PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1195)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
more »
1.  Induction of omega 6 inflammatory pathway by sodium metabisulfite in rat liver and its attenuation by ghrelin 
Background
Sodium metabisulfite is commonly used as preservative in foods but can oxidize to sulfite radicals initiating molecular oxidation. Ghrelin is a peptide hormone primarily produced in the stomach and has anti-inflammatory effects in many organs. This study aimed to assess endogenous omega-3 (n-3) and omega-6 (n-6) polyunsaturated fatty acids (PUFAs) in rat peripheral organs following sodium metabisulfite treatment and determine the possible effect of ghrelin on changes in n-6 inflammatory pathway.
Methods
Male Wistar rats included in the study were allowed free access to standard rat chow. Sodium metabisulfite was given by gastric gavage and ghrelin was administered intraperitoneally for 5 weeks. Levels of arachidonic acid (AA, C20:4n-6), dihomo-gamma-linolenic acid (DGLA, C20:3n-6), eicosapentaenoic acid (EPA, C20:5n-3) and docosahexaenoic acid (DHA, C22:6n-3) in liver, heart and kidney tissues were determined by an optimized multiple reaction monitoring (MRM) method using ultra fast-liquid chromatography (UFLC) coupled with tandem mass spectrometry (MS/MS). Cyclooxygenase (COX) and prostaglandin E2 (PGE2) were measured in tissue samples to evaluate changes in n-6 inflammatory pathway.
Results
Omega-6 PUFA levels, AA/DHA and AA/EPA ratio were significantly increased in liver tissue following sodium metabisulfite treatment compared to controls. No significant change was observed in heart and kidney PUFA levels. Tissue activity of COX and PGE2 levels were also significantly increased in liver tissue of sodium metabisulfite treated rats compared to controls. Ghrelin treatment decreased n-6 PUFA levels and reduced COX and PGE2 levels in liver tissue of sodium metabisulfite treated rats.
Conclusion
Current results suggest that ghrelin exerts anti-inflammatory action through modulation of n-6 PUFA levels in hepatic tissue.
doi:10.1186/s12944-015-0008-3
PMCID: PMC4335696
Sodium metabisulfite; Ghrelin; Polyunsaturated fatty acids
2.  Dietary high-polyphenols extra-virgin olive oil is effective in reducing cholesterol content in eggs 
Background
Extra-virgin olive oil (EVOO) represents an important food in Mediterranean diet due to its favorable effects on human and animal health derived from the consumption of polyphenols. We studied the effects of dietary EVOO differing in polyphenols levels on egg quality.
Methods
A total of 150 laying hens were allotted into three groups over 10 weeks of the experimental period. The three diets were based on wheat-soybean meal with added oils at 2.5%. Hens were fed the following diets: (1) commercial diet containing sunflower oil (Control), (2) diet EVOO from Cima di Bitonto variety (low-polyphenols content; Low-P), and (3) diet EVOO from Coratina variety (high-polyphenols content; High-P). The performance of the hen, the qualitative traits of eggs, and the fatty acid composition and cholesterol content of egg-yolk were measured.
Results
None of the egg productive parameters studied were influenced by dietary treatment, except for yolk color score that was enhanced in hens fed the both EVOO diets (P < 0.05). Feeding high-polyphenols EVOO reduced serum cholesterol level in hens (P < 0.01) and egg-yolk cholesterol levels (as per egg; P < 0.05). The dietary supplementation of high-polyphenols EVOO raised the polyunsaturated fatty acids (PUFAs) composition and increased the content of oleic and linolenic acids in egg-yolk. Moreover, the atherogenic index in egg-yolk decreased linearly in accordance with increasing levels of dietary polyphenols (P < 0.01).
Conclusion
In conclusion, a diet for hens consisting of high-polyphenols level from extra-virgin olive oil can improve the fatty acid quality of egg-yolk while lowering the egg-yolk cholesterol level, which could be a beneficial functional food for human health.
doi:10.1186/s12944-015-0001-x
PMCID: PMC4336740
Extra-virgin olive oil; Cholesterol; Egg quality
3.  Protective effect of arachidonic acid and linoleic acid on 1-methyl-4-phenylpyridinium-induced toxicity in PC12 cells 
Background
Parkinson’s disease is a neurodegenerative disorder that is being characterized by the progressive loss of dopaminergic neurons of the nigrostriatal pathway in the brain. The protective effect of omega-6 fatty acids is unclear. There are lots of contradictions in the literature with regard to the cytoprotective role of arachidonic acid. To date, there is no solid evidence that shows the protective role of omega-6 fatty acids in Parkinson’s disease. In the current study, the potential of two omega-6 fatty acids (i.e. arachidonic acid and linoleic acid) in alleviating 1-methyl-4-phenylpyridinium (MPP+)-induced cytotoxicity in PC12 cells was examined.
Methods
Cultured PC12 cells were either treated with MPP+ alone or co-treated with one of the omega-6 fatty acids for 1 day. Cell viability was then assessed by using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay.
Results
Cells treated with 500 μM MPP+ for a day reduced cell viability to ~70% as compared to control group. Linoleic acid (50 and 100 μM) significantly reduced MPP+-induced cell death back to ~85-90% of the control value. The protective effect could be mimicked by arachidonic acid, but not by ciglitazone.
Conclusions
Both linoleic acid and arachidonic acid are able to inhibit MPP+-induced toxicity in PC12 cells. The protection is not mediated via peroxisome proliferator-activated receptor gamma (PPAR-γ). Overall, the results suggest the potential role of omega-6 fatty acids in the treatment of Parkinson’s disease.
doi:10.1186/1476-511X-13-197
PMCID: PMC4320435  PMID: 25522984
1-methyl-4-phenylpyridinium; Arachidonic acid; Linoleic acid; Parkinson’s disease; PC12 cells; PPAR gamma
4.  Serum amylase levels are decreased in Chinese non-alcoholic fatty liver disease patients 
Background
Low serum amylase levels have been reported in patients with metabolic syndrome (MS), diabetes, and asymptomatic non-alcoholic fatty liver disease (NAFLD). However, no study has yet indicated the serum amylase levels in NAFLD with MS. The aim of the present study was to evaluate serum amylase levels in NAFLD patients with and without MS, and to explore a possible association between serum amylase levels with the components of MS and the degree of hepatic fibrosis in NAFLD patients.
Methods
Our study included 713 NAFLD participants (180 females and 533 males) and 304 healthy control participants (110 females and 194 males). The diagnosis of NAFLD was based on ultrasonography, and advanced fibrosis was assessed by the FIB-4 index.
Results
Serum amylase levels were significantly lower in NAFLD patients with MS compared with NAFLD patients without MS and healthy controls (42, 45, and 53 IU/L, respectively). The serum amylase levels of patients with elevated glucose, elevated triglycerides, and low high density lipoprotein cholesterol patients were significantly lower than in case of normal parameters (both p < 0.05). Multivariate logistic regression analysis showed that a relative serum amylase level increase was an independent factor predicting advanced fibrosis (FIB-4 ≥1.3) in NAFLD participants (OR: 1.840, 95% CI: 1.117-3.030, p=0.017).
Conclusions
Compared with NAFLD patients without MS and healthy controls, serum amylase levels were significantly lower in NAFLD patients with MS. Moreover, a relative serum amylase increase may be an independent factor of more advanced hepatic fibrosis.
doi:10.1186/1476-511X-13-185
PMCID: PMC4267431  PMID: 25481429
NAFLD; Amylase; Metabolic syndrome; Fibrosis
5.  Renoprotective, anti-oxidative and anti-apoptotic effects of oral low-dose quercetin in the C57BL/6J model of diabetic nephropathy 
Background
Diabetic nephropathy (DN) is one of the major causes of end-stage renal disease in diabetic patients. Increasing evidence from studies in the rodents has suggested that this disease is associated with increased oxidative stress due to hyperglycemia. In the present study, we evaluated the renoprotective, anti-oxidative and anti-apoptotic effects of the flavonoid quercetin in C57BL/6J model of DN.
Methods
DN was induced by streptozotocin (STZ, 100 mg/kg/day, for 3 days) in adult C57BL/6J mice. Six weeks later, mice were divided into the following groups: diabetic mice treated with quercetin (DQ, 10 mg/kg/day, 4 weeks), diabetic mice treated with vehicle (DV) or non-treated non-diabetic (ND) mice.
Results
Quercetin treatment caused a reduction in polyuria (~45%) and glycemia (~35%), abolished the hypertriglyceridemia and had significant effects on renal function including, decreased proteinuria and high plasma levels of uric acid, urea and creatinine, which were accompanied by beneficial effects on the structural changes of the kidney including glomerulosclerosis. Flow cytometry showed a decrease in oxidative stress and apoptosis in DN mice.
Conclusion
Taken together, these data show that quercetin effectively attenuated STZ-induced cytotoxicity in renal tissue. This study provides convincing experimental evidence and perspectives on the renoprotective effects of quercetin in diabetic mice and outlines a novel therapeutic strategy for this flavonoid in the treatment of DN.
doi:10.1186/1476-511X-13-184
PMCID: PMC4271322  PMID: 25481305
Quercetin; Diabetic nephropathy; Oxidative stress; Apoptosis; Flavonoids
6.  Lipid profile abnormalities seen in T2DM patients in primary healthcare in Turkey: a cross-sectional study 
Background
Diabetes is characterized by chronic hyperglycemia and disturbances of carbohydrate, lipid and protein metabolism. We aimed to research association between serum lipid profile and blood glucose, hypothesizing that early detection and treatment of lipid abnormalities can minimize the risk for atherogenic cardiovascular disorder and cerebrovascular accident in patients with type 2 diabetes mellitus.
Methods
Fasting blood glucose (FBG), total cholesterol (TC), high density lipoprotein (HDL), low density lipoprotein (LDL), triglyceride (TG) and glycated haemoglobin (HbA1c) levels were evaluated. A hepatic ultrasound was performed for every diabetic to evaluate hepatosteatosis. The study was done from January 2014 to June 2014 among 132 patients with T2DM who were admitted to outpatient clinic of Family Medicine department in a university hospital. The patients whose taking multi-vitamin supplementation or having hepatic, renal or metabolic bone disorders (including parathyroid related problems) were excluded from the study for the reason that those conditions might affect the carbohydrate and lipid metabolism in diabetes. Test of significance was calculated by unpaired student’s t test between cases and controls. Correlation studies (Pearson’s correlation) were performed between the variables of blood glucose and serum lipid profile. Significance was set at p<0.05.
Results
Results of serum lipid profile showed that the mean values for TC, TG, HDL and LDL in female patients were 227.6 ± 57.7 mg/dl, 221.6 ± 101.1 mg/dl, 31.5 ± 6.7 mg/dl and 136.5 ± 43.7 mg/dl, respectively. The mean values for TC, TG, HDL and LDL in male patients were 219.1 ± 34.7 mg/dl, 250.0 ± 100.7 mg/dl, 30.2 ± 7.4 mg/dl and 125.7 ± 21.4 mg/dl, respectively. Significantly higher mean serum levels of TC, TG and LDL and significantly lower mean serum levels of HDL were noted in patients with diabetes (p<0.001). FBG showed significant positive correlation with TC (p<0.05) and TG (p<0.05). Significant correlations were observed between serum levels of TC, TG, LDL and hepatosteatosis and HbA1c (p<0.05).
Conclusions
The study showed widespread lipid abnormalities in the course of diabetes triggered dyslipidemia as hypercholesterolemia, hypertriglyceridemia, elevated LDL and decreased HDL. This study proposes the predominance of hyperlipidemia over increased prevalence of diabetic dyslipidemia.
doi:10.1186/1476-511X-13-183
PMCID: PMC4271485  PMID: 25481115
Dyslipidemia; Glucose intolerance; Insulin resistance; Type 2 diabetes; Lifestyle modification
7.  The cholesterol-lowering effects of oat varieties based on their difference in the composition of proteins and lipids 
Background
The aim of present study is to investigate the hypocholesterolemic effects of the oat components other than the β-glucan in rats fed with a hypercholesterolemic diet.
Methods
Four-week-old male Wister rats were divided into 6 groups of 7 rats each with similar mean body weights and serum cholesterol concentrations. Rats were fed with the experimental diets containing 10% oats flour for 30 days. Food intake was recorded and monitored everyday to ensure the similar contents of protein, starch, lipid and cellulose in all groups. The lipids levels in serum, liver, and faeces were determined.
Results
The plasma total cholesterol concentrations in different oat groups were significantly reduced compared with the control group, and the effects were different among oat groups. The decrease extent of plasma total cholesterol and low-density lipoprotein-cholesterol concentrations increased with the increase of the proteins and lipids contents. Moreover, liver total cholesterol and cholesterol ester contents were markedly decreased. The fecal bile acids concentrations in the oat groups were significantly increased. Oat proteins had lower Lysine/Arginin (0.59 ~ 0.66) and Methionin/Glycine (0.27 ~ 0.35) ratio than casein (Lysine/Arginin, 2.33; Methionin/Glycine, 1.51). Oat lipids contained higher contents of total Vitamin E and plant sterols than that in soybean oil.
Conclusion
These results indicated that dietary oat improved hypercholesterolemia by increasing the excretions of fecal bile acids, and this improvement was not only related to β-glucan, but also attributed to the lipids and proteins. Oat proteins decreased serum total cholesterol and low-density lipoprotein-cholesterol contents due to their low Lysine/Arginin and Methionin/Glycine ratio. The co-existence of oleic acid, linoleic, vitamin E, or plant sterols accounted for the hypocholesterolemic properties of oat lipids.
doi:10.1186/1476-511X-13-182
PMCID: PMC4271338  PMID: 25477248
Oat hypocholesterolemic effect proteins lipids
8.  Glycated hemoglobin level is significantly associated with the severity of coronary artery disease in non-diabetic adults 
Background
To investigate relationship between glycated hemoglobin (HbA1c) level and coronary artery disease (CAD) severity.
Methods
Observational study was conducted and 573 participants were enrolled and baseline characteristics were collected. Clinical presentations in terms of stable angina, unstable angina or acute myocardial infarction were diagnosed. All participants were performed coronary angiography to figure out the numbers of coronary artery stenosis in terms of none-stenosis (< 50% stenosis), single or multiple vessels stenoses (≥ 50% stenosis). All participants were divided into subgroups according to two categories in terms of severity of clinical presentation (stable angina, unstable angina, or acute myocardial infarction) and the number of coronary artery stenosis (none, single, and multiple vessels). Primary endpoint was to evaluate relationship between baseline HbA1c value and CAD severity.
Results
Consistent to previous studies, participants with CAD had more risk factors such as elderly, smoking, low HDL-C and high CRP levels. Notably, HbA1c level was more prominent in CAD group than that without CAD. As compared to stable angina subgroup, HbA1c levels were gradually increased in unstable angina and acute myocardial infarction groups. Similar trend was identified in another category in terms of higher HbA1c level corresponding to more vessels stenoses. Multivariate regression analyses showed that after adjusted for traditional risk factors as well as fasting blood glucose, HbA1c remained strongly associated with the severity of CAD. Nonetheless, there was no significant association when CRP was accounted for.
Conclusion
HbA1c may be a useful indicator for CAD risk evaluation in non-diabetic adults.
doi:10.1186/1476-511X-13-181
PMCID: PMC4271481  PMID: 25477191
Glycated hemoglobin; Coronary artery disease; Diabetes mellitus
9.  Food allergy in small children carries a risk of essential fatty acid deficiency, as detected by elevated serum mead acid proportion of total fatty acids 
Background
Elevated serum Mead acid as a proportion of total fatty acids is an indirect marker of a deficiency of essential fatty acids (EFA). The aim of the study was to evaluate the symptoms and nutrition of food-allergic children with elevated or normal serum Mead acid.
Methods
Serum fatty acid compositions from 400 children were studied by clinical indications, mostly by suspicion of deficiency of EFA due to inadequate nutrition. A Mead acid level exceeding 0.21% (percentage of total fatty acids) was considered to be a specific sign of an insufficient EFA supply. From a total of 31 children with elevated Mead acid (MEADplus group), 23 (74%) had food allergy. The symptoms and dietary restrictions of this MEADplus group of food allergic children were compared to 54 age-and sex-matched controls with food allergy but normal Mead acid proportions (MEADminus group) before and 6 months after the serum fatty acid determination.
Results
At the beginning of the 6-month follow-up, 44% of the food allergic children in both MEADplus and MEADminus groups were on an elimination diet. These diets did not differ between the two groups and we were not able to document an association between the severity of elimination diet and elevated Mead acid proportion. However, the MEADplus children were on average more symptomatic than MEADminus children. In the MEADplus group, food allergy presented with skin symptoms in 100% (vs. 70% in the MEADminus group, p < 0.001) and with vomiting or diarrhea in 70% (vs. 44% in the MEADminus group, p < 0.05). Clinical suspicion of malnutrition resulted in increase in the use of vegetable oil and milk-free margarine in both groups from <50% to 65-74% during the follow-up. After 6 months, 64% of the MEADplus children with food allergy had been sent to a control serum fatty acid analysis. Of these children, Mead acid had declined to normal level in 69%, and remained elevated in 31%.
Conclusions
Severe symptoms of food allergy combined with elimination diets in children may lead to insufficient nutrition presenting with elevated serum Mead acid. Adding of supplementary polyunsaturated fat to the diet should be considered in these children.
doi:10.1186/1476-511X-13-180
PMCID: PMC4265504  PMID: 25440954
Essential fatty acid deficiency; Food allergy; Child; Elimination diet; Mead acid
10.  Additive effects of postchallenge hyperglycemia and low-density lipoprotein particles on the risk of arterial stiffness in healthy adults 
Background
To determine the effects of post-challenge hyperglycemia potentiate low-density lipoprotein cholesterol (LDL) particles on the risk of arterial stiffness in non-diabetic adults.
Methods
During 2009–2011, 592 adults without clinical diabetes (fasting glucose <7.0 mmol/L) or known coronary heart disease or stroke were recruited. All subjects underwent standard 75-g oral glucose tolerance test (OGTT) after overnight fasting. The glucose area under curve (GluAUC) after OGTT was defined as the postchallenge glucose load. Levels of LDL-C and small dense LDL-C (sdLDL-C) were measured. Arterial stiffness in terms of brachial–ankle pulse wave velocity (baPWV) was also measured.
Results
The baPWV in tertile distributions were significantly associated with all conventional cardiovascular risk factors, LDL-C, and sdLDL-C. Multivariate logistic regression analyses revealed that LDL-C (or sdLDL-C) combined with one of the seven glycemic indices (glucose levels at 0, 30, 60, 90, and 120 min; GluAUC; HbA1C) was associated with arterial stiffness after covariates being adjusted. Further interaction analyses showed only concurrent higher levels of both glycemic indices and atherogenic LDL-C or sdLDL-C have significant risk for arterial stiffness.
Conclusions
Additive effects of both postchallenge hyperglycemia and LDL subclass particles potentiate the risk of arterial stiffness. The adverse joint effects of hyperlipidemia and postchallenge hyperglycemia on subclinical cardiovascular function provide important information in primary prevention of cardiovascular disease in subjects without clinical diabetes.
doi:10.1186/1476-511X-13-179
PMCID: PMC4280693  PMID: 25431283
Postchallenge hyperglycemia; sdLDL-C; LDL-C; Arterial stiffness; OGTT
11.  Jurassic surgery and immunity enhancement by alkyglycerols of shark liver oil 
Background
Shark liver oil (SLO) contains both alkylglycerols (AKG) and squalene and is an ancient remedy among the fishermen on the west coast of Norway and Sweden. Literature reports showed that alkyglycerols enhance Fc–receptor mediated phagocytosis, increase humoral immune response and delay hypersensitivity reactions.
Methods
On this background we performed an open spontaneous study on 40 very old aged surgical patients preoperatively treated with alkyglycerols (500 mg twice a day for 4 weeks), in order to reduce the risks of operation, counteracting the postoperative inflammatory and anergic conditions thus achieving quick and plain recovery. To better understand the possible therapeutic impact of alkyglycerols we compared on a case/control basis treated versus untreated patients submitted contemporarily to the identical operation and exposed to the same environmental and seasonal risks.
Results
The onset of complications was reduced in the alkyglycerols treated group and the compliance to the natural treatment was excellent without any serious adverse effect. WBC count and IgG significant increase (respectively p <0.05 and p <0.001) might explain some sort of protection against infectious agents and wound repair adverse events. Also lymphocytes concentration significantly increased in the AKG treated group (p <0.001) whereas a slight decrease was observed in the control group. Conversely neutrophils significantly decreased in the AKG treated group (p <0.001) meaning that patients have no more infections and have re-established their physiologic state. However a significant increase was observed in the control group (p <0.05). CRP significantly decreased in the group receiving AKG (p <0.05), thus evidencing a slight antiinflammtory effect of the product. Also ESR decreased from a baseline in the group receiving AKG.
Conclusions
In conclusion we suggest the opportunity to introduce this nutraceutical product in dosages of 500 mg twice a day to very old people before surgical treatment for an effective modulation of leukocytes and soluble immune reactivity according with the shark liver oil consumption trend in the northern Europe countries folk medicine. For this reason it might be advisable a wider study on a substantially bigger patients cohort focused on the complication rate prevention or control.
doi:10.1186/1476-511X-13-178
PMCID: PMC4280700  PMID: 25427577
Alkylglycerols; Nutraceutical product; Immune reactivity modulation
12.  Energy replacement using glucose does not increase postprandial lipemia after moderate intensity exercise 
Background
Aerobic exercise can decrease postprandial triglyceride (TG) concentrations but the relationship between exercise-induced energy deficits and postprandial lipemia is still unclear. The aim of the present study was to examine the effect of a single bout of aerobic exercise, with and without energy replacement, on postprandial lipemia and on peripheral blood mononuclear cell (PBMC) mRNA expression of very low density lipoprotein (VLDL) and low density lipoprotein (LDL) receptors and 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR).
Methods
Nine healthy male humans completed three two-day trials in a random order. On day 1, volunteers rested (CON), completed 60 minutes of treadmill walking at 50% of VO2peak (EX) or completed the same bout of walking but with the energy replaced afterwards with a glucose solution (EXG). On day 2, volunteers rested and consumed a high fat test meal in the morning.
Results
Total and incremental TG AUC were significantly lower on the EXG (P < 0.05) and EX (P < 0.05) trials than the CON trial with no difference between the two exercise trials. No significant difference was observed in VLDL or LDL receptor mRNA expression among the trials (P > 0.05).
Conclusions
In conclusion, energy replacement by glucose did not affect the decrease in postprandial TG concentrations observed after moderate intensity exercise and exercise does not affect changes in PBMC HMGCR, VLDL and LDL receptor mRNA expression.
doi:10.1186/1476-511X-13-177
PMCID: PMC4258013  PMID: 25424502
Energy replacement; Postprandial lipemia; Energy deficit; LDL receptor
13.  Endogenous female sex hormones delay the development of renal dysfunction in apolipoprotein E-deficient mice 
Background
Hypercholesterolemia is a well-established risk factor for the development of kidney injury. Considering that female sex hormones may play a preventative role in both cardiovascular and renal diseases, the aim of the present study was to evaluate the effects of female sex hormones on hypercholesterolemia-induced renal dysfunction.
Methods
Apolipoprotein E-deficient (ApoE) and C57 control female mice underwent an ovariectomy (OVX) or sham surgery and after 2 months, creatinine clearance, uremia and proteinuria were determined. Renal oxidative stress and lipid deposition were also quantified. Values are presented as mean ± SEM. Statistical analyses were performed using Two-way ANOVA followed by Tukey’s post hoc test.
Results
Creatinine clearance (μL/min) was similar between C57 (171 ± 17) and ApoE (140 ± 26) mice underwent sham surgery. OVX resulted in a reduced glomerular filtration rate in both C57 (112 ± 8, ~ − 35%, p < 0.05) and ApoE (61 ± 10, ~ − 56%, p < 0.05) animals. Plasma levels of urea (mg/dL) were higher in both ApoE groups (Sham: 73 ± 7; OVX: 73 ± 8, p < 0.05) when compared to C57 animals (Sham: 49 ± 3; OVX: 60 ± 4), with no changes among ovariectomized groups. Proteinuria levels (mg/24 h) were similar between C57 (Sham: 25.1 ± 5.7; OVX: 33.7 ± 4.7) and ApoE sham animals (26.4 ± 3.5), however, 24-h urine protein excretion was augmented in ApoE OVX animals (49.6 ± 5.8, p < 0.05). Histological kidney analysis demonstrated that the absence of female sex hormones resulted in increased oxidative stress, which was more severe in ApoE mice (C57 Sham: 9.2 ± 0.4; C57 OVX: 22.9 ± 1.0; ApoE Sham: 13.9 ± 0.7; ApoE OVX: 34.0 ± 1.4 au x 103, p < 0.05). As expected, ApoE mice presented higher lipid deposition, which was not affected by OVX (C57 Sham: 0 ± 0; C57 OVX: 0 ± 0; ApoE Sham: 6.8 ± 1.6; ApoE OVX: 5.2 ± 0.8% x 10−2, p < 0.05). Ovariectomy resulted in a similar reduction in ER-α protein expression in the renal cortex (C57: 0.78 ± 0.04; ApoE: 0.81 ± 0.04 au, p < 0.05) when compared to sham animals (C57:1.00 ± 0.04; ApoE: 1.03 ± 0.03 au).
Conclusion
Taken together these data indicate that female sex hormones may delay hypercholesterolemia-induced renal dysfunction and emphasizes the importance of plasma cholesterol control in post-menopausal women.
doi:10.1186/1476-511X-13-176
PMCID: PMC4280709  PMID: 25422135
Female sex hormones; Hypercholesterolemia; Renal function
14.  Diversity of Apolipoprotein E genetic polymorphism significance on cardiovascular risk is determined by the presence of Metabolic Syndrome among hypertensive patients 
Background
Hypertension has a significant relevance as a cardiovascular risk factor. A consistent increase on world’s Metabolic Syndrome (MetS) incidence has been associated with an epidemic cardiovascular risk in different populations. Dislipidemia plays a major role determining the epidemic CV burden attributed to MetS. Apolipoprotein E (ApoE) is involved on cholesterol and triglycerides metabolism regulation. Once ApoE polymorphism may influence lipid metabolism, it is possible that it brings on individual susceptibility consequences for the development of MetS and cardiovascular risk. The objective of the study is to measure the discriminatory power of ApoE polymorphism in determining cardiovascular risk stratification based on the presence MetS in a cohort of hypertensive patients.
Methods
It was enrolled 383 patients, divided in two groups, classified by MetS presence (IDF criteria): Group 1: 266 patients with MetS (MetS +) and Group 2: 117 patients without Mets (MetS -). Patient’s data were collected by clinical evaluation, physical exam, file reviews and laboratory testing. Polymorphic ApoE analysis was performed by PCR amplification. Groups were compared on clinical and laboratory characteristics as well as allele and genotype distribution towards ApoE polymorphism. Mets CVD prevalence was analysed according to E4 allele prevalence.
Results
The results evidenced 184 men (48%), 63,7% whites, 45,1% diabetics and 11,7% of patients were smokers. Mean age was 64,0 ± 12,0 years. When genotypic distribution was analyzed, E3/3 genotype and E3 allele frequencies were more prevalent. Among patients with MetS, we observed an independent association between CVD prevalence and E4 allele frequency (OR 2.42 (1.17- 5.0, p < 0,05)). On the opposite direction, in those without MetS, there was lesser CVD burden in E4 allele carriers (OR 0,14 (0,02-0,75)). These associations remained significant even after confounding factor corrections.
Conclusions
The results presented demonstrate that the association between ApoE gene and CVD may be modulated by the presence of MetS, with an increased CV burden observed among E4 allele carriers with the syndrome. On the opposite way, E4 allele carriers without visceral obesity had lesser prevalence of CVD.
doi:10.1186/1476-511X-13-174
PMCID: PMC4258020  PMID: 25413697
Apolipoprotein E; Polymorphism; Cardiovascular risk; Metabolic syndrome; Hypertension
15.  LDL receptor knock-out mice show impaired spatial cognition with hippocampal vulnerability to apoptosis and deficits in synapses 
Background
Evidence from clinical studies support the fact that abnormal cholesterol metabolism in the brain leads to progressive cognitive dysfunction. The low-density lipoprotein receptor (LDLR) is well-known for its role in regulating cholesterol metabolism. Whether LDLR involved in this impaired cognition and the potential mechanisms that underlie this impairment are unknown.
Methods
Twelve-month-old Ldlr-/- mice (n = 10) and wild-type littermates C57BL/6 J (n = 14) were subjected to the Morris water maze test. At 1 week after completion of the behavioural testing, all of the animals were sacrificed for analysis of synaptic and apoptotic markers.
Results
The plasma cholesterol concentration of Ldlr-/- mice was increased moderately when compared with C57BL/6 J mice (P < 0.05). Behavioural testing revealed that Ldlr-/- mice displayed impaired spatial memory, and moreover, the expression levels of synaptophysin and the number of synaptophysin-immunoreactive presynaptic boutons in the hippocampal CA1 and dentate gyrus were decreased (all P < 0.05). Ultrastructural changes in the dentate gyrus were observed using transmission electron microscopy. Furthermore, apoptosis in the hippocampus of Ldlr-/- mice was revealed based on elevation, at both the mRNA and protein levels, of the ratio of Bax/Bcl-2 expression (all P < 0.05)and an increase in activated-caspase3 protein level (P < 0.05).
Conclusion
LDLR deficiency contributes to impaired spatial cognition. This most likely occurs via negative effects that promote apoptosis and synaptic deficits in the hippocampus.
doi:10.1186/1476-511X-13-175
PMCID: PMC4258039  PMID: 25413784
LDL receptor knock-out; Cognition; Synapse; Apoptosis
16.  Inhibiting CB1 receptors improves lipogenesis in an in vitro non-alcoholic fatty liver disease model 
Background
The endocannabinoids system (ECs) mediated mainly by CB1 and CB2 receptors plays an important role in non-alcoholic fatty liver disease by regulating lipid metabolism. This study is to further investigate the expression of CB1 and CB2 in the fat accumulation liver cells and to identify possible underlying mechanism by detecting the key lipogenesis factors.
Methods
Sodium oleate and sodium palmitate were added into the HepG2 cell line for forming fat accumulation liver cell. MTT assay was used to test the cell’s cytotoxicity. The accumulation rate of fat in HepG2 cell was analyzed by the fluorescent staining. The mRNA and protein expression levels of CB1, CB2, SREBP-1c, ChREBP, L-PK, ACC1, FAS, LXRs and RXR were detected by RT-PCR and Western blot before and after the use of the antagonist.
Results
The receptors of CB1 were expressed in HepG2 cells with low levels while in HepG2 fatty liver cells with higher levels (p < 0.05). However, after the application of antagonist, the expressions were significantly decreased (p < 0.05). The expressions of SREBP-1c, ChREBP and LXRs were detectable in HepG2 cells and the expressions were increased in HepG2 fatty liver cells (p < 0.05). After using the antagonists, the expressions of SREBP-1c, ChREBP, LXRs, ACC1 and FAS were significantly decreased (p < 0.05). But L-PK and RXR changed little in two groups (p > 0.05).
Conclusion
Results of the present study demonstrated that CB1 receptors had important pathophysiological effects on the formation of fatty liver. CB1 receptors could be regulated by SREBP-1c, ChREBP and LXRs. Therefore, targeting CB1 receptors for the treatment of NAFLD might have a potential application value.
doi:10.1186/1476-511X-13-173
PMCID: PMC4247673  PMID: 25406988
Endocannabinoids (ECs); Lipogenesis; Nonalcoholic fatty liver disease (NAFLD); Receptor cannabinoid (CB1,CB2)
17.  Pharmacogenomic analysis of retinoic-acid induced dyslipidemia in congenic rat model 
Background
All-trans retinoic acid (ATRA, tretinoin) is a vitamin A derivative commonly used in the treatment of diverse conditions ranging from cancer to acne. In a fraction of predisposed individuals, the administration of ATRA is accompanied by variety of adverse metabolic effects, particularly by the induction of hyperlipidemia. We have previously derived a minimal congenic SHR.PD-(D8Rat42-D8Arb23)/Cub (SHR-Lx) strain sensitive to ATRA-induced increase of triacylglycerols and cholesterol under condition of high-sucrose diet. SHR-Lx differs only by 7 genes of polydactylous rat (PD/Cub) origin from its spontaneously hypertensive rat (SHR) progenitor strain.
Methods
Adult male rats of SHR and SHR-Lx strains were fed standard diet (STD) and experimental groups were subsequently treated with ATRA (15 mg/kg) via oral gavage for 16 days, while still on STD. We contrasted the metabolic profiles (including free fatty acids, triacylglycerols (TG) and cholesterol (C) in 20 lipoprotein fractions) between SHR and SHR-Lx under conditions of standard diet and standard diet + ATRA. We performed transcriptomic analysis of muscle tissue (m. soleus) in all groups using Affymetrix GeneChip Rat Gene 2.0 ST Arrays followed by Ingenuity Pathway Analysis and real-time PCR validation.
Results
In response to ATRA, SHR-Lx reacted with substantially greater rise in TG and C concentrations throughout the lipoprotein spectrum (two-way ANOVA strain * RA interaction significant for C content in chylomicrons (CM), VLDL and LDL as well as total, CM and HDL-TG).
Conclusions
According to our modeling of metabolic and signalization pathways using differentially expressed genes we have identified a network with major nodes (including Sirt3, Il1b, Cpt1b and Pparg) likely to underlie the observed strain specific response to ATRA.
Electronic supplementary material
The online version of this article (doi:10.1186/1476-511X-13-172) contains supplementary material, which is available to authorized users.
doi:10.1186/1476-511X-13-172
PMCID: PMC4247747  PMID: 25403085
Pharmacogenomics; Metabolic syndrome; Animal model; Muscle transcriptome; All-trans retinoic acid; Zbtb16
18.  Low HDL cholesterol is correlated to the acute ischemic stroke with diabetes mellitus 
Background
To clarify the role of lipid composition in the occurrence of acute ischemic stroke (AIS) with diabetes mellitus (DM) and its influence factors.
Methods
Data was collected from the patients hospitalization in Affiliated Drum Tower Hospital of Nanjing University Medical School from October 2008 to May 2012, which included AIS and non-AIS consist of transient ischemic attack (TIA) and Vertigo or dizzy. Lipid and other risk factors including blood glucose (BG), uric acid (UA), hypertension, DM and atrial fibrillation (AF) were investigated in relation to occurrence of AIS.
Results
The level of high density lipoprotein (HDL) cholesterol was decreased obviously in the DM group compared to the non-DM group and low level of HDL cholesterol was prevalent in the AIS patients with DM. logistic regression demonstrated that decreased HDL cholesterol was correlated to the AIS with DM, not all AIS, and the relative risk of ischemic stroke in low HDL cholesterol level group was 2.113 (95% CI = 1.191-3.749, P = 0.011) compared to the high level group. Furthermore, age has the obviously impact on it. HDL cholesterol was correlated to the AIS with DM just in the populations of aged ≦70 years (OR = 0.192, P = 0.000), low level of HDL cholesterol had more high risk of ischemic stroke than that in the high level group (OR = 6.818, P = 0.002).
Conclusion
Decreased HDL cholesterol was correlated to the occurrence of AIS with DM, especially in the populations of aged ≦70 years.
doi:10.1186/1476-511X-13-171
PMCID: PMC4240873  PMID: 25395241
Diabetes mellitus; Ischemic stroke; High density lipoprotein cholesterol
19.  Apolipoprotein C3 genetic polymorphisms are associated with lipids and coronary artery disease in a Chinese population 
Background
The disorder of triglyceride (TG) metabolism leading to hypertriglyceridemia is an independent risk factor for coronary artery disease (CAD). Variants in the apolipoprotein C3 (APOC3) gene were found to be associated with elevated TG levels. The purpose of this study was to investigate the effect of two polymorphisms (1100 C/T and 3238 C/G) of APOC3 on plasma lipid and risk of CAD in a Chinese population.
Methods
The study population consisted of 600 patients with CAD and 600 age- and gender-matched controls. The APOC3 gene polymorphism was analyzed using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP).
Results
Patients with CAD had a significantly higher frequency of APOC3 3238 GG genotype [odds ratio (OR) =1.64, 95% confidence interval (CI) =1.10, 2.43; P = 0.01] and APOC3 3238 G allele (OR =1.27, 95% CI =1.04, 1.55; P = 0.02) than controls. The findings are still emphatic by the Bonferroni correction. When stratifying by hyperlipidemia, CAD patients with hyperlipidemia had a significantly higher frequency of APOC3 3238 GG genotype (OR =1.73, 95% CI =1.13, 2.64; P = 0.01) than without hyperlipidemia. The APOC3 3238 G allele was significantly associated with increasing plasma TG levels and very-low-density lipoprotein cholesterol (VLDL-C) levels both in cases and controls (P < 0.001).
Conclusions
The APOC3 3238 G allele might contribute to an increased risk of CAD as a result of its effect on TG and VLDL-C metabolism.
doi:10.1186/1476-511X-13-170
PMCID: PMC4232690  PMID: 25380998
Apolipoprotein C3; Gene polymorphism; Lipid; Coronary artery disease
20.  Effect of germinated brown rice extracts on pancreatic lipase, adipogenesis and lipolysis in 3T3-L1 adipocytes 
Background
This study investigated anti-obesity effects of seven different solvent (n-hexane, toluene, dicholoromethane, ethyl acetate, absolute methanol, 80% methanol and deionized water) extracts of germinated brown rice (GBR) on pancreatic lipase activity, adipogenesis and lipolysis in 3T3-L1 adipocytes.
Methods
GBR were extracted separately by employing different solvents with ultrasound-assisted. Pancreatic lipase activity was determined spectrophotometrically by measuring the hydrolysis of p-nitrophenyl butyrate (p-NPB) to p-nitrophenol at 405 nm. Adipogenesis and lipolysis were assayed in fully differentiated 3T3-L1 adipocytes by using Oil Red O staining and glycerol release measurement.
Results
GBR extract using hexane showed the highest inhibitory effect (13.58 ± 0.860%) at concentration of 200 μg/ml followed by hexane extract at 100 μg/ml (9.98 ± 1.048%) while ethyl acetate extract showed the lowest (2.62 ± 0.677%) at concentration of 200 μg/ml on pancreatic lipase activity. Water extract at 300 μg/ml showed 61.55 ± 3.824% of Oil Red O staining material (OROSM), a marker of adipogenesis. It significantly decrease (p < 0.05) lipid accumulation than control (OROSM = 100%), follow by ethyl acetate extract at 300 μg/ml (OROSM = 65.17 ± 3.131%). All the GBR extracts induced lipolysis with 1.22-1.83 fold of greater glycerol release than control.
Conclusions
GBR extracts especially the least polar and intermediate polar solvent extracts exhibited inhibitory effect on pancreatic lipase, decrease fat accumulation by adipocyte differentiation inhibition, and stimulate lipolysis on adipocytes. Therefore, GBR could be furthered study and developed as a functional food in helping the treatment and/or prevention of obesity.
doi:10.1186/1476-511X-13-169
PMCID: PMC4232653  PMID: 25367070
Obesity; Germinated brown rice; Pancreatic lipase; 3T3-L1 adipocytes
21.  Synergistic effects of atorvastatin and rosiglitazone on endothelium protection in rats with dyslipidemia 
Background
Endothelial dysfunction is implicated in the initiation and progression of atherosclerosis. Whether atorvastatin combined with rosiglitazone has synergistic effects on endothelial function improvement in the setting of dyslipidemia is unknown.
Methods
Dyslipidemia rat model was produced with high-fat and high-cholesterol diet administration. Thereafter, atorvastatin, rosiglitazone or atorvastatin combined with rosiglitazone were prescribed for 2 weeks. At baseline, 6 weeks of dyslipidemia model production, and 2 weeks of medical intervention, fasting blood was drawn for parameters of interest evaluation. At the end, myocardium was used for 15-deoxy-delta-12,14-PGJ2 (15-d-PGJ2) assessment.
Results
Initially, there was no significant difference of parameters between sham and dyslipidemia groups. With 6 weeks’ high-fat and high-cholesterol diet administration, as compared to sham group, serum levels of triglyceride (TG), total cholesterol (TC) and low density lipoprotein-cholesterol (LDL-C) were significantly increased. Additionally, nitric oxide (NO) production was reduced and serum levels of malondialdehyde (MDA), C-reactive protein (CRP) and asymmetric dimethylarginine (ADMA) were profoundly elevated in dyslipidemia group. After 2 weeks’ medical intervention, lipid profile was slightly improved in atorvastatin and combined groups as compared to control group. Nevertheless, in comparison to control group, NO production was profoundly increased and serum levels of MDA, CRP and ADMA were significantly decreased with atorvastatin or rosiglitazone therapy. 15-d-PGJ2 expression of myocardium was also significantly elevated with atorvastatin or rosiglitazone treatment. Notably, these effects were further enhanced with combined therapy, suggesting that atorvastatin and rosiglitazone had synergistic effects on endothelial protection, and inflammation and oxidation amelioration.
Conclusion
Atorvastatin and rosiglitazone therapy had synergistic effects on endothelium protection as well as amelioration of oxidative stress and inflammatory reaction in rats with dyslipidemia.
doi:10.1186/1476-511X-13-168
PMCID: PMC4232672  PMID: 25361814
Dyslipidemia; Endothelial dysfunction; Oxidative stress; Inflammation
22.  A mutation in Ampd2 is associated with nephrotic syndrome and hypercholesterolemia in mice 
Background
Previously, we identified three loci affecting HDL-cholesterol levels in a screen for ENU-induced mutations in mice and discovered two mutated genes. We sought to identify the third mutated gene and further characterize the mouse phenotype.
Methods
We engaged, DNA sequencing, gene expression profiling, western blotting, lipoprotein characterization, metabolomics assessment, histology and electron microscopy in mouse tissues.
Results
We identify the third gene as Ampd2, a liver isoform of AMP Deaminase (Ampd), a central component of energy and purine metabolism pathways. The causative mutation was a guanine-to-thymine transversion resulting in an A341S conversion in Ampd2. Ampd2 homozygous mutant mice exhibit a labile hypercholesterolemia phenotype, peaking around 9 weeks of age (251 mg/dL vs. wildtype control at 138 mg/dL), and was evidenced by marked increases in HDL, VLDL and LDL. In an attempt to determine the molecular connection between Ampd2 dysfunction and hypercholesterolemia, we analyzed hepatic gene expression and found the downregulation of Ldlr, Hmgcs and Insig1 and upregulation of Cyp7A1 genes. Metabolomic analysis confirmed an increase in hepatic AMP levels and a decrease in allantoin levels consistent with Ampd2 deficiency, and increases in campesterol and β-sitosterol. Additionally, nephrotic syndrome was observed in the mutant mice, through proteinuria, kidney histology and effacement and blebbing of podocyte foot processes by electron microscopy.
Conclusion
In summary we describe the discovery of a novel genetic mouse model of combined transient nephrotic syndrome and hypercholesterolemia, resembling the human disorder.
Electronic supplementary material
The online version of this article (doi:10.1186/1476-511X-13-167) contains supplementary material, which is available to authorized users.
doi:10.1186/1476-511X-13-167
PMCID: PMC4232700  PMID: 25361754
LDL; HDL; AMP deaminase; B6; C3; Proteinuria; ENU
23.  Optimized rapeseed oils rich in endogenous micronutrients ameliorate risk factors of atherosclerosis in high fat diet fed rats 
Background
Micronutrients in rapeseed such as polyphenols, tocopherols, phytosterols and phospholipids in rapeseed exert potential benefit to atherosclerosis. Some part of these healthy components substantially lost during the conventional refining processing. Thus some new processing technologies have been developed to produce various endogenous micronutrient-enriched optimized rapeseed oils. The aim of this study is to assess whether optimized rapeseed oils have positive effects on the atherosclerosis risk factors in rats fed a high-fat diet.
Methods
Rats received experiment diets containing 20% fat and refined rapeseed oil or optimized rapeseed oils obtained with various processing technologies as lipid source. After 10 weeks of treatment, plasma was assayed for oxidative stress, lipid profiles and imflammation.
Results
Micronutrients enhancement in optimized rapeseed oils significantly reduced plasma oxidative stress, as evaluated by the significant elevation in the activities of CAT and GPx as well as the level of GSH, and the significant decline in lipid peroxidation. Optimized rapeseed oil with the highest micronutrient contents obtained by microwave pretreatment-cold pressing reduced the levels of TG, TC and LDL-C as well as IL-6 and CRP in plasma.
Conclusions
These results suggest that optimized rapeseed oils may contribute to prevent atherogenesis and make them very promising functional food in cardiovascular health promotion.
doi:10.1186/1476-511X-13-166
PMCID: PMC4232689  PMID: 25358951
Optimized rapeseed oils; Micronutrients; Atherosclerosis; Oxidant stress; Plasma lipids; Inflammation
24.  Hypolipidemic potential of squid homogenate irrespective of a relatively high content of cholesterol 
Background
Our previous study has shown that regardless of a relatively high amount of cholesterol, squid homogenate lowers serum and hepatic cholesterol in animals. Since this work, we have developed a new method to inhibit autolysis of squid proteins with sodium citrate. This study aims to investigate how squid homogenate prepared with sodium citrate affects lipid metabolism in Sprague–Dawley rats at the molecular level.
Methods
We prepared squid homogenate with sodium citrate to inhibit autolysis of squid protein. In Experiment 1 (Exp. 1), rats were given a cholesterol-free control diet or a squid diet, with squid homogenate added at the level of 5% as dietary protein for 4 weeks. Blood, the liver and adipose tissue were taken after 6 hours fasting. Serum and hepatic lipids and activities of enzymes related to lipid metabolism were measured. In Experiment 2 (Exp. 2), the above-mentioned diets had cholesterol added at the level of 0.1% and given to rats. Lipid parameters, enzyme activities, and gene expression of proteins involved in lipid metabolism in the liver and the small intestine were determined. In addition, feces were collected for two days at the end of Exp. 2 to measure fecal excretion of steroids.
Results
In Exp.1, serum triglyceride and cholesterol were ~50% and ~20% lower, respectively, in the squid diet-fed rats than in the control diet-fed animals while hepatic cholesterol was ~290% higher in the squid diet-fed rats. When cholesterol was included into the diets (Exp. 2), serum lipids were significantly lower in the squid group while no difference of hepatic lipid was seen between two groups. Activities of hepatic lipogenic enzymes were significantly lower in rats on the squid diet while the enzyme responsible for fatty acid oxidation was not modified (Expt. 1 and 2). Hepatic level of mRNA of microsomal triglyceride transfer protein was significantly lower in the squid group. In the small intestine, the squid diet exhibited significantly lower gene expression of proteins involved in fatty acid transport and cholesterol absorption. Fecal secretion of acidic steroids, but not neutral steroids, was higher in rats fed the squid diet than in those fed the control diet.
Conclusion
These results imply that newly-developed squid homogenate has hypolipidemic potential primarily through decreased absorption of bile acids in the small intestine and suppressed lipogenesis in the liver.
doi:10.1186/1476-511X-13-165
PMCID: PMC4232677  PMID: 25354424
Squid homogenate; Hypocholesterolemic; Hypotriglyceridemic; Bile acids; Shellfish
25.  The predictive effect of body mass index on type 2 diabetes in the Norwegian women and cancer study 
Background
Several studies have analyzed the association of body mass index (BMI) with either the prevalence or incidence of type 2 diabetes (T2D), but no study from Europe or North America has yet analyzed and compared the association of BMI with both incident and prevalent T2D cases.
Methods
Stratified logistic regression was used to calculate odds ratios (OR), and stratified Cox proportional hazards regression was used to calculate hazard ratios (HR) of the effect of BMI on the prevalence, and incidence of T2D. Wald chi-square statistics were applied when comparing the risk estimates.
Results
Among prevalent T2D cases, overweight women (BMI 25–29.9 kg/m2) had an OR of 2.83 (95% confidence interval [CI], 1.92-4.18) and obese women (BMI ≥30 kg/m2) had an OR of 12.12 (95% CI, 8.32-17.68) when compared with normal weight women (BMI <25 kg/m2). Among incident T2D cases, overweight women had a HR of 5.01 (95% CI, 3.59-6.98) and obese women had a HR of 15.99 (95% CI, 11.39-22.46) when compared with normal weight women. After stratification by level of physical activity, and adjustment for age, smoking status, and education level, the Wald chi-square statistic for BMI was 180.90 for prevalent T2D cases, and 262.03 for incident T2D cases.
Conclusion
The predictive effect of BMI was found to be stronger for T2D incidence than T2D prevalence.
doi:10.1186/1476-511X-13-164
PMCID: PMC4223755  PMID: 25344292
BMI; Type 2 diabetes; Norway

Results 1-25 (1195)