Search tips
Search criteria

Results 1-8 (8)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Predictive value of high-sensitivity troponin-I for future adverse cardiovascular outcome in stable patients with type 2 diabetes mellitus 
High-sensitivity cardiac troponin I(hs-TnI) and T levels(hs-TnT) are sensitive biomarkers of cardiomyocyte turnover or necrosis. Prior studies of the predictive role of hs-TnT in type 2 diabetes mellitus(T2DM) patients have yielded conflicting results. This study aimed to determine whether hs-TnI, which is detectable in a higher proportion of normal subjects than hsTnT, is associated with a major adverse cardiovascular event(MACE) in T2DM patients.
Methods and results
We compared hs-TnI level in stored serum samples from 276 consecutive patients (mean age 65 ± 10 years; 57% male) with T2DM with that of 115 age-and sex-matched controls. All T2DM patients were prospectively followed up for at least 4 years for incidence of MACE including heart failure(HF), myocardial infarction(MI) and cardiovascular mortality. At baseline, 274(99%) patients with T2DM had detectable hs-TnI, and 57(21%) had elevated hs-TnI (male: 8.5 ng/L, female: 7.6 ng/L, above the 99th percentile in healthy controls). A total of 43 MACE occurred: HF(n = 18), MI(n = 11) and cardiovascular mortality(n = 14). Kaplan-Meier analysis showed that an elevated hs-TnI was associated with MACE, HF, MI and cardiovascular mortality. Although multivariate analysis revealed that an elevated hs-TnI independently predicted MACE, it had limited sensitivity(62.7%) and positive predictive value(38.5%). Contrary to this, a normal hs-TnI level had an excellent negative predictive value(92.2%) for future MACE in patients with T2DM.
The present study demonstrates that elevated hs-TnI in patients with T2DM is associated with increased MACE, HF, MI and cardiovascular mortality. Importantly, a normal hs-TnI level has an excellent negative predictive value for future adverse cardiovascular events during long-term follow-up.
PMCID: PMC4006634  PMID: 24661773
Type 2 diabetes mellitus; High-sensitivity troponin I outcome
2.  Worsened arterial stiffness in high-risk cardiovascular patients with high habitual carbohydrate intake: a cross-sectional vascular function study 
Previous studies suggested that high dietary carbohydrate intake is associated with increased cardiovascular risk through raised triglyceride and decreased high-density lipoprotein-cholesterol levels. However, the relation between carbohydrate intake and arterial stiffness has not been established. The purpose of this study was to examine this relation among high-risk cardiovascular patients.
We studied the relation between dietary macronutrient intake and arterial stiffness in 364 patients with documented cardiovascular diseases or risk equivalent (coronary artery diseases 62%, ischemic stroke 13%, diabetes mellitus 55%) and in 93 age-and-sex matched control subjects. Dietary macronutrient intake was assessed using a validated food-frequency questionnaire (FFQ) for Chinese. Heart-ankle pulse wave velocity (PWV) was measured non-invasively with a Vascular Profiling System (VP2000, Colin Corp. USA). A dietary pattern with ≥60% total energy intake derived from carbohydrates was defined as a high-carbohydrate diet according to the Dietary Reference Intakes (DRI) for Chinese.
Subjects who consumed a high-carbohydrate diet had significantly higher mean PWV than those who did not consume a high-carbohydrate diet (P = 0.039). After adjustment for potential confounders, high-carbohydrate diet was associated with significantly increased PWV [B = 73.50 (10.81 to 136.19), P = 0.022]. However, there was no significant association between high-carbohydrate diet and PWV in controls (P = 0.634).
High-carbohydrate diet is associated with increased arterial stiffness in patients with established cardiovascular disease or risk equivalent.
PMCID: PMC3948104  PMID: 24559092
Macronutrient; Carbohydrate intake; Arterial stiffness; Pulse wave velocity; Secondary prevention
3.  Association of subclinical myocardial injury with arterial stiffness in patients with type 2 diabetes mellitus 
Type 2 diabetes mellitus (T2DM) is associated with subclinical myocardial injury although the underlying mechanism is uncertain. We postulated that arterial stiffness, endothelial dysfunction and subclinical atherosclerosis may contribute to subclinical myocardial injury in patients with T2DM.
Serum high-sensitivity troponin I (hs-TNI) an indicator of myocardial injury, was measured in 100 patients with T2DM without clinical evidence of macrovascular disease and 150 age and gender-matched controls. Elevated hs-TnI was defined as follow (derived from the 99th percentile from controls): Male >11.1 ng/L; female >7.6 ng/L. Measures that may contribute to myocardial damage in patients with T2DM, including brachial-ankle pulse wave velocity (ba-PWV), brachial flow mediated dilatation (FMD) and carotid intima media thickness (IMT), were also assessed.
The serum level of hs-TNI (5.7±9.2 μg/L vs. 3.2±1.9 μg/L, P< 0.01) and the prevalence of elevated hs-TNI (12% vs. 4%, P = 0.02) were significantly higher in patients with T2DM than controls. Patients with T2DM also had significantly worse ba-PWV (17.98±3.91ms-1 vs. 15.70±2.96 ms-1), brachial FMD (2.6±3.5% vs. 5.5±4.2%, P< 0.01) and carotid IMT (0.96±0.20 mm vs. 0.86±0.14 mm, P< 0.01). In patients with T2DM, hs-TNI was positively correlated with systolic blood pressure (r = 0.31, P<0.01), serum creatinine (r = 0.26, P = 0.01) and ba-PWV (r = 0.34, P< 0.01). Importantly, multiple regression revealed that only ba-PWV was independently associated with hs-TNI (β = 0.25, P = 0.04).
The results demonstrated an independent association between ba-PWV and hs-TNI in patients with T2DM with no clinical evidence of macrovascular disease. These findings suggest that increased arterial stiffness is closely related to subclinical myocardial injury in patients with T2DM.
PMCID: PMC3706358  PMID: 23799879
Type 2 diabetes mellitus; Myocardial injury; Arterial stiffiness; High-sensitivity troponin I
4.  Myocardial dysfunction in patients with type 2 diabetes mellitus: role of endothelial progenitor cells and oxidative stress 
Endothelial progenitor cells (EPCs) are responsible for angiogenesis and maintenance of microvascular integrity, the number of EPCs is correlated with oxidative stress. Their relation to myocardial dysfunction in patients with type 2 diabetes mellitus (T2DM) is nonetheless unknown.
Eighty-seven patients with T2DM and no history of coronary artery disease were recruited. Transthoracic echocardiography and detailed evaluation of left ventricular (LV) systolic function by 2-dimensional (2D) speckle tracking derived strain analysis in 3 orthogonal directions was performed. Four subpopulations of EPCs, including CD34+, CD133+, CD34+/kinase insert domain-containing receptor (KDR) + and CD133+/KDR + EPCs, were measured by flow cytometry. Oxidative stress was assessed by superoxide dismutase (SOD).
The mean age of the patients was 62 ± 9 years and 39.6% were male. Those with an impaired longitudinal strain had a lower number of CD34+ EPCs (2.82 ± 1.87% vs. 3.74 ± 2.12%, P < 0.05) than those with preserved longitudinal strain. When compared with those with preserved circumferential strain, patients with an impaired circumferential strain had a lower number of CD34+ EPCs (2.63 ± 1.80% vs. 3.87 ± 2.10%, P < 0.01) and SOD level (0.13 ± 0.06U/ml vs. 0.20 ± 0.08U/ml, P < 0.01). Patients with an impaired radial strain nonetheless had a lower number of CD34+ EPCs (2.62 ± 2.08% vs. 3.69 ± 1.99%, P < 0.05). Multivariate analysis demonstrated that only impaired global circumferential strain remained significantly associated with CD34 + EPCs and SOD.
LV global circumferential strain was independently associated with number of CD34+ EPCs and SOD. These findings suggest that myocardial dysfunction in patients with T2DM is related to depletion of EPCs and increased oxidative stress.
PMCID: PMC3537556  PMID: 23217199
Type 2 diabetes mellitus; Myocardial injury; Endothelial progenitor cells
5.  Lycopene Protects against Hypoxia/Reoxygenation-Induced Apoptosis by Preventing Mitochondrial Dysfunction in Primary Neonatal Mouse Cardiomyocytes 
PLoS ONE  2012;7(11):e50778.
Hypoxia/reoxygenation(H/R)-induced apoptosis of cardiomyocytes plays an important role in myocardial injury. Lycopene is a potent antioxidant carotenoid that has been shown to have protective properties on cardiovascular system. The aim of the present study is to investigate the potential for lycopene to protect the cardiomyocytes exposed to H/R. Moreover, the effect on mitochondrial function upon lycopene exposure was assessed.
Methods and Findings
Primary cardiomyocytes were isolated from neonatal mouse and established an in vitro model of H/R which resembles ischemia/reperfusion in vivo. The pretreatment of cardiomyocytes with 5 µM lycopene significantly reduced the extent of apoptosis detected by TUNEL assays. To further study the mechanism underlying the benefits of lycopene, interactions between lycopene and the process of mitochondria-mediated apoptosis were examined. Lycopene pretreatment of cardiomyocytes suppressed the activation of the mitochondrial permeability transition pore (mPTP) by reducing the intracellular reactive oxygen species (ROS) levels and inhibiting the increase of malondialdehyde (MDA) levels caused by H/R. Moreover, the loss of mitochondrial membrane potential, a decline in cellular ATP levels, a reduction in the amount of cytochrome c translocated to the cytoplasm and caspase-3 activation were observed in lycopene-treated cultures.
The present results suggested that lycopene possesses great pharmacological potential in protecting against H/R-induced apoptosis. Importantly, the protective effects of lycopene may be attributed to its roles in improving mitochondrial function in H/R-treated cardiomyocytes.
PMCID: PMC3511264  PMID: 23226382
6.  Prognostic implications of surrogate markers of atherosclerosis in low to intermediate risk patients with Type 2 Diabetes 
Type 2 diabetes mellitus (T2DM) patients are at increased risk of developing cardiovascular events. Unfortunately traditional risk assessment scores, including the Framingham Risk Score (FRS), have only modest accuracy in cardiovascular risk prediction in these patients.
We sought to determine the prognostic values of different non-invasive markers of atherosclerosis, including brachial artery endothelial function, carotid artery atheroma burden, ankle-brachial index, arterial stiffness and computed tomography coronary artery calcium score (CACS) in 151 T2DM Chinese patients that were identified low-intermediate risk from the FRS recalibrated for Chinese (<20% risk in 10 years). Patients were prospectively followed-up and presence of atherosclerotic events documented for a mean duration of 61 ± 16 months.
A total of 17 atherosclerotic events in 16 patients (11%) occurred during the follow-up period. The mean FRS of the study population was 5.0 ± 4.6% and area under curve (AUC) from receiver operating characteristic curve analysis for prediction of atherosclerotic events was 0.59 ± 0.07 (P = 0.21). Among different vascular assessments, CACS > 40 had the best prognostic value (AUC 0.81 ± 0.06, P < 0.01) and offered significantly better accuracy in prediction compared with FRS (P = 0.038 for AUC comparisons). Combination of FRS with CACS or other surrogate vascular markers did not further improve the prognostic values over CACS alone. Multivariate Cox regression analysis identified CACS > 40 as an independent predictor of atherosclerotic events in T2DM patients (Hazards Ratio 27.11, 95% Confidence Interval 3.36-218.81, P = 0.002).
In T2DM patients identified as low-intermediate risk by the FRS, a raised CACS > 40 was an independent predictor for atherosclerotic events.
PMCID: PMC3444371  PMID: 22900680
Vascular markers of atherosclerosis; Type 2 diabetes mellitus
7.  Myocardial Structural Alteration and Systolic Dysfunction in Preclinical Hypertrophic Cardiomyopathy Mutation Carriers 
PLoS ONE  2012;7(5):e36115.
To evaluate the presence of myocardial structural alterations and subtle myocardial dysfunction during familial screening in asymptomatic mutation carriers without hypertrophic cardiomyopathy (HCM) phenotype.
Methods and Findings
Sixteen HCM families with pathogenic mutation were studied and 46 patients with phenotype expression (Mut+/Phen+) and 47 patients without phenotype expression (Mut+/Phen−) were observed. Twenty-five control subjects, matched with the Mut+/Phen− group, were recruited for comparison. Echocardiography was performed to evaluate conventional parameters, myocardial structural alteration by calibrated integrated backscatter (cIBS) and global and segmental longitudinal strain by speckle tracking analysis. All 3 groups had similar left ventricular dimensions and ejection fraction. Basal anteroseptal cIBS was the highest in Mut+/Phen+ patients (−14.0±4.6 dB, p<0.01) and was higher in Mut+/Phen− patients as compared to controls (−17.0±2.3 vs. −22.6±2.9 dB, p<0.01) suggesting significant myocardial structural alterations. Global and basal anteroseptal longitudinal strains (−8.4±4.0%, p<0.01) were the most impaired in Mut+/Phen+ patients as compared to the other 2 groups. Although global longitudinal strain was similar between Mut+/Phen− group and controls, basal anteroseptal strain was lower in Mut+/Phen− patients (−14.1±3.8%, p<0.01) as compared to controls (−19.9±2.9%, p<0.01), suggesting a subclinical segmental systolic dysfunction. A combination of >−19.0 dB basal anteroseptal cIBS or >−18.0% basal anteroseptal longitudinal strain had a sensitivity of 98% and a specificity of 72% in differentiating Mut+/Phen− group from controls.
The use of cIBS and segmental longitudinal strain can differentiate HCM Mut+/Phen− patients from controls with important clinical implications for the family screening and follow-up of these patients.
PMCID: PMC3344846  PMID: 22574137
8.  Impact of glycemic control on circulating endothelial progenitor cells and arterial stiffness in patients with type 2 diabetes mellitus 
Patients with type 2 diabetes mellitus (DM) have increased risk of endothelial dysfunction and arterial stiffness. Levels of circulating endothelial progenitor cells (EPCs) are also reduced in hyperglycemic states. However, the relationships between glycemic control, levels of EPCs and arterial stiffness are unknown.
We measured circulating EPCs and brachial-ankle pulse wave velocity (baPWV) in 234 patients with type 2 DM and compared them with 121 age- and sex-matched controls.
Patients with DM had significantly lower circulating Log CD34/KDR+ and Log CD133/KDR+ EPC counts, and higher Log baPWV compared with controls (all P < 0.05). Among those 120/234 (51%) of DM patients with satisfactory glycemic control (defined by Hemoglobin A1c, HbA1c < 6.5%), they had significantly higher circulating Log CD34/KDR+ and Log CD133/KDR+ EPC counts, and lower Log baPWV compared with patients with poor glycemic control (all P < 0.05). The circulating levels of Log CD34/KDR+ EPC (r = -0.46, P < 0.001) and Log CD133/KDR+ EPC counts (r = -0.45, P < 0.001) were negatively correlated with Log baPWV. Whilst the level of HbA1c positively correlated with Log baPWV (r = 0.20, P < 0.05) and negatively correlated with circulating levels of Log CD34/KDR+ EPC (r = -0.40, P < 0.001) and Log CD133/KDR+ EPC (r = -0.41, P < 0.001). Multivariate analysis revealed that HbA1c, Log CD34/KDR+ and Log CD133/KDR+ EPC counts were independent predictors of Log baPWV (P < 0.05).
In patients with type 2 DM, the level of circulating EPCs and arterial stiffness were closely related to their glycemic control. Furthermore, DM patients with satisfactory glycemic control had higher levels of circulating EPCs and were associated with lower arterial stiffness.
PMCID: PMC3258289  PMID: 22185563

Results 1-8 (8)