavioral phenotypes generate testable hypotheses about the molecular mechanisms of poorly understood drugs and behaviors. By combining the in vivo relevance of behavior-based phenotyping with the scale and automation of modern drug screening technologies, systematic behavioral barcoding represents a means of discovering psychotropic drugs and provides a powerful, systematic approach for unraveling the complexities of vertebrate behavior.
doi:10.1016/B978-0-12-381320-6.00022-9
PMCID: PMC3635141  PMID: 21951545
16.  In vivo natriuretic peptide reporter assay identifies chemical modifiers of hypertrophic cardiomyopathy signalling 
Cardiovascular Research  2011;93(3):463-470.
Aims
Despite increased understanding of the fundamental biology regulating cardiomyocyte hypertrophy and heart failure, it has been challenging to find novel chemical or genetic modifiers of these pathways. Traditional cell-based methods do not model the complexity of an intact cardiovascular system and mammalian models are not readily adaptable to chemical or genetic screens. Our objective was to create an in vivo model suitable for chemical and genetic screens for hypertrophy and heart failure modifiers
Methods and results
Using the developing zebrafish, we established that the cardiac natriuretic peptide genes (nppa and nppb), known markers of cardiomyocyte hypertrophy and heart failure, were induced in the embryonic heart by pathological cardiac stimuli. This pathological induction was distinct from the developmental regulation of these genes. We created a luciferase-based transgenic reporter line that accurately modelled the pathological induction patterns of the zebrafish nppb gene. Utilizing this reporter line, we were able to show remarkable conservation of pharmacological responses between the larval zebrafish heart and adult mammalian models.
Conclusion
By performing a focused screen of chemical agents, we were able to show a distinct response of a genetic model of hypertrophic cardiomyopathy to the histone deacetylase inhibitor, Trichostatin A, and the mitogen-activated protein kinase kinase 1/2 inhibitor, U0126. We believe this in vivo reporter line will offer a unique approach to the identification of novel chemical or genetic regulators of myocardial hypertrophy and heart failure.
doi:10.1093/cvr/cvr350
PMCID: PMC3410427  PMID: 22198505
Natriuretic peptides; Hypertrophy; Heart development; Heart failure; Hypertrophic cardiomyopathy
17.  Chemical Informatics and Target Identification in a Zebrafish Phenotypic Screen 
Nature Chemical Biology  2011;8(2):144-146.
Target identification is a core challenge in chemical genetics. Here we use chemical similarity to predict computationally the targets of 586 compounds active in a zebrafish behavioral assay. Of 20 predictions tested, 11 had activities ranging from 1 to 10,000nM on the predicted targets. The role of two of these targets was tested in the original zebrafish phenotype. Prediction of targets from chemotype is rapid and may be generally applicable.
doi:10.1038/nchembio.732
PMCID: PMC3262069  PMID: 22179068
18.  Highly efficient generation of heritable zebrafish gene mutations using homo- and heterodimeric TALENs 
Nucleic Acids Research  2012;40(16):8001-8010.
Transcription activator-like effector nucleases (TALENs) are powerful new research tools that enable targeted gene disruption in a wide variety of model organisms. Recent work has shown that TALENs can induce mutations in endogenous zebrafish genes, but to date only four genes have been altered, and larger-scale tests of the success rate, mutation efficiencies and germline transmission rates have not been described. Here, we constructed homodimeric TALENs to 10 different targets in various endogenous zebrafish genes and found that 7 nuclease pairs induced targeted indel mutations with high efficiencies ranging from 2 to 76%. We also tested obligate heterodimeric TALENs and found that these nucleases induce mutations with comparable or higher frequencies and have better toxicity profiles than their homodimeric counterparts. Importantly, mutations induced by both homodimeric and heterodimeric TALENs are passed efficiently through the germline, in some cases reaching 100% transmission. For one target gene sequence, we observed substantially reduced mutagenesis efficiency for a variant site bearing two mismatched nucleotides, raising the possibility that TALENs might be used to perform allele-specific gene disruption. Our results suggest that construction of one to two heterodimeric TALEN pairs for any given gene will, in most cases, enable researchers to rapidly generate knockout zebrafish.
doi:10.1093/nar/gks518
PMCID: PMC3439908  PMID: 22684503
20.  Novel Chemical Suppressors of Long QT Syndrome Identified by an in vivo Functional Screen 
Circulation  2010;123(1):23-30.
Background
Genetic long QT (LQT) syndrome is a life-threatening disorder caused by mutations that result in prolongation of cardiac repolarization. Recent work has demonstrated that a zebrafish model of LQT syndrome faithfully recapitulates several features of human disease including prolongation of ventricular action potential duration (APD), spontaneous early after-depolarizations, and 2:1 atrioventricular (AV) block in early stages of development. Due to their transparency, small size, and absorption of small molecules from their environment, zebrafish are amenable to high throughput chemical screens. We describe a small molecule screen using the zebrafish KCNH2 mutant breakdance to identify compounds that can rescue the LQT type 2 phenotype.
Methods and Results
Zebrafish breakdance embryos were exposed to test compounds at 48 hours of development and scored for rescue of 2:1 AV block at 72 hours in a 96-well format. Only compounds that suppressed the LQT phenotype in three of three fish were considered hits. Screen compounds were obtained from commercially available small molecule libraries (Prestwick and Chembridge). Initial hits were confirmed with dose response testing and time course studies. Optical mapping using the voltage sensitive dye di-4 ANEPPS was performed to measure compound effects on cardiac APDs. Screening of 1200 small molecules resulted in the identification of flurandrenolide and 2-methoxy-N-(4-methylphenyl) benzamide (2-MMB) as compounds that reproducibly suppressed the LQT phenotype. Optical mapping confirmed that treatment with each compound caused shortening of ventricular APDs. Structure activity studies and steroid receptor knockdown suggest that flurandrenolide functions via the glucocorticoid signaling pathway.
Conclusions
Using a zebrafish model of LQT type 2 syndrome in a high throughput chemical screen, we have identified two compounds, flurandrenolide and the novel compound, 2-MMB, as small molecules that rescue the zebrafish LQTS 2 by shortening the ventricular action potential duration. We provide evidence that flurandrenolide functions via the glucocorticoid receptor mediated pathway. These two molecules, and future discoveries from this screen, should yield novel tools for the study of cardiac electrophysiology and may lead to novel therapeutics for human LQT patients.
doi:10.1161/CIRCULATIONAHA.110.003731
PMCID: PMC3015011  PMID: 21098441
long QT syndrome; animal models of human disease; ion channels; chemical screening
21.  Selection-Free Zinc-Finger Nuclease Engineering by Context-Dependent Assembly (CoDA) 
Nature methods  2010;8(1):67-69.
Engineered zinc-finger nucleases (ZFNs) enable targeted genome modification. Here we describe Context-Dependent Assembly (CoDA), a platform for engineering ZFNs using only standard cloning techniques or custom DNA synthesis. Using CoDA ZFNs, we rapidly altered 20 genes in zebrafish, Arabidopsis, and soybean. The simplicity and efficacy of CoDA will enable broad adoption of ZFN technology and make possible large-scale projects focused on multi-gene pathways or genome-wide alterations.
doi:10.1038/nmeth.1542
PMCID: PMC3018472  PMID: 21151135
22.  Zebrafish Behavioral Profiling Links Drugs to Biological Targets and Rest/Wake Regulation 
Science (New York, N.Y.)  2010;327(5963):348-351.
A major obstacle for the discovery of psychoactive drugs is the inability to predict how small molecules will alter complex behaviors. We report the development and application of a high-throughput, quantitative screen for drugs that alter the behavior of larval zebrafish. We found that the multi-dimensional nature of observed phenotypes enabled the hierarchical clustering of molecules according to shared behaviors. Behavioral profiling revealed conserved functions of psychotropic molecules and predicted the mechanisms of action of poorly characterized compounds. In addition, behavioral profiling implicated new factors such as ether-a-go-go-related gene (ERG) potassium channels and immunomodulators in the control of rest and locomotor activity. These results demonstrate the power of high-throughput behavioral profiling in zebrafish to discover and characterize psychotropic drugs and to dissect the pharmacology of complex behaviors.
doi:10.1126/science.1183090
PMCID: PMC2830481  PMID: 20075256
23.  Rapid behavior—based identification of neuroactive small molecules in the zebrafish 
Nature chemical biology  2010;6(3):231-237.
Neuroactive small molecules are indispensable tools for treating mental illnesses and dissecting nervous system function. However, it has been difficult to discover novel neuroactive drugs. Here, we describe a high—throughput (HT) behavior—based approach to neuroactive small molecule discovery in the zebrafish. We use automated screening assays to evaluate thousands of chemical compounds and find that diverse classes of neuroactive molecules cause distinct patterns of behavior. These `behavioral barcodes' can be used to rapidly identify novel psychotropic chemicals and to predict their molecular targets. For example, we identify novel acetylcholinesterase and monoamine oxidase inhibitors using phenotypic comparisons and computational techniques. By combining HT screening technologies with behavioral phenotyping in vivo, behavior—based chemical screens may accelerate the pace of neuroactive drug discovery and provide small—molecule tools for understanding vertebrate behavior.
doi:10.1038/nchembio.307
PMCID: PMC2834185  PMID: 20081854
24.  A Drug-Sensitized Zebrafish Screen Identifies Multiple Genes, Including GINS3, as Regulators of Myocardial Repolarization 
Circulation  2009;120(7):553-559.
Background
Cardiac repolarization, the process by which cardiomyocytes return to their resting potential after each beat, is a highly regulated process that is critical for heart rhythm stability. Perturbations of cardiac repolarization increase the risk for life-threatening arrhythmias and sudden cardiac death. While genetic studies of familial long QT syndromes have uncovered several key genes in cardiac repolarization, the major heritable contribution to this trait remains unexplained. Identification of additional genes may lead to a better understanding of the underlying biology, aid in identification of patients at risk for sudden death, and potentially enable new treatments for susceptible individuals.
Methods and Results
We extended and refined a zebrafish model of cardiac repolarization by using fluorescent reporters of transmembrane potential. We then conducted a drug-sensitized genetic screen in zebrafish, identifying 15 genes, including GINS3, that affect cardiac repolarization. Testing these genes for human relevance in two concurrently completed genome wide association studies revealed that the human GINS3 ortholog is located in the 16q21 locus which is strongly associated with QT interval.
Conclusions
This sensitized zebrafish screen identified 15 novel myocardial repolarization genes. Among these genes is GINS3, the human ortholog of which is a major locus in two concurrent human genome wide association studies of QT interval. These results reveal a novel network of genes that regulate cardiac repolarization.
doi:10.1161/CIRCULATIONAHA.108.821082
PMCID: PMC2771327  PMID: 19652097
Genes; Action Potential; Electrophysiology; Ion Channels
25.  Systematizing serendipity for cardiovascular drug discovery 
Circulation  2009;120(3):255-263.
doi:10.1161/CIRCULATIONAHA.108.824177
PMCID: PMC2756982  PMID: 19620524

Results 1-25 (40)