PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (49)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
Document Types
1.  Progesterone receptor membrane component-1 regulates hepcidin biosynthesis 
Iron homeostasis is tightly regulated by the membrane iron exporter ferroportin and its regulatory peptide hormone hepcidin. The hepcidin/ferroportin axis is considered a promising therapeutic target for the treatment of diseases of iron overload or deficiency. Here, we conducted a chemical screen in zebrafish to identify small molecules that decrease ferroportin protein levels. The chemical screen led to the identification of 3 steroid molecules, epitiostanol, progesterone, and mifepristone, which decrease ferroportin levels by increasing the biosynthesis of hepcidin. These hepcidin-inducing steroids (HISs) did not activate known hepcidin-inducing pathways, including the BMP and JAK/STAT3 pathways. Progesterone receptor membrane component-1 (PGRMC1) was required for HIS-dependent increases in hepcidin biosynthesis, as PGRMC1 depletion in cultured hepatoma cells and zebrafish blocked the ability of HISs to increase hepcidin mRNA levels. Neutralizing antibodies directed against PGRMC1 attenuated the ability of HISs to induce hepcidin gene expression. Inhibiting the kinases of the SRC family, which are downstream of PGRMC1, blocked the ability of HISs to increase hepcidin mRNA levels. Furthermore, HIS treatment increased hepcidin biosynthesis in mice and humans. Together, these data indicate that PGRMC1 regulates hepcidin gene expression through an evolutionarily conserved mechanism. These studies have identified drug candidates and potential therapeutic targets for the treatment of diseases of abnormal iron metabolism.
doi:10.1172/JCI83831
PMCID: PMC4701562  PMID: 26657863
2.  15 years of zebrafish chemical screening 
In 2000, the first chemical screen using living zebrafish in a multi-well plate was reported. Since then, more than 60 additional screens have been published describing whole-organism drug and pathway discovery projects in zebrafish. To investigate the scope of the work reported in the last 14 years and to identify trends in the field, we analyzed the discovery strategies of 64 primary research articles from the literature. We found that zebrafish screens have expanded beyond the use of developmental phenotypes to include behavioral, cardiac, metabolic, proliferative and regenerative endpoints. Additionally, many creative strategies have been used to uncover the mechanisms of action of new small molecules including chemical phenocopy, genetic phenocopy, mutant rescue, and spatial localization strategies.
doi:10.1016/j.cbpa.2014.10.025
PMCID: PMC4339096  PMID: 25461724
3.  Engineered CRISPR-Cas9 nucleases with altered PAM specificities 
Nature  2015;523(7561):481-485.
Although CRISPR-Cas9 nucleases are widely used for genome editing1, 2, the range of sequences that Cas9 can recognize is constrained by the need for a specific protospacer adjacent motif (PAM)3–6. As a result, it can often be difficult to target double-stranded breaks (DSBs) with the precision that is necessary for various genome editing applications. The ability to engineer Cas9 derivatives with purposefully altered PAM specificities would address this limitation. Here we show that the commonly used Streptococcus pyogenes Cas9 (SpCas9) can be modified to recognize alternative PAM sequences using structural information, bacterial selection-based directed evolution, and combinatorial design. These altered PAM specificity variants enable robust editing of endogenous gene sites in zebrafish and human cells not currently targetable by wild-type SpCas9, and their genome-wide specificities are comparable to wild-type SpCas9 as judged by GUIDE-Seq analysis7. In addition, we identified and characterized another SpCas9 variant that exhibits improved specificity in human cells, possessing better discrimination against off-target sites with non-canonical NAG and NGA PAMs and/or mismatched spacers. We also found that two smaller-size Cas9 orthologues, Streptococcus thermophilus Cas9 (St1Cas9) and Staphylococcus aureus Cas9 (SaCas9), function efficiently in the bacterial selection systems and in human cells, suggesting that our engineering strategies could be extended to Cas9s from other species. Our findings provide broadly useful SpCas9 variants and, more importantly, establish the feasibility of engineering a wide range of Cas9s with altered and improved PAM specificities.
doi:10.1038/nature14592
PMCID: PMC4540238  PMID: 26098369
4.  Zebrafish Models of Cerebrovascular Disease 
Perturbations in cerebral blood flow and abnormalities in blood vessel structure are the hallmarks of cerebrovascular disease. While there are many genetic and environmental factors that affect these entities through a heterogeneous group of disease processes, the ultimate final pathologic insult in humans is defined as a stroke, or damage to brain parenchyma. In the case of ischemic stroke, blood fails to reach its target destination whereas in hemorrhagic stroke, extravasation of blood occurs outside of the blood vessel lumen, resulting in direct damage to brain parenchyma. As these acute events can be neurologically devastating, if not fatal, development of novel therapeutics are urgently needed. The zebrafish (Danio rerio) is an attractive model for the study of cerebrovascular disease because of its morphological and physiological similarity to human cerebral vasculature, its ability to be genetically manipulated, and its fecundity allowing for large-scale, phenotype-based screens.
doi:10.1038/jcbfm.2014.27
PMCID: PMC3982096  PMID: 24517974
aneurysm; arteriovenous malformation; cavernous malformation; moyamoya; stroke; zebrafish
5.  A Small Molecule that Induces Intrinsic Pathway Apoptosis with Unparalleled Speed 
Cell reports  2015;13(9):2027-2036.
Apoptosis is generally believed to be a process that requires several hours, in contrast to non-programmed forms of cell death that can occur in minutes. Our findings challenge the time-consuming nature of apoptosis as we describe the discovery and characterization of a small molecule, named Raptinal, which initiates intrinsic pathway caspase-dependent apoptosis within minutes in multiple cell lines. Comparison to a mechanistically diverse panel of apoptotic stimuli reveals Raptinal-induced apoptosis proceeds with unparalleled speed. The rapid phenotype enabled identification of the critical roles of mitochondrial voltage-dependent anion channel function, mitochondrial membrane potential/coupled respiration, and mitochondrial complex I, III and IV function for apoptosis induction. Use of Raptinal in whole organisms demonstrates its utility to study apoptosis in vivo for a variety of applications. Overall, rapid inducers of apoptosis are powerful tools that will be used in a variety of settings to generate further insight into the apoptotic machinery.
Graphical Abstract
doi:10.1016/j.celrep.2015.10.042
PMCID: PMC4683402  PMID: 26655912
6.  Methods for targeted mutagenesis in zebrafish using TALENs 
Methods (San Diego, Calif.)  2014;69(1):76-84.
The transcription activator-like effector (TALE) nucleases, or TALENs, are customizable restriction enzymes that may be used to induce mutations at nearly any investigator-specified DNA sequence in zebrafish. The DNA-binding specificities of TALENs are determined by a protein array comprised of four types of TALE repeats, where each repeat recognizes a different DNA base. Here, we describe methods for constructing TALEN vectors that have been shown to achieve high success rates and mutation efficiencies in zebrafish. In addition, we discuss simple techniques and protocols that can be used to detect TALEN-induced mutations at almost any genomic locus. These methods should enable zebrafish researchers to quickly generate targeted mutations at their genes-of-interest.
doi:10.1016/j.ymeth.2014.04.009
PMCID: PMC4157959  PMID: 24747922
Site-specific nuclease; Transcription activator-like effector; nuclease; Knockout; Genome engineering; Gene targeting; Gene disruption; Zebrafish
7.  Pharmacological HIF2α inhibition improves VHL disease–associated phenotypes in zebrafish model 
The Journal of Clinical Investigation  2015;125(5):1987-1997.
Patients with a germline mutation in von Hippel-Lindau (VHL) develop renal cell cancers and hypervascular tumors of the brain, adrenal glands, and pancreas as well as erythrocytosis. These phenotypes are driven by aberrant expression of HIF2α, which induces expression of genes involved in cell proliferation, angiogenesis, and red blood cell production. Currently, there are no effective treatments available for VHL disease. Here, using an animal model of VHL, we report a marked improvement of VHL-associated phenotypes following treatment with HIF2α inhibitors. Inactivation of vhl in zebrafish led to constitutive activation of HIF2α orthologs and modeled several aspects of the human disease, including erythrocytosis, pathologic angiogenesis in the brain and retina, and aberrant kidney and liver proliferation. Treatment of vhl–/– mutant embryos with HIF2α-specific inhibitors downregulated Hif target gene expression in a dose-dependent manner, improved abnormal hematopoiesis, and substantially suppressed erythrocytosis and angiogenic sprouting. Moreover, pharmacologic inhibition of HIF2α reversed the compromised cardiac contractility of vhl–/– embryos and partially rescued early lethality. This study demonstrates that small-molecule targeting of HIF2α improves VHL-related phenotypes in a vertebrate animal model and supports further exploration of this strategy for treating VHL disease.
doi:10.1172/JCI73665
PMCID: PMC4463187  PMID: 25866969
Angiogenesis; Oncology
8.  From phenotype to mechanism after zebrafish small molecule screens 
Small molecules screens conducted with living zebrafish have become a commonly practiced technique for small molecule discovery. Embryonic and larval zebrafish exhibit an almost limitless range of phenotypes, from the cellular to the organismal. Consequently, small molecule screens can be designed to discover compounds modifying any of these phenotypes. The compounds discovered by zebrafish screens pose unique challenges for target identification, but the zebrafish also provides several powerful approaches for identifying targets and determining mechanisms of action. Four major approaches have been used successfully, including methods based on comparison of chemical structures, genetic phenocopy, pharmacologic phenocopy, and compound affinity. These approaches will continue to facilitate target identification for compounds from zebrafish small molecule screens, and more importantly, to reveal their mechanisms of action.
doi:10.1016/j.ddmod.2012.02.002
PMCID: PMC4489146  PMID: 26146505
9.  Visnagin protects against doxorubicin-induced cardiomyopathy through modulation of mitochondrial malate dehydrogenase 
Science translational medicine  2014;6(266):266ra170.
Doxorubicin is a highly effective anti-cancer chemotherapy agent, but its usage is limited by its cardiotoxicity. To develop a drug that prevents the cardiac toxicity of doxorubicin while preserving its anti-tumor potency, we established a doxorubicin-induced cardiomyopathy model in zebrafish that recapitulated the cardiomyocyte apoptosis and contractility decline observed in patients. Using this model, we screened 3000 compounds and discovered that visnagin (VIS) and diphenylurea (DPU) rescue cardiac performance and circulatory defects caused by doxorubicin treatment in zebrafish. VIS and DPU reduced doxorubicin-induced apoptosis in cultured cardiomyocytes and in vivo in zebrafish and mouse hearts. Furthermore, VIS treatment improved cardiac contractility in doxorubicin-treated mice. Importantly, VIS and DPU caused no reduction in the chemotherapeutic efficacy of doxorubicin in several cultured tumor lines or in zebrafish and mouse xenograft models. Using affinity chromatography, we discovered that VIS binds to mitochondrial malate dehydrogenase (MDH2), one of the key enzymes in the tricarboxylic acid cycle. As with VIS, treatment with the MDH2 inhibitors mebendazole, thyroxine, and iodine prevented doxorubicin cardiotoxicity, as did treatment with malate itself, suggesting that modulation of MDH2 activity is responsible for VIS’s cardioprotective effects. Taken together, this study identified VIS and DPU as potent cardioprotective compounds and implicates MDH2 as a previously undescribed, druggable target for doxorubicin-induced cardiomyopathy.
doi:10.1126/scitranslmed.3010189
PMCID: PMC4360984  PMID: 25504881
10.  Effects of Vascular-Endothelial Protein Tyrosine Phosphatase Inhibition on Breast Cancer Vasculature and Metastatic Progression 
Background
The solid tumor microvasculature is characterized by structural and functional abnormality and mediates several deleterious aspects of tumor behavior. Here we determine the role of vascular endothelial protein tyrosine phosphatase (VE-PTP), which deactivates endothelial cell (EC) Tie-2 receptor tyrosine kinase, thereby impairing maturation of tumor vessels.
Methods
AKB-9778 is a first-in-class VE-PTP inhibitor. We examined its effects on ECs in vitro and on embryonic angiogenesis in vivo using zebrafish assays. We studied the impact of AKB-9778 therapy on the tumor vasculature, tumor growth, and metastatic progression using orthotopic models of murine mammary carcinoma as well as spontaneous and experimental metastasis models. Finally, we used endothelial nitric oxide synthase (eNOS)–deficient mice to establish the role of eNOS in mediating the effects of VE-PTP inhibition. All statistical tests were two-sided.
Results
AKB-9778 induced ligand-independent Tie-2 activation in ECs and impaired embryonic zebrafish angiogenesis. AKB-9778 delayed the early phase of mammary tumor growth by maintaining vascular maturity (P < .01, t test); slowed growth of micrometastases (P < .01, χ2 test) by preventing extravasation of tumor cells (P < 0.01, Fisher exact test), resulting in a trend toward prolonged survival (27.0 vs 36.5 days; hazard ratio of death = 0.33, 95% confidence interval = 0.11 to 1.03; P = .05, Mantel–Cox test); and stabilized established primary tumor blood vessels, enhancing tumor perfusion (P = .03 for 4T1 tumor model and 0.05 for E0771 tumor model, by two-sided t tests) and, hence, radiation response (P < .01, analysis of variance; n = 7 mice per group). The effects of AKB-9778 on tumor vessels were mediated in part by endothelial nitric oxide synthase activation.
Conclusions
Our results demonstrate that pharmacological VE-PTP inhibition can normalize the structure and function of tumor vessels through Tie-2 activation, which delays tumor growth, slows metastatic progression, and enhances response to concomitant cytotoxic treatments.
doi:10.1093/jnci/djt164
PMCID: PMC3748004  PMID: 23899555
11.  The zebrafish as a tool to identify novel therapies for human cardiovascular disease 
Disease Models & Mechanisms  2014;7(7):763-767.
Over the past decade, the zebrafish has become an increasingly popular animal model for the study of human cardiovascular disease. Because zebrafish embryos are transparent and their genetic manipulation is straightforward, the zebrafish has been used to recapitulate a number of cardiovascular disease processes ranging from congenital heart defects to arrhythmia to cardiomyopathy. The use of fluorescent reporters has been essential to identify two discrete phases of cardiomyocyte differentiation necessary for normal cardiac development in the zebrafish. These phases are analogous to the differentiation of the two progenitor heart cell populations in mammals, termed the first and second heart fields. The small size of zebrafish embryos has enabled high-throughput chemical screening to identify small-molecule suppressors of fundamental pathways in vasculogenesis, such as the BMP axis, as well as of common vascular defects, such as aortic coarctation. The optical clarity of zebrafish has facilitated studies of valvulogenesis as well as detailed electrophysiological mapping to characterize the early cardiac conduction system. One unique aspect of zebrafish larvae is their ability to oxygenate through diffusion alone, permitting the study of mutations that cause severe cardiomyopathy phenotypes such as silent heart and pickwickm171, which mimic titin mutations observed in human dilated cardiomyopathy. Above all, the regenerative capacity of zebrafish presents a particularly exciting opportunity to discover new therapies for cardiac injury, including scar formation following myocardial infarction. This Review will summarize the current state of the field and describe future directions to advance our understanding of human cardiovascular disease.
doi:10.1242/dmm.016170
PMCID: PMC4073266  PMID: 24973746
Cardiovascular; Drug discovery; Zebrafish
12.  Intravital correlated microscopy reveals differential macrophage and microglial dynamics during resolution of neuroinflammation 
Disease Models & Mechanisms  2014;7(7):857-869.
Many brain diseases involve activation of resident and peripheral immune cells to clear damaged and dying neurons. Which immune cells respond in what way to cues related to brain disease, however, remains poorly understood. To elucidate these in vivo immunological events in response to brain cell death we used genetically targeted cell ablation in zebrafish. Using intravital microscopy and large-scale electron microscopy, we defined the kinetics and nature of immune responses immediately following injury. Initially, clearance of dead cells occurs by mononuclear phagocytes, including resident microglia and macrophages of peripheral origin, whereas amoeboid microglia are exclusively involved at a later stage. Granulocytes, on the other hand, do not migrate towards the injury. Remarkably, following clearance, phagocyte numbers decrease, partly by phagocyte cell death and subsequent engulfment of phagocyte corpses by microglia. Here, we identify differential temporal involvement of microglia and peripheral macrophages in clearance of dead cells in the brain, revealing the chronological sequence of events in neuroinflammatory resolution. Remarkably, recruited phagocytes undergo cell death and are engulfed by microglia. Because adult zebrafish treated at the larval stage lack signs of pathology, it is likely that this mode of resolving immune responses in brain contributes to full tissue recovery. Therefore, these findings suggest that control of such immune cell behavior could benefit recovery from neuronal damage.
doi:10.1242/dmm.014886
PMCID: PMC4073275  PMID: 24973753
Brain; Intravital microscopy; Leukocytes; Microglia; Neurodegeneration; Zebrafish
13.  A zebrafish model of chordoma initiated by notochord-driven expression of HRASV12 
Disease Models & Mechanisms  2013;7(7):907-913.
Chordoma is a malignant tumor thought to arise from remnants of the embryonic notochord, with its origin in the bones of the axial skeleton. Surgical resection is the standard treatment, usually in combination with radiation therapy, but neither chemotherapeutic nor targeted therapeutic approaches have demonstrated success. No animal model and only few chordoma cell lines are available for preclinical drug testing, and, although no druggable genetic drivers have been identified, activation of EGFR and downstream AKT-PI3K pathways have been described. Here, we report a zebrafish model of chordoma, based on stable transgene-driven expression of HRASV12 in notochord cells during development. Extensive intra-notochordal tumor formation is evident within days of transgene expression, ultimately leading to larval death. The zebrafish tumors share characteristics of human chordoma as demonstrated by immunohistochemistry and electron microscopy. The mTORC1 inhibitor rapamycin, which has some demonstrated activity in a chordoma cell line, delays the onset of tumor formation in our zebrafish model, and improves survival of tumor-bearing fish. Consequently, the HRASV12-driven zebrafish model of chordoma could enable high-throughput screening of potential therapeutic agents for the treatment of this refractory cancer.
doi:10.1242/dmm.013128
PMCID: PMC4073279  PMID: 24311731
HRASV12; Cancer; Chordoma; Drug treatment; Rapamycin; Zebrafish
14.  An In Vivo Zebrafish Screen Identifies Organophosphate Antidotes with Diverse Mechanisms of Action 
Journal of biomolecular screening  2012;18(1):108-115.
Organophosphates are a class of highly toxic chemicals that includes many pesticides and chemical weapons. Exposure to organophosphates, either through accidents or acts of terrorism, poses a significant risk to human health and safety. Existing antidotes, in use for over 50 years, have modest efficacy and undesirable toxicities. Therefore, discovering new organophosphate antidotes is a high priority. Early life stage zebrafish exposed to organophosphates exhibit several phenotypes that parallel the human response to organophosphates, including behavioral deficits, paralysis, and eventual death. Here, we have developed a high-throughput zebrafish screen in a 96-well plate format to find new antidotes that counteract organophosphate-induced lethality. In a pilot screen of 1200 known drugs, we identified 16 compounds that suppress organophosphate toxicity in zebrafish. Several in vitro assays coupled with liquid chromatography/tandem mass spectrometry–based metabolite profiling enabled determination of mechanisms of action for several of the antidotes, including reversible acetylcholinesterase inhibition, cholinergic receptor antagonism, and inhibition of bioactivation. Therefore, the in vivo screen is capable of discovering organophosphate antidotes that intervene in distinct pathways. These findings suggest that zebrafish screens might be a broadly applicable approach for discovering compounds that counteract the toxic effects of accidental or malicious poisonous exposures.
doi:10.1177/1087057112458153
PMCID: PMC4053346  PMID: 22960781
Xenopus; zebrafish; in vivo screening; mass spectrometry; high-content screening
15.  cables1 Is Required for Embryonic Neural Development: Molecular, Cellular, and Behavioral Evidence From the Zebrafish 
SUMMARY
In vitro studies have suggested that the Cables1 gene regulates epithelial cell proliferation, whereas other studies suggest a role in promoting neural differentiation. In efforts to clarify the functions of Cables1 in vivo, we conducted gain- and loss-of-function studies targeting its ortholog (cables1) in the zebrafish embryo. Similar to rodents, zebrafish cables1 mRNA expression is detected most robustly in embryonic neural tissues. Antisense knockdown of cables1 leads to increased numbers of apoptotic cells, particularly in brain tissue, in addition to a distinct behavioral phenotype, characterized by hyperactivity in response to stimulation. Apoptosis and the behavioral abnormality could be rescued by co-expression of a morpholino-resistant cables1 construct. Suppression of p53 expression in cables1 morphants partially rescued both apoptosis and the behavioral phenotype, suggesting that the phenotype of cables1 morphants is due in part to p53-dependent apoptosis. Alterations in the expression patterns of several neural transcription factors were observed in cables1 morphants during early neurulation, suggesting that cables1 is required for early neural differentiation. Ectopic overexpression of cables1 strongly disrupted embryonic morphogenesis, while overexpression of a cables1 mutant lacking the C-terminal cyclin box had little effect, suggesting functional importance of the cyclin box. Lastly, marked reductions in p35, but not Cdk5, were observed in cables1 morphants. Collectively, these data suggest that cables1 is important for neural differentiation during embryogenesis, in a mechanism that likely involves interactions with the Cdk5/p35 kinase pathway.
doi:10.1002/mrd.21263
PMCID: PMC4016823  PMID: 21268180
16.  Changing the Scale and Efficiency of Chemical Warfare Countermeasure Discovery Using the Zebrafish 
Drug discovery today. Disease models  2013;10(1):10.1016/j.ddmod.2013.05.001.
As the scope of potential chemical warfare agents grows rapidly and as the diversity of potential threat scenarios expands with non-state actors, so a need for innovative approaches to countermeasure development has emerged. In the last few years, the utility of the zebrafish as a model organism that is amenable to high-throughput screening has become apparent and this system has been applied to the unbiased discovery of chemical warfare countermeasures. This review summarizes the in vivo screening approach that has been pioneered in the countermeasure discovery arena, and highlights the successes to date as well as the potential challenges in moving the field forward. Importantly, the establishment of a zebrafish platform for countermeasure discovery would offer a rapid response system for the development of antidotes to the continuous stream of new potential chemical warfare agents.
doi:10.1016/j.ddmod.2013.05.001
PMCID: PMC3834265  PMID: 24273586
17.  Zebrafish models of cerebrovascular disease 
Perturbations in cerebral blood flow and abnormalities in blood vessel structure are the hallmarks of cerebrovascular disease. While there are many genetic and environmental factors that affect these entities through a heterogeneous group of disease processes, the ultimate final pathologic insult in humans is defined as a stroke, or damage to brain parenchyma. In the case of ischemic stroke, blood fails to reach its target destination whereas in hemorrhagic stroke, extravasation of blood occurs outside of the blood vessel lumen, resulting in direct damage to brain parenchyma. As these acute events can be neurologically devastating, if not fatal, development of novel therapeutics are urgently needed. The zebrafish (Danio rerio) is an attractive model for the study of cerebrovascular disease because of its morphological and physiological similarity to human cerebral vasculature, its ability to be genetically manipulated, and its fecundity allowing for large-scale, phenotype-based screens.
doi:10.1038/jcbfm.2014.27
PMCID: PMC3982096  PMID: 24517974
aneurysm; arteriovenous malformation; cavernous malformation; moyamoya; stroke; zebrafish
18.  AUTOMATED QUANTIFICATION OF ZEBRAFISH TAIL DEFORMATION FOR HIGH-THROUGHPUT DRUG SCREENING 
Zebrafish (Danio rerio) is an important vertebrate model organism in biomedical research thanks to its ease of handling and translucent body, enabling in vivo imaging. Zebrafish embryos undergo spinal deformation upon exposure to chemical agents that inhibit DNA repair. Automated image-based quantification of spine deformation is therefore attractive for whole-organism based assays for use in early-phase drug discovery. We propose an automated method for accurate high-throughput measurement of tail deformations in multi-fish micro-plate wells. The method generates refined medial representations of partial tail-segments. Subsequently, these disjoint segments are analyzed and fused to generate complete tails. Based on estimated tail curvatures we reach a classification accuracy of 91% on individual animals as compared to known control treatment. This accuracy is increased to 95% when combining scores for fish in the same well.
doi:10.1109/ISBI.2013.6556621
PMCID: PMC3909804  PMID: 24499782
Curvature extraction; high-throughput screening; quantitative microscopy; zebrafish (Danio rerio)
19.  Photochemical activation of TRPA1 channels in neurons and animals 
Nature chemical biology  2013;9(4):257-263.
Optogenetics is a powerful research tool because it enables high-resolution optical control of neuronal activity. However, current optogenetic approaches are limited to transgenic systems expressing microbial opsins and other exogenous photoreceptors. Here, we identify optovin, a small molecule that enables repeated photoactivation of motor behaviors in wild type animals. Surprisingly, optovin's behavioral effects are not visually mediated. Rather, photodetection is performed by sensory neurons expressing the cation channel TRPA1. TRPA1 is both necessary and sufficient for the optovin response. Optovin activates human TRPA1 via structure-dependent photochemical reactions with redox-sensitive cysteine residues. In animals with severed spinal cords, optovin treatment enables control of motor activity in the paralyzed extremities by localized illumination. These studies identify a light-based strategy for controlling endogenous TRPA1 receptors in vivo, with potential clinical and research applications in non-transgenic animals, including humans.
doi:10.1038/nchembio.1183
PMCID: PMC3604056  PMID: 23396078
20.  Efficient In Vivo Genome Editing Using RNA-Guided Nucleases 
Nature biotechnology  2013;31(3):227-229.
Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) systems have evolved in bacteria and archaea as a defense mechanism to silence foreign nucleic acids of viruses and plasmids. Recent work has shown that bacterial type II CRISPR systems can be adapted to create guide RNAs (gRNAs) capable of directing site-specific DNA cleavage by the Cas9 nuclease in vitro. Here we show that this system can function in vivo to induce targeted genetic modifications in zebrafish embryos with efficiencies comparable to those obtained using ZFNs and TALENs for the same genes. RNA-guided nucleases robustly enabled genome editing at 9 of 11 different sites tested, including two for which TALENs previously failed to induce alterations. These results demonstrate that programmable CRISPR/Cas systems provide a simple, rapid, and highly scalable method for altering genes in vivo, opening the door to using RNA-guided nucleases for genome editing in a wide range of organisms.
doi:10.1038/nbt.2501
PMCID: PMC3686313  PMID: 23360964
21.  Identification of non-visual photomotor response cells in the vertebrate hindbrain 
Non-visual photosensation enables animals to sense light without sight. However, the cellular and molecular mechanisms of non-visual photobehaviors are poorly understood, especially in vertebrate animals. Here, we describe the photomotor response (PMR), a robust and reproducible series of motor behaviors in zebrafish that is elicited by visual wavelengths of light, but does not require the eyes, pineal gland or other canonical deep-brain photoreceptive organs. Unlike the relatively slow effects of canonical non-visual pathways, motor circuits are strongly and quickly (seconds) recruited during the PMR behavior. We find that the hindbrain is both necessary and sufficient to drive these behaviors. Using in vivo calcium imaging, we identify a discrete set of neurons within the hindbrain whose responses to light mirror the PMR behavior. Pharmacological inhibition of the visual cycle blocks PMR behaviors, suggesting that opsin-based photoreceptors control this behavior. These data represent the first known light-sensing circuit in the vertebrate hindbrain.
doi:10.1523/JNEUROSCI.3689-12.2013
PMCID: PMC3600642  PMID: 23447595
22.  Behavioral barcoding in the cloud: Embracing data-intensive digital phenotyping in neuropharmacology 
Trends in Biotechnology  2012;30(8):421-425.
Summary
For decades, studying the behavioral effects of individual drugs and genetic mutations has been at the heart of efforts to understand and treat nervous system disorders. High-throughput technologies adapted from other disciplines (e.g. high-throughput chemical screening, genomics) are changing the scale of data acquisition in behavioral neuroscience. Massive behavioral datasets are beginning to emerge, particularly from zebrafish labs, where behavioral assays can be performed rapidly and reproducibly in 96-well, high-throughput format. Mining these datasets and making comparisons across different assays are major challenges for the field. Here, we review behavioral barcoding, a process by which complex behavioral assays are reduced to a string of numeric features, facilitating analysis and comparison within and across datasets.
doi:10.1016/j.tibtech.2012.05.001
PMCID: PMC3401323  PMID: 22652049
23.  Heritable and Precise Zebrafish Genome Editing Using a CRISPR-Cas System 
PLoS ONE  2013;8(7):e68708.
We have previously reported a simple and customizable CRISPR (clustered regularly interspaced short palindromic repeats) RNA-guided Cas9 nuclease (RGN) system that can be used to efficiently and robustly introduce somatic indel mutations in endogenous zebrafish genes. Here we demonstrate that RGN-induced mutations are heritable, with efficiencies of germline transmission reaching as high as 100%. In addition, we extend the power of the RGN system by showing that these nucleases can be used with single-stranded oligodeoxynucleotides (ssODNs) to create precise intended sequence modifications, including single nucleotide substitutions. Finally, we describe and validate simple strategies that improve the targeting range of RGNs from 1 in every 128 basepairs (bps) of random DNA sequence to 1 in every 8 bps. Together, these advances expand the utility of the CRISPR-Cas system in the zebrafish beyond somatic indel formation to heritable and precise genome modifications.
doi:10.1371/journal.pone.0068708
PMCID: PMC3706373  PMID: 23874735
24.  Using the Zebrafish Photomotor Response for Psychotropic Drug Screening 
Methods in cell biology  2011;105:517-524.
Because psychotropic drugs affect behavior, we can use changes in behavior to discover psychotropic drugs. The original prototypes of most neuroactive medicines were discovered in humans, rodents and other model organisms. Most of these discoveries were made by chance, but the process of behavior based drug discovery can be made more systematic and efficient. Fully automated platforms for analyzing the behavior of embryonic zebrafish capture digital video recordings of animals in each individual well of a 96-well plate before, during, and after a series of stimuli. To analyze systematically the thousands of behavioral recordings obtained from a large-scale chemical screen, we transform these behavioral recordings into numerical barcodes, providing a concise and interpretable summary of the observed phenotypes in each well. Systems-level analysis of these behavioral phenotypes generate testable hypotheses about the molecular mechanisms of poorly understood drugs and behaviors. By combining the in vivo relevance of behavior-based phenotyping with the scale and automation of modern drug screening technologies, systematic behavioral barcoding represents a means of discovering psychotropic drugs and provides a powerful, systematic approach for unraveling the complexities of vertebrate behavior.
doi:10.1016/B978-0-12-381320-6.00022-9
PMCID: PMC3635141  PMID: 21951545
25.  In vivo natriuretic peptide reporter assay identifies chemical modifiers of hypertrophic cardiomyopathy signalling 
Cardiovascular Research  2011;93(3):463-470.
Aims
Despite increased understanding of the fundamental biology regulating cardiomyocyte hypertrophy and heart failure, it has been challenging to find novel chemical or genetic modifiers of these pathways. Traditional cell-based methods do not model the complexity of an intact cardiovascular system and mammalian models are not readily adaptable to chemical or genetic screens. Our objective was to create an in vivo model suitable for chemical and genetic screens for hypertrophy and heart failure modifiers
Methods and results
Using the developing zebrafish, we established that the cardiac natriuretic peptide genes (nppa and nppb), known markers of cardiomyocyte hypertrophy and heart failure, were induced in the embryonic heart by pathological cardiac stimuli. This pathological induction was distinct from the developmental regulation of these genes. We created a luciferase-based transgenic reporter line that accurately modelled the pathological induction patterns of the zebrafish nppb gene. Utilizing this reporter line, we were able to show remarkable conservation of pharmacological responses between the larval zebrafish heart and adult mammalian models.
Conclusion
By performing a focused screen of chemical agents, we were able to show a distinct response of a genetic model of hypertrophic cardiomyopathy to the histone deacetylase inhibitor, Trichostatin A, and the mitogen-activated protein kinase kinase 1/2 inhibitor, U0126. We believe this in vivo reporter line will offer a unique approach to the identification of novel chemical or genetic regulators of myocardial hypertrophy and heart failure.
doi:10.1093/cvr/cvr350
PMCID: PMC3410427  PMID: 22198505
Natriuretic peptides; Hypertrophy; Heart development; Heart failure; Hypertrophic cardiomyopathy

Results 1-25 (49)