Search tips
Search criteria

Results 1-3 (3)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Effect of combination tablets containing amlodipine 10 mg and irbesartan 100 mg on blood pressure and cardiovascular risk factors in patients with hypertension 
Hypertension is one of the major risk factors for cardiovascular and cerebrovascular disease and mortality. Patients who receive insufficient doses of antihypertensive agents or who are poorly adherent to multidrug treatment regimens often fail to achieve adequate blood pressure (BP) control. The aim of this study was to determine the efficacy of an angiotensin II receptor blocker (ARB) and calcium channel blocker (CCB) combination tablet containing a regular dose of irbesartan (100 mg) and a high dose of amlodipine (10 mg) with regard to lowering BP and other risk factors for cardiovascular disease.
We retrospectively evaluated data from 68 patients with essential hypertension whose treatment regimen was changed either from combination treatment with an independent ARB and a low-dose or regular-dose CCB or from a combination tablet of ARB and a low-dose or regular-dose CCB to a combination tablet containing amlodipine 10 mg and irbesartan 100 mg, because of incomplete BP control. Previous treatments did not include irbesartan as the ARB.
The combination tablet decreased systolic and diastolic BP. In addition, it significantly decreased serum uric acid, low-density lipoprotein cholesterol, and increased high-density lipoprotein cholesterol levels, independent of the BP-lowering effect. Treatment with the combination tablet did not affect serum triglycerides, plasma glucose, glycated hemoglobin, serum potassium or creatinine levels, or the urinary albumin excretion rate.
The combination tablet containing amlodipine 10 mg and irbesartan 100 mg had a greater BP-lowering effect than an ARB and a low-dose or regular-dose CCB. In addition, the combination tablet had more favorable effects on serum uric acid, low-density lipoprotein cholesterol, and high-density lipoprotein cholesterol levels in patients with hypertension.
PMCID: PMC4296916  PMID: 25624765
blood pressure; combination tablet; uric acid; low-density lipoprotein cholesterol; high-density lipoprotein cholesterol
2.  Gender disparities in the association between epicardial adipose tissue volume and coronary atherosclerosis: A 3-dimensional cardiac computed tomography imaging study in Japanese subjects 
Growing evidence suggests that epicardial adipose tissue (EAT) may contribute to the development of coronary artery disease (CAD). In this study, we explored gender disparities in EAT volume (EATV) and its impact on coronary atherosclerosis.
The study population consisted of 90 consecutive subjects (age: 63 ± 12 years; men: 47, women: 43) who underwent 256-slice multi-detector computed tomography (MDCT) coronary angiography. EATV was measured as the sum of cross-sectional epicardial fat area on CT images, from the lower surface of the left pulmonary artery origin to the apex. Subjects were segregated into the CAD group (coronary luminal narrowing > 50%) and non-CAD group.
EATV/body surface area (BSA) was higher among men in the CAD group than in the non-CAD group (62 ± 13 vs. 33 ± 10 cm3/m2, p < 0.0001), but did not differ significantly among women in the 2 groups (49 ± 18 vs. 42 ± 9 cm3/m2, not significant). Multivariate logistic analysis showed that EATV/BSA was the single predictor for >50% coronary luminal narrowing in men (p < 0.0001). Predictors excluded were age, body mass index, hypertension, diabetes mellitus, and hyperlipidemia.
Increased EATV is strongly associated with coronary atherosclerosis in men.
PMCID: PMC3489699  PMID: 22963346
Atherosclerosis; Gender difference; Epicardial adipose tissue; Obesity
3.  Up-regulation of ectopic trypsins in the myocardium by influenza A virus infection triggers acute myocarditis 
Cardiovascular Research  2010;89(3):595-603.
Influenza A virus (IAV) infection markedly up-regulates ectopic trypsins in various organs, viral envelope glycoprotein processing proteases, which are pre-requisites for virus entry and multiplication. We investigated the pathological roles of trypsin up-regulation in the progression of IAV-induced myocarditis, cytokine induction, and viral replication in the hearts, and also investigated the protective effects of trypsin inhibitor on cardiac dysfunction in vivo and selective knockdown of trypsin on IAV-induced cellular damage in cardiomyoblasts.
Methods and results
The relationship of the expression among IAV RNA, trypsins, matrix metalloproteinase (MMP)-9, MMP-2, pro-inflammatory cytokines interleukin (IL)-6, IL-1β, and tumour necrosis factor-α was analysed in mice hearts and cardiomyoblasts after IAV infection. The severity of myocarditis was most noticeable during Day 6–9 post-infection, along with peak expression of viral RNA, trypsins, particularly trypsin2, MMPs, and cytokines. Cardiac ATP levels were the lowest at Day 9. Up-regulated trypsins, viral protein, and tissue-injured loci in the myocardium were closely localized. Trypsin inhibitor aprotinin treatment in vivo and selective trypsin1- and trypsin2-knockdown, particularly the latter, in H9c2 cardiomyoblasts significantly suppressed viral replication, up-regulation of MMPs, and production of active MMP-9 and cytokines, resulting in marked protection against cellular damage, ATP depletion, and apoptosis. IAV infection-induced cardiac dysfunction monitored by echocardiography was improved significantly by aprotinin treatment.
IAV-induced trypsins, particularly trypsin2, in the myocardium trigger acute viral myocarditis through stimulation of IAV replication, proMMP-9 activation, and cytokine induction. These results suggest that up-regulation of trypsins is one of the key host pathological findings in IAV-induced myocarditis.
PMCID: PMC3028976  PMID: 21084314
Myocarditis; trypsin; Influenza virus; Cytokines; Matrix metalloproteases

Results 1-3 (3)