Search tips
Search criteria

Results 1-14 (14)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
1.  Obesity-induced DNA released from adipocytes stimulates chronic adipose tissue inflammation and insulin resistance 
Science Advances  2016;2(3):e1501332.
DNA released from obesity-induced degenerated adipocytes stimulates inflammation in adipose tissue and insulin resistance.
Obesity stimulates chronic inflammation in adipose tissue, which is associated with insulin resistance, although the underlying mechanism remains largely unknown. Here we showed that obesity-related adipocyte degeneration causes release of cell-free DNA (cfDNA), which promotes macrophage accumulation in adipose tissue via Toll-like receptor 9 (TLR9), originally known as a sensor of exogenous DNA fragments. Fat-fed obese wild-type mice showed increased release of cfDNA, as determined by the concentrations of single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) in plasma. cfDNA released from degenerated adipocytes promoted monocyte chemoattractant protein-1 (MCP-1) expression in wild-type macrophages, but not in TLR9-deficient (Tlr9−/−) macrophages. Fat-fed Tlr9−/− mice demonstrated reduced macrophage accumulation and inflammation in adipose tissue and better insulin sensitivity compared with wild-type mice, whereas bone marrow reconstitution with wild-type bone marrow restored the attenuation of insulin resistance observed in fat-fed Tlr9−/− mice. Administration of a TLR9 inhibitory oligonucleotide to fat-fed wild-type mice reduced the accumulation of macrophages in adipose tissue and improved insulin resistance. Furthermore, in humans, plasma ssDNA level was significantly higher in patients with computed tomography–determined visceral obesity and was associated with homeostasis model assessment of insulin resistance (HOMA-IR), which is the index of insulin resistance. Our study may provide a novel mechanism for the development of sterile inflammation in adipose tissue and a potential therapeutic target for insulin resistance.
PMCID: PMC4820373  PMID: 27051864
cell-free DNA; inflammation; adipose tissue; insulin resistance; macrophage; Toll-like receptor-9
4.  Predictive Factors for Efficacy of Dipeptidyl Peptidase-4 Inhibitors in Patients with Type 2 Diabetes Mellitus 
Diabetes & Metabolism Journal  2015;39(4):342-347.
Predictive factors for the efficacy of dipeptidyl peptidase-4 (DPP-4) inhibitors for lowering glycosylated hemoglobin (HbA1c) remain unclear in patients with type 2 diabetes mellitus. The aim of this study is therefore to clarify predictive factors of the efficacy of DPP-4 inhibitors for lowering HbA1c after 12 months of treatment.
A total of 191 consecutive type 2 diabetic patients (male sex 55%, mean age, 68.3±35.8 years), who had been treated with DPP-4 inhibitors for 12 months, were enrolled in this study and evaluated retrospectively.
After 12 months of DPP-4 inhibitor treatment, random blood glucose level, and HbA1c level, decreased from 167±63 to 151±49 mg/dL (P<0.01), and from 7.5%±1.3% to 6.9%±0.9% (P<0.01) respectively, without severe side effects. Multiple regression analysis showed that predictors of DPP-4 inhibitor treatment efficacy in lowering HbA1c level after 12 months were a decrease in HbA1c level after 3 months of treatment, a high baseline HbA1c level, a low baseline body mass index, and the absence of coronary artery disease.
Most suitable candidates for treatment with DPP-4 inhibitors are diabetics who are not obese and do not have coronary artery disease. In addition, long-term efficacy of DPP-4 inhibitors can be predicted by decrement of HbA1c after 3 months of treatment.
PMCID: PMC4543199  PMID: 26301197
Coronary artery disease; Diabetes mellitus; Dipeptidyl-peptidase IV inhibitors; Obese; Predictive factors
5.  Effect of combination tablets containing amlodipine 10 mg and irbesartan 100 mg on blood pressure and cardiovascular risk factors in patients with hypertension 
Hypertension is one of the major risk factors for cardiovascular and cerebrovascular disease and mortality. Patients who receive insufficient doses of antihypertensive agents or who are poorly adherent to multidrug treatment regimens often fail to achieve adequate blood pressure (BP) control. The aim of this study was to determine the efficacy of an angiotensin II receptor blocker (ARB) and calcium channel blocker (CCB) combination tablet containing a regular dose of irbesartan (100 mg) and a high dose of amlodipine (10 mg) with regard to lowering BP and other risk factors for cardiovascular disease.
We retrospectively evaluated data from 68 patients with essential hypertension whose treatment regimen was changed either from combination treatment with an independent ARB and a low-dose or regular-dose CCB or from a combination tablet of ARB and a low-dose or regular-dose CCB to a combination tablet containing amlodipine 10 mg and irbesartan 100 mg, because of incomplete BP control. Previous treatments did not include irbesartan as the ARB.
The combination tablet decreased systolic and diastolic BP. In addition, it significantly decreased serum uric acid, low-density lipoprotein cholesterol, and increased high-density lipoprotein cholesterol levels, independent of the BP-lowering effect. Treatment with the combination tablet did not affect serum triglycerides, plasma glucose, glycated hemoglobin, serum potassium or creatinine levels, or the urinary albumin excretion rate.
The combination tablet containing amlodipine 10 mg and irbesartan 100 mg had a greater BP-lowering effect than an ARB and a low-dose or regular-dose CCB. In addition, the combination tablet had more favorable effects on serum uric acid, low-density lipoprotein cholesterol, and high-density lipoprotein cholesterol levels in patients with hypertension.
PMCID: PMC4296916  PMID: 25624765
blood pressure; combination tablet; uric acid; low-density lipoprotein cholesterol; high-density lipoprotein cholesterol
6.  Serum concentration of eicosapentaenoic acid is associated with cognitive function in patients with coronary artery disease 
Nutrition Journal  2014;13:112.
Recent studies have shown that intake of n-3 polyunsaturated fatty acids (PUFAs) is associated with reduced risk of cognitive impairment and coronary artery disease (CAD); however, it is currently unknown whether reduced serum n-3 PUFA is associated with cognitive impairment in patients with CAD.
We retrospectively evaluated cognitive function with the mini-mental state examination (MMSE), serum levels of PUFAs (including eicosapentaenoic acid [EPA], docosahexaenoic acid [DHA], dihomogammalinolenic acid [DGLA], and arachidonic acid [AA]), cardiovascular risk factors (hypertension, dyslipidemia, diabetes mellitus, cerebrovascular disease, and history of current/previous smoking), and parameters of cardiac function (left ventricular ejection fraction and brain natriuretic peptide levels) in 146 Japanese CAD patients. The associations between the MMSE scores and the other parameters were evaluated.
Pearson correlation analysis showed that EPA (R = 0.25, P <0.01), EPA/AA ratio (R = 0.22, P = 0.01), and left ventricular ejection fraction (R = 0.15, P = 0.04) were positively associated with MMSE score, and that age (R = −0.20, P <0.01) and brain natriuretic peptide levels (R = −0.28, P <0.01) were inversely associated with MMSE score. Multiple regression analysis showed that age (P <0.05) was negatively associated with MMSE score, while EPA (P <0.01) and EPA/AA ratio (P <0.05) were positively associated with MMSE score; however, sex; body mass index; left ventricular ejection fraction; levels of DHA, AA, and DGLA; DHA/AA ratio; brain natriuretic peptide; and presence of hypertension, dyslipidemia, diabetes mellitus, cerebrovascular disease, and history of current/previous smoking were statistically excluded.
Serum EPA concentration is associated with cognitive function in patients with CAD, suggesting that a low serum EPA level is a risk factor for cognitive impairment independent of cardiac function, including left ventricular ejection fraction. This correlation potentially lends further support to a role of dietary n-3 PUFAs in preventing the cognitive decline in CAD patients.
Electronic supplementary material
The online version of this article (doi:10.1186/1475-2891-13-112) contains supplementary material, which is available to authorized users.
PMCID: PMC4391466  PMID: 25471307
Eicosapentaenoic acid; n-3 polyunsaturated fatty acids; Cognitive function; Mini-mental state examinations; Coronary artery disease
7.  MicroRNA-378 Regulates Adiponectin Expression in Adipose Tissue: A New Plausible Mechanism 
PLoS ONE  2014;9(11):e111537.
Mechanisms regulating adiponectin expression have not been fully clarified. MicroRNAs (miRNAs), small non-coding RNAs that regulate gene expression, are involved in biological processes, including obesity and insulin resistance. We evaluated whether the miRNA-378 pathway is involved in regulating adiponectin expression.
Methods and Results
First, we determined a putative target site for miRNA-378 in the 3 prime untranslated region (3'UTR) of the adiponectin gene by in silico analysis. The levels of adiponectin mRNA and protein were decreased in 3T3-L1 cells overexpressing the mimic of miRNA-378. Luminescence activity in HEK293T cells expressing a renilla-luciferase-adiponectin-3'UTR sequence was inhibited by overexpressing the mimic of miRNA-378, and the decrease was reversed by adding the inhibitor of miRNA-378. Moreover, we confirmed the inhibitory effects of the mimic were cancelled in a deleted mutant of the miR-378 3′-UTR binding site. Addition of tumor necrosis factor-α (TNFα) led a upregulation of miR-378 and downregulation of adiponectin at mRNA and protein levels in 3T3-L1 cells. Level of miR-378 was higher and mRNA level of adiponectin was lower in diabetic ob/ob mice than those of normal C57BL/6 mice and levels of miR378 and adiponectin were negatively well correlated (r = −0.624, p = 0.004).
We found that levels of miRNA-378 could modulate adiponectin expression via the 3'UTR sequence-binding site. Our findings warrant further investigations into the role of miRNAs in regulating the adiponectin expression.
PMCID: PMC4224402  PMID: 25379946
8.  Association of lower limb muscle mass and energy expenditure with visceral fat mass in healthy men 
A high-calorie diet and physical inactivity, an imbalance between caloric intake and energy consumption, are major causes of metabolic syndrome (MetS), which manifests as accumulation of visceral fat and insulin resistance. However, the lifestyle-related factors associated with visceral fat mass in healthy men are not fully understood.
We evaluated visceral fat area (VFA), skeletal muscle mass, caloric intake, and energy expenditure in 67 healthy male participants (mean age, 36.9 ± 8.8 years; body mass index 23.4 ± 2.5 kg/m2).
Multiple regression analysis showed that the total skeletal muscle mass (P < 0.001) were negatively and age (P < 0.001) were positively associated with VFA. Lower limb muscle mass (P < 0.001) was strongly associated with VFA. However, total caloric intake, total energy expenditure, and energy expenditure during exercise were not associated with VFA.
Skeletal muscle mass especially lower limb muscle mass negatively contributes to visceral fat mass in healthy men. Therefore, maintaining lower limb muscular fitness through daily activity may be a useful strategy for controlling visceral obesity and metabolic syndrome.
PMCID: PMC3945716  PMID: 24571923
Exercise; Skeletal muscle; Metabolic syndrome; Prevention
9.  Androgen receptor promotes sex-independent angiogenesis in response to ischemia and is required for activation of vascular endothelial cell growth factor receptor signaling 
Circulation  2013;128(1):60-71.
Hypoandrogenemia is associated with an increased risk of ischemic diseases. Since actions of androgens are exerted through androgen receptor (AR) activation, we studied hind limb ischemia in AR knockout (KO) mice to elucidate the role of AR in response to ischemia.
Methods and Results
Both male and female ARKO mice exhibited impaired blood flow recovery, more cellular apoptosis and a higher incidence of autoamputation after ischemia. In ex vivo and in vivo angiogenesis studies, AR-deficient vascular endothelial cells showed reduced angiogenic capability. In ischemic limbs of ARKO mice, reductions in the phosphorylation of the Akt protein kinase and endothelial nitric oxide synthase (eNOS) were observed despite a robust increase in hypoxia-inducible factor 1α and vascular endothelial cell growth factor (VEGF) gene expression. In in vitro studies, siRNA-mediated ablation of AR in vascular endothelial cells blunted VEGF-stimulated phosphorylation of Akt and eNOS. Immunoprecipitation experiments documented an association between AR and kinase insert domain protein receptor (KDR) that promoted the recruitment of downstream signaling components.
These results document a physiological role of AR in gender-independent angiogenic potency and provide evidence for a novel cross-talk between androgen/AR signaling and VEGF/KDR signaling pathways.
PMCID: PMC3933182  PMID: 23723256
androgen receptor; angiogenesis; KDR; Akt; eNOS
10.  Gender disparities in the association between epicardial adipose tissue volume and coronary atherosclerosis: A 3-dimensional cardiac computed tomography imaging study in Japanese subjects 
Growing evidence suggests that epicardial adipose tissue (EAT) may contribute to the development of coronary artery disease (CAD). In this study, we explored gender disparities in EAT volume (EATV) and its impact on coronary atherosclerosis.
The study population consisted of 90 consecutive subjects (age: 63 ± 12 years; men: 47, women: 43) who underwent 256-slice multi-detector computed tomography (MDCT) coronary angiography. EATV was measured as the sum of cross-sectional epicardial fat area on CT images, from the lower surface of the left pulmonary artery origin to the apex. Subjects were segregated into the CAD group (coronary luminal narrowing > 50%) and non-CAD group.
EATV/body surface area (BSA) was higher among men in the CAD group than in the non-CAD group (62 ± 13 vs. 33 ± 10 cm3/m2, p < 0.0001), but did not differ significantly among women in the 2 groups (49 ± 18 vs. 42 ± 9 cm3/m2, not significant). Multivariate logistic analysis showed that EATV/BSA was the single predictor for >50% coronary luminal narrowing in men (p < 0.0001). Predictors excluded were age, body mass index, hypertension, diabetes mellitus, and hyperlipidemia.
Increased EATV is strongly associated with coronary atherosclerosis in men.
PMCID: PMC3489699  PMID: 22963346
Atherosclerosis; Gender difference; Epicardial adipose tissue; Obesity
11.  Effects of Statins on Cardiorenal Syndrome 
Cardiovascular disease and renal disease have a close relationship that forms a vicious cycle as a cardiorenal syndrome (CRS). Oxidative stress, endothelial dysfunction, and vascular inflammation could be therapeutic targets when the renin-angiotensin-aldosterone system is activated by accumulation of conventional cardiovascular risk factors; however, a strategy for management of CRS has not been established yet. Statins, HMG-CoA reductase inhibitors, have not only cholesterol-lowering effects but also pleiotropic effects on cardiovascular systems, including anti-inflammatory and antioxidant effects and improvement of nitric oxide bioavailability. Since recent studies have indicated that statins have beneficial effects on chronic kidney disease and heart failure as well as coronary artery disease in cholesterol-lowering-dependent/independent manners, treatment with statins might be a successful strategy for preventing deterioration of CRS.
PMCID: PMC3390040  PMID: 22792467
12.  MicroRNA-22 Regulates Hypoxia Signaling in Colon Cancer Cells 
PLoS ONE  2011;6(5):e20291.
MicroRNAs (MiRNAs) are short, non-coding RNA that regulate a variety of cellular functions by suppressing target protein expression. We hypothesized that a set of microRNA regulate tumor responses to hypoxia by inhibiting components of the hypoxia signaling pathway. We found that miR-22 expression in human colon cancer is lower than in normal colon tissue. We also found that miR-22 controls hypoxia inducible factor 1α (HIF-1α) expression in the HCT116 colon cancer cell line. Over-expression of miR-22 inhibits HIF-1α expression, repressing vascular endothelial growth factor (VEGF) production during hypoxia. Conversely, knockdown of endogenous miR-22 enhances hypoxia induced expression of HIF-1α and VEGF. The conditioned media from cells over-expressing miR-22 contain less VEGF protein than control cells, and also induce less endothelial cell growth and invasion, suggesting miR-22 in adjacent cells influences endothelial cell function. Taken together, our data suggest that miR-22 might have an anti-angiogenic effect in colon cancer.
PMCID: PMC3100326  PMID: 21629773
13.  Transforming Growth Factor-β1 as a Common Target Molecule for Development of Cardiovascular Diseases, Renal Insufficiency and Metabolic Syndrome 
Transforming growth factor-β1 (TGF-β1) is a polypeptide member of the transforming growth factor β superfamily of cytokines. It is a secreted protein that performs many cellular functions including control of cell growth, cell proliferation, cell differentiation and apoptosis. In the cardiovascular system, TGF-β1 plays pivotal roles in the pathogenesis of hypertension, restenosis after percutaneous coronary intervention, atherosclerosis, cardiac hypertrophy and heart failure. In addition, TGF-β1 has been shown to be increased in adipose tissue of obese subjects with insulin resistance. Furthermore, TGF-β1 is a potent initiator of proliferation of renal mesangial cells leading to chronic kidney disease. Some currently available agents can manipulate TGF-β1 expression leading to amelioration of cardiovascular diseases. Thus, an understanding of interactions between chronic kidney disease and metabolic syndrome and the development of cardiovascular diseases is an important issue, and attention should be given to TGF-β1 as a crucial factor for regulation and modulation of those pathological conditions.
PMCID: PMC3018616  PMID: 21234356
14.  Strain-dependent embryonic lethality and exaggerated vascular remodeling in heparin cofactor II–deficient mice 
Journal of Clinical Investigation  2007;117(6):1514-1526.
Heparin cofactor II (HCII) specifically inhibits thrombin action at sites of injured arterial wall, and patients with HCII deficiency exhibit advanced atherosclerosis. However, the in vivo effects and the molecular mechanism underlying the action of HCII during vascular remodeling remain elusive. To clarify the role of HCII in vascular remodeling, we generated HCII-deficient mice by gene targeting. In contrast to a previous report, HCII–/– mice were embryonically lethal. In HCII+/– mice, prominent intimal hyperplasia with increased cellular proliferation was observed after tube cuff and wire vascular injury. The number of protease-activated receptor–1–positive (PAR-1–positive) cells was increased in the thickened vascular wall of HCII+/– mice, suggesting enhanced thrombin action in this region. Cuff injury also increased the expression levels of inflammatory cytokines and chemokines in the vascular wall of HCII+/– mice. The intimal hyperplasia in HCII+/– mice with vascular injury was abrogated by human HCII supplementation. Furthermore, HCII deficiency caused acceleration of aortic plaque formation with increased PAR-1 expression and oxidative stress in apoE-KO mice. These results demonstrate that HCII protects against thrombin-induced remodeling of an injured vascular wall by inhibiting thrombin action and suggest that HCII is potentially therapeutic against atherosclerosis without causing coagulatory disturbance.
PMCID: PMC1878511  PMID: 17549254

Results 1-14 (14)