PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (114)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
1.  Application of next generation sequencing to human gene fusion detection: computational tools, features and perspectives 
Briefings in Bioinformatics  2012;14(4):506-519.
Gene fusions are important genomic events in human cancer because their fusion gene products can drive the development of cancer and thus are potential prognostic tools or therapeutic targets in anti-cancer treatment. Major advancements have been made in computational approaches for fusion gene discovery over the past 3 years due to improvements and widespread applications of high-throughput next generation sequencing (NGS) technologies. To identify fusions from NGS data, existing methods typically leverage the strengths of both sequencing technologies and computational strategies. In this article, we review the NGS and computational features of existing methods for fusion gene detection and suggest directions for future development.
doi:10.1093/bib/bbs044
PMCID: PMC3713712  PMID: 22877769
gene fusion; next generation sequencing; cancer; whole genome sequencing; transcriptome sequencing; computational tools
2.  A comparative analysis of biclustering algorithms for gene expression data 
Briefings in Bioinformatics  2012;14(3):279-292.
The need to analyze high-dimension biological data is driving the development of new data mining methods. Biclustering algorithms have been successfully applied to gene expression data to discover local patterns, in which a subset of genes exhibit similar expression levels over a subset of conditions. However, it is not clear which algorithms are best suited for this task. Many algorithms have been published in the past decade, most of which have been compared only to a small number of algorithms. Surveys and comparisons exist in the literature, but because of the large number and variety of biclustering algorithms, they are quickly outdated. In this article we partially address this problem of evaluating the strengths and weaknesses of existing biclustering methods. We used the BiBench package to compare 12 algorithms, many of which were recently published or have not been extensively studied. The algorithms were tested on a suite of synthetic data sets to measure their performance on data with varying conditions, such as different bicluster models, varying noise, varying numbers of biclusters and overlapping biclusters. The algorithms were also tested on eight large gene expression data sets obtained from the Gene Expression Omnibus. Gene Ontology enrichment analysis was performed on the resulting biclusters, and the best enrichment terms are reported. Our analyses show that the biclustering method and its parameters should be selected based on the desired model, whether that model allows overlapping biclusters, and its robustness to noise. In addition, we observe that the biclustering algorithms capable of finding more than one model are more successful at capturing biologically relevant clusters.
doi:10.1093/bib/bbs032
PMCID: PMC3659300  PMID: 22772837
biclustering; microarray; gene expression; clustering
3.  Automated glycopeptide analysis—review of current state and future directions 
Briefings in Bioinformatics  2012;14(3):361-374.
Glycosylation of proteins is involved in immune defense, cell–cell adhesion, cellular recognition and pathogen binding and is one of the most common and complex post-translational modifications. Science is still struggling to assign detailed mechanisms and functions to this form of conjugation. Even the structural analysis of glycoproteins—glycoproteomics—remains in its infancy due to the scarcity of high-throughput analytical platforms capable of determining glycopeptide composition and structure, especially platforms for complex biological mixtures. Glycopeptide composition and structure can be determined with high mass-accuracy mass spectrometry, particularly when combined with chromatographic separation, but the sheer volume of generated data necessitates computational software for interpretation. This review discusses the current state of glycopeptide assignment software—advances made to date and issues that remain to be addressed. The various software and algorithms developed so far provide important insights into glycoproteomics. However, there is currently no freely available software that can analyze spectral data in batch and unambiguously determine glycopeptide compositions for N- and O-linked glycopeptides from relevant biological sources such as human milk and serum. Few programs are capable of aiding in structural determination of the glycan component. To significantly advance the field of glycoproteomics, analytical software and algorithms are required that: (i) solve for both N- and O-linked glycopeptide compositions, structures and glycosites in biological mixtures; (ii) are high-throughput and process data in batches; (iii) can interpret mass spectral data from a variety of sources and (iv) are open source and freely available.
doi:10.1093/bib/bbs045
PMCID: PMC3659302  PMID: 22843980
glycopeptide; glycoproteomics; glycopeptidomics; bioinformatics; N-linked; O-linked
5.  Hawkeye and AMOS: visualizing and assessing the quality of genome assemblies 
Briefings in Bioinformatics  2011;14(2):213-224.
Since its launch in 2004, the open-source AMOS project has released several innovative DNA sequence analysis applications including: Hawkeye, a visual analytics tool for inspecting the structure of genome assemblies; the Assembly Forensics and FRCurve pipelines for systematically evaluating the quality of a genome assembly; and AMOScmp, the first comparative genome assembler. These applications have been used to assemble and analyze dozens of genomes ranging in complexity from simple microbial species through mammalian genomes. Recent efforts have been focused on enhancing support for new data characteristics brought on by second- and now third-generation sequencing. This review describes the major components of AMOS in light of these challenges, with an emphasis on methods for assessing assembly quality and the visual analytics capabilities of Hawkeye. These interactive graphical aspects are essential for navigating and understanding the complexities of a genome assembly, from the overall genome structure down to individual bases. Hawkeye and AMOS are available open source at http://amos.sourceforge.net.
doi:10.1093/bib/bbr074
PMCID: PMC3603210  PMID: 22199379
DNA Sequencing; genome assembly; assembly forensics; visual analytics
6.  Visualizing next-generation sequencing data with JBrowse 
Briefings in Bioinformatics  2012;14(2):172-177.
JBrowse is a web-based genome browser, allowing many sources of data to be visualized, interpreted and navigated in a coherent visual framework. JBrowse uses efficient data structures, pre-generation of image tiles and client-side rendering to provide a fast, interactive browsing experience. Many of JBrowse's design features make it well suited for visualizing high-volume data, such as aligned next-generation sequencing reads.
doi:10.1093/bib/bbr078
PMCID: PMC3603211  PMID: 22411711
genome browser; web; next-generation sequencing
7.  Bioinformatics opportunities for identification and study of medicinal plants 
Briefings in Bioinformatics  2012;14(2):238-250.
Plants have been used as a source of medicine since historic times and several commercially important drugs are of plant-based origin. The traditional approach towards discovery of plant-based drugs often times involves significant amount of time and expenditure. These labor-intensive approaches have struggled to keep pace with the rapid development of high-throughput technologies. In the era of high volume, high-throughput data generation across the biosciences, bioinformatics plays a crucial role. This has generally been the case in the context of drug designing and discovery. However, there has been limited attention to date to the potential application of bioinformatics approaches that can leverage plant-based knowledge. Here, we review bioinformatics studies that have contributed to medicinal plants research. In particular, we highlight areas in medicinal plant research where the application of bioinformatics methodologies may result in quicker and potentially cost-effective leads toward finding plant-based remedies.
doi:10.1093/bib/bbs021
PMCID: PMC3603214  PMID: 22589384
medicinal plants; bioinformatics; drug discovery
8.  A bioinformatician’s guide to the forefront of suffix array construction algorithms 
Briefings in Bioinformatics  2014;15(2):138-154.
The suffix array and its variants are text-indexing data structures that have become indispensable in the field of bioinformatics. With the uninitiated in mind, we provide an accessible exposition of the SA-IS algorithm, which is the state of the art in suffix array construction. We also describe DisLex, a technique that allows standard suffix array construction algorithms to create modified suffix arrays designed to enable a simple form of inexact matching needed to support ‘spaced seeds’ and ‘subset seeds’ used in many biological applications.
doi:10.1093/bib/bbt081
PMCID: PMC3956071  PMID: 24413184
suffix array construction; linear-time algorithm; text index; spaced seeds; subset seeds
9.  Detecting miRNAs in deep-sequencing data: a software performance comparison and evaluation 
Briefings in Bioinformatics  2012;14(1):36-45.
Deep sequencing has become a popular tool for novel miRNA detection but its data must be viewed carefully as the state of the field is still undeveloped. Using three different programs, miRDeep (v1, 2), miRanalyzer and DSAP, we have analyzed seven data sets (six biological and one simulated) to provide a critical evaluation of the programs performance. We selected these software based on their popularity and overall approach toward the detection of novel and known miRNAs using deep-sequencing data. The program comparisons suggest that, despite differing stringency levels they all identify a similar set of known and novel predictions. Comparisons between the first and second version of miRDeep suggest that the stringency level of each of these programs may, in fact, be a result of the algorithm used to map the reads to the target. Different stringency levels are likely to affect the number of possible novel candidates for functional verification, causing undue strain on resources and time. With that in mind, we propose that an intersection across multiple programs be taken, especially if considering novel candidates that will be targeted for additional analysis. Using this approach, we identify and performed initial validation of 12 novel predictions in our in-house data with real-time PCR, six of which have been previously unreported.
doi:10.1093/bib/bbs010
PMCID: PMC3999373  PMID: 23334922
deep sequencing; software; miRNA detection; comparison
10.  Interfaces to PeptideAtlas: a case study of standard data access systems 
Briefings in Bioinformatics  2011;13(5):615-626.
Access to public data sets is important to the scientific community as a resource to develop new experiments or validate new data. Projects such as the PeptideAtlas, Ensembl and The Cancer Genome Atlas (TCGA) offer both access to public data and a repository to share their own data. Access to these data sets is often provided through a web page form and a web service API. Access technologies based on web protocols (e.g. http) have been in use for over a decade and are widely adopted across the industry for a variety of functions (e.g. search, commercial transactions, and social media). Each architecture adapts these technologies to provide users with tools to access and share data. Both commonly used web service technologies (e.g. REST and SOAP), and custom-built solutions over HTTP are utilized in providing access to research data. Providing multiple access points ensures that the community can access the data in the simplest and most effective manner for their particular needs. This article examines three common access mechanisms for web accessible data: BioMart, caBIG, and Google Data Sources. These are illustrated by implementing each over the PeptideAtlas repository and reviewed for their suitability based on specific usages common to research. BioMart, Google Data Sources, and caBIG are each suitable for certain uses. The tradeoffs made in the development of the technology are dependent on the uses each was designed for (e.g. security versus speed). This means that an understanding of specific requirements and tradeoffs is necessary before selecting the access technology.
doi:10.1093/bib/bbr067
PMCID: PMC3431717  PMID: 22941959
BioMart; Google Data Sources; caBIG; data access; proteomics
11.  Affymetrix GeneChip microarray preprocessing for multivariate analyses 
Briefings in Bioinformatics  2011;13(5):536-546.
Affymetrix GeneChip microarrays are the most widely used high-throughput technology to measure gene expression, and a wide variety of preprocessing methods have been developed to transform probe intensities reported by a microarray scanner into gene expression estimates. There have been numerous comparisons of these preprocessing methods, focusing on the most common analyses—detection of differential expression and gene or sample clustering. Recently, more complex multivariate analyses, such as gene co-expression, differential co-expression, gene set analysis and network modeling, are becoming more common; however, the same preprocessing methods are typically applied. In this article, we examine the effect of preprocessing methods on some of these multivariate analyses and provide guidance to the user as to which methods are most appropriate.
doi:10.1093/bib/bbr072
PMCID: PMC3431718  PMID: 22210854
microarray; preprocessing; gene expression; multivariate analysis
12.  Probe mapping across multiple microarray platforms 
Briefings in Bioinformatics  2011;13(5):547-554.
Access to gene expression data has become increasingly common in recent years; however, analysis has become more difficult as it is often desirable to integrate data from different platforms. Probe mapping across microarray platforms is the first and most crucial step for data integration. In this article, we systematically review and compare different approaches to map probes across seven platforms from different vendors: U95A, U133A and U133 Plus 2.0 from Affymetrix, Inc.; HT-12 v1, HT-12v2 and HT-12v3 from Illumina, Inc.; and 4112A from Agilent, Inc. We use a unique data set, which contains 56 lung cancer cell line samples—each of which has been measured by two different microarray platforms—to evaluate the consistency of expression measurement across platforms using different approaches. Based on the evaluation from the empirical data set, the BLAST alignment of the probe sequences to a recent revision of the Transcriptome generated better results than using annotations provided by Vendors or from Bioconductor's Annotate package. However, a combination of all three methods (deemed the ‘Consensus Annotation’) yielded the most consistent expression measurement across platforms. To facilitate data integration across microarray platforms for the research community, we develop a user-friendly web-based tool, an API and an R package to map data across different microarray platforms from Affymetrix, Illumina and Agilent. Information on all three can be found at http://qbrc.swmed.edu/software/probemapper/.
doi:10.1093/bib/bbr076
PMCID: PMC3431719  PMID: 22199380
microarray; gene expression; probe; integrated analysis; probe mapping
13.  Adjusting confounders in ranking biomarkers: a model-based ROC approach 
Briefings in Bioinformatics  2012;13(5):513-523.
High-throughput studies have been extensively conducted in the research of complex human diseases. As a representative example, consider gene-expression studies where thousands of genes are profiled at the same time. An important objective of such studies is to rank the diagnostic accuracy of biomarkers (e.g. gene expressions) for predicting outcome variables while properly adjusting for confounding effects from low-dimensional clinical risk factors and environmental exposures. Existing approaches are often fully based on parametric or semi-parametric models and target evaluating estimation significance as opposed to diagnostic accuracy. Receiver operating characteristic (ROC) approaches can be employed to tackle this problem. However, existing ROC ranking methods focus on biomarkers only and ignore effects of confounders. In this article, we propose a model-based approach which ranks the diagnostic accuracy of biomarkers using ROC measures with a proper adjustment of confounding effects. To this end, three different methods for constructing the underlying regression models are investigated. Simulation study shows that the proposed methods can accurately identify biomarkers with additional diagnostic power beyond confounders. Analysis of two cancer gene-expression studies demonstrates that adjusting for confounders can lead to substantially different rankings of genes.
doi:10.1093/bib/bbs008
PMCID: PMC3431720  PMID: 22396461
ranking biomarkers; ROC; confounders; high-throughput data
14.  Mathematics and evolutionary biology make bioinformatics education comprehensible 
Briefings in Bioinformatics  2013;14(5):599-609.
The patterns of variation within a molecular sequence data set result from the interplay between population genetic, molecular evolutionary and macroevolutionary processes—the standard purview of evolutionary biologists. Elucidating these patterns, particularly for large data sets, requires an understanding of the structure, assumptions and limitations of the algorithms used by bioinformatics software—the domain of mathematicians and computer scientists. As a result, bioinformatics often suffers a ‘two-culture’ problem because of the lack of broad overlapping expertise between these two groups. Collaboration among specialists in different fields has greatly mitigated this problem among active bioinformaticians. However, science education researchers report that much of bioinformatics education does little to bridge the cultural divide, the curriculum too focused on solving narrow problems (e.g. interpreting pre-built phylogenetic trees) rather than on exploring broader ones (e.g. exploring alternative phylogenetic strategies for different kinds of data sets). Herein, we present an introduction to the mathematics of tree enumeration, tree construction, split decomposition and sequence alignment. We also introduce off-line downloadable software tools developed by the BioQUEST Curriculum Consortium to help students learn how to interpret and critically evaluate the results of standard bioinformatics analyses.
doi:10.1093/bib/bbt046
PMCID: PMC3771232  PMID: 23821621
bioinformatics education; discrete mathematics; quantitative reasoning; off-line downloadable free and open-source software; evolutionary problem solving
15.  Bioinformatics for personal genome interpretation 
Briefings in Bioinformatics  2012;13(4):495-512.
An international consortium released the first draft sequence of the human genome 10 years ago. Although the analysis of this data has suggested the genetic underpinnings of many diseases, we have not yet been able to fully quantify the relationship between genotype and phenotype. Thus, a major current effort of the scientific community focuses on evaluating individual predispositions to specific phenotypic traits given their genetic backgrounds. Many resources aim to identify and annotate the specific genes responsible for the observed phenotypes. Some of these use intra-species genetic variability as a means for better understanding this relationship. In addition, several online resources are now dedicated to collecting single nucleotide variants and other types of variants, and annotating their functional effects and associations with phenotypic traits. This information has enabled researchers to develop bioinformatics tools to analyze the rapidly increasing amount of newly extracted variation data and to predict the effect of uncharacterized variants. In this work, we review the most important developments in the field—the databases and bioinformatics tools that will be of utmost importance in our concerted effort to interpret the human variome.
doi:10.1093/bib/bbr070
PMCID: PMC3404395  PMID: 22247263
genomic variation; genome interpretation; genomic variant databases; gene prioritization; deleterious variants
16.  Network biology methods integrating biological data for translational science 
Briefings in Bioinformatics  2012;13(4):446-459.
The explosion of biomedical data, both on the genomic and proteomic side as well as clinical data, will require complex integration and analysis to provide new molecular variables to better understand the molecular basis of phenotype. Currently, much data exist in silos and is not analyzed in frameworks where all data are brought to bear in the development of biomarkers and novel functional targets. This is beginning to change. Network biology approaches, which emphasize the interactions between genes, proteins and metabolites provide a framework for data integration such that genome, proteome, metabolome and other -omics data can be jointly analyzed to understand and predict disease phenotypes. In this review, recent advances in network biology approaches and results are identified. A common theme is the potential for network analysis to provide multiplexed and functionally connected biomarkers for analyzing the molecular basis of disease, thus changing our approaches to analyzing and modeling genome- and proteome-wide data.
doi:10.1093/bib/bbr075
PMCID: PMC3404396  PMID: 22390873
network biology; bioinformatics
17.  Identification of aberrant pathways and network activities from high-throughput data 
Briefings in Bioinformatics  2012;13(4):406-419.
Many complex diseases such as cancer are associated with changes in biological pathways and molecular networks rather than being caused by single gene alterations. A major challenge in the diagnosis and treatment of such diseases is to identify characteristic aberrancies in the biological pathways and molecular network activities and elucidate their relationship to the disease. This review presents recent progress in using high-throughput biological assays to decipher aberrant pathways and network activities. In particular, this review provides specific examples in which high-throughput data have been applied to identify relationships between diseases and aberrant pathways and network activities. The achievements in this field have been remarkable, but many challenges have yet to be addressed.
doi:10.1093/bib/bbs001
PMCID: PMC3404398  PMID: 22287794
pathways; biological networks; biomarker discovery; omics studies; systems biology
18.  Mining the pharmacogenomics literature—a survey of the state of the art 
Briefings in Bioinformatics  2012;13(4):460-494.
This article surveys efforts on text mining of the pharmacogenomics literature, mainly from the period 2008 to 2011. Pharmacogenomics (or pharmacogenetics) is the field that studies how human genetic variation impacts drug response. Therefore, publications span the intersection of research in genotypes, phenotypes and pharmacology, a topic that has increasingly become a focus of active research in recent years. This survey covers efforts dealing with the automatic recognition of relevant named entities (e.g. genes, gene variants and proteins, diseases and other pathological phenomena, drugs and other chemicals relevant for medical treatment), as well as various forms of relations between them. A wide range of text genres is considered, such as scientific publications (abstracts, as well as full texts), patent texts and clinical narratives. We also discuss infrastructure and resources needed for advanced text analytics, e.g. document corpora annotated with corresponding semantic metadata (gold standards and training data), biomedical terminologies and ontologies providing domain-specific background knowledge at different levels of formality and specificity, software architectures for building complex and scalable text analytics pipelines and Web services grounded to them, as well as comprehensive ways to disseminate and interact with the typically huge amounts of semiformal knowledge structures extracted by text mining tools. Finally, we consider some of the novel applications that have already been developed in the field of pharmacogenomic text mining and point out perspectives for future research.
doi:10.1093/bib/bbs018
PMCID: PMC3404399  PMID: 22833496
text mining; information extraction; knowledge discovery from texts; text analytics; biomedical natural language processing; pharmacogenomics; pharmacogenetics
19.  Reverse engineering biomolecular systems using −omic data: challenges, progress and opportunities 
Briefings in Bioinformatics  2012;13(4):430-445.
Recent advances in high-throughput biotechnologies have led to the rapid growing research interest in reverse engineering of biomolecular systems (REBMS). ‘Data-driven’ approaches, i.e. data mining, can be used to extract patterns from large volumes of biochemical data at molecular-level resolution while ‘design-driven’ approaches, i.e. systems modeling, can be used to simulate emergent system properties. Consequently, both data- and design-driven approaches applied to –omic data may lead to novel insights in reverse engineering biological systems that could not be expected before using low-throughput platforms. However, there exist several challenges in this fast growing field of reverse engineering biomolecular systems: (i) to integrate heterogeneous biochemical data for data mining, (ii) to combine top–down and bottom–up approaches for systems modeling and (iii) to validate system models experimentally. In addition to reviewing progress made by the community and opportunities encountered in addressing these challenges, we explore the emerging field of synthetic biology, which is an exciting approach to validate and analyze theoretical system models directly through experimental synthesis, i.e. analysis-by-synthesis. The ultimate goal is to address the present and future challenges in reverse engineering biomolecular systems (REBMS) using integrated workflow of data mining, systems modeling and synthetic biology.
doi:10.1093/bib/bbs026
PMCID: PMC3404400  PMID: 22833495
reverse engineering biological systems; high-throughput technology; –omic data; synthetic biology; analysis-by-synthesis
20.  Best practices in bioinformatics training for life scientists 
Briefings in Bioinformatics  2013;14(5):528-537.
The mountains of data thrusting from the new landscape of modern high-throughput biology are irrevocably changing biomedical research and creating a near-insatiable demand for training in data management and manipulation and data mining and analysis. Among life scientists, from clinicians to environmental researchers, a common theme is the need not just to use, and gain familiarity with, bioinformatics tools and resources but also to understand their underlying fundamental theoretical and practical concepts. Providing bioinformatics training to empower life scientists to handle and analyse their data efficiently, and progress their research, is a challenge across the globe. Delivering good training goes beyond traditional lectures and resource-centric demos, using interactivity, problem-solving exercises and cooperative learning to substantially enhance training quality and learning outcomes. In this context, this article discusses various pragmatic criteria for identifying training needs and learning objectives, for selecting suitable trainees and trainers, for developing and maintaining training skills and evaluating training quality. Adherence to these criteria may help not only to guide course organizers and trainers on the path towards bioinformatics training excellence but, importantly, also to improve the training experience for life scientists.
doi:10.1093/bib/bbt043
PMCID: PMC3771230  PMID: 23803301
bioinformatics; training; bioinformatics courses; training life scientists; train the trainers
21.  The NGS WikiBook: a dynamic collaborative online training effort with long-term sustainability 
Briefings in Bioinformatics  2013;14(5):548-555.
Next-generation sequencing (NGS) is increasingly being adopted as the backbone of biomedical research. With the commercialization of various affordable desktop sequencers, NGS will be reached by increasing numbers of cellular and molecular biologists, necessitating community consensus on bioinformatics protocols to tackle the exponential increase in quantity of sequence data. The current resources for NGS informatics are extremely fragmented. Finding a centralized synthesis is difficult. A multitude of tools exist for NGS data analysis; however, none of these satisfies all possible uses and needs. This gap in functionality could be filled by integrating different methods in customized pipelines, an approach helped by the open-source nature of many NGS programmes. Drawing from community spirit and with the use of the Wikipedia framework, we have initiated a collaborative NGS resource: The NGS WikiBook. We have collected a sufficient amount of text to incentivize a broader community to contribute to it. Users can search, browse, edit and create new content, so as to facilitate self-learning and feedback to the community. The overall structure and style for this dynamic material is designed for the bench biologists and non-bioinformaticians. The flexibility of online material allows the readers to ignore details in a first read, yet have immediate access to the information they need. Each chapter comes with practical exercises so readers may familiarize themselves with each step. The NGS WikiBook aims to create a collective laboratory book and protocol that explains the key concepts and describes best practices in this fast-evolving field.
doi:10.1093/bib/bbt045
PMCID: PMC3771235  PMID: 23793381
next-generation sequencing; bioinformatics; training; collaborative learning; best practice
22.  Supervised, semi-supervised and unsupervised inference of gene regulatory networks 
Briefings in Bioinformatics  2013;15(2):195-211.
Inference of gene regulatory network from expression data is a challenging task. Many methods have been developed to this purpose but a comprehensive evaluation that covers unsupervised, semi-supervised and supervised methods, and provides guidelines for their practical application, is lacking.
We performed an extensive evaluation of inference methods on simulated and experimental expression data. The results reveal low prediction accuracies for unsupervised techniques with the notable exception of the Z-SCORE method on knockout data. In all other cases, the supervised approach achieved the highest accuracies and even in a semi-supervised setting with small numbers of only positive samples, outperformed the unsupervised techniques.
doi:10.1093/bib/bbt034
PMCID: PMC3956069  PMID: 23698722
gene regulatory networks; simulation; gene expression data; machine learning
23.  Gene set enrichment analysis: performance evaluation and usage guidelines 
Briefings in Bioinformatics  2011;13(3):281-291.
A central goal of biology is understanding and describing the molecular basis of plasticity: the sets of genes that are combinatorially selected by exogenous and endogenous environmental changes, and the relations among the genes. The most viable current approach to this problem consists of determining whether sets of genes are connected by some common theme, e.g. genes from the same pathway are overrepresented among those whose differential expression in response to a perturbation is most pronounced. There are many approaches to this problem, and the results they produce show a fair amount of dispersion, but they all fall within a common framework consisting of a few basic components. We critically review these components, suggest best practices for carrying out each step, and propose a voting method for meeting the challenge of assessing different methods on a large number of experimental data sets in the absence of a gold standard.
doi:10.1093/bib/bbr049
PMCID: PMC3357488  PMID: 21900207
gene set enrichment analysis; pathway enrichment analysis; expression analysis; GSEA; PWEA; performance evaluation; controlled mutual coverage; CMC
24.  Lessons from a decade of integrating cancer copy number alterations with gene expression profiles 
Briefings in Bioinformatics  2011;13(3):305-316.
Over the last decade, multiple functional genomic datasets studying chromosomal aberrations and their downstream effects on gene expression have accumulated for several cancer types. A vast majority of them are in the form of paired gene expression profiles and somatic copy number alterations (CNA) information on the same patients identified using microarray platforms. In response, many algorithms and software packages are available for integrating these paired data. Surprisingly, there has been no serious attempt to review the currently available methodologies or the novel insights brought using them. In this work, we discuss the quantitative relationships observed between CNA and gene expression in multiple cancer types and biological milestones achieved using the available methodologies. We discuss the conceptual evolution of both, the step-wise and the joint data integration methodologies over the last decade. We conclude by providing suggestions for building efficient data integration methodologies and asking further biological questions.
doi:10.1093/bib/bbr056
PMCID: PMC3357489  PMID: 21949216
data integration; copy number; gene expression; integrative analysis; cancer

Results 1-25 (114)