Search tips
Search criteria

Results 1-3 (3)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Foot skin depots of 18F-fluorodeoxyglucose do not enable PET/CT lymphography of the lower extremity lymphatic system in man 
EJNMMI Research  2013;3:17.
In mice, 18F-fluorodeoxyglucose (18F-FDG) positron-emission tomography/computed tomography (PET/CT) lymphography enables detailed imaging of the lymphatic system and quantification of lymph node function. If this applies to humans, it may improve staging of several malignancies. The aim of this study was to elucidate whether foot skin depots of 18F-FDG make PET/CT imaging of the lower extremity lymphatic system possible in man.
In four healthy volunteers, 18F-FDG depots (5 MBq in 0.1-mL isotonic saline) were injected intradermally in one foot and subcutaneously in the other. Activity was measured in blood samples drawn simultaneously from the great saphenous veins about 5 cm proximal to the ankle joints and a medial cubital vein before and every minute for 15 min after depot injection. Immediately thereafter, a low-dose CT was performed from the ankles to the pelvis followed by two consecutive PET scans of the same region.
Blood activity increased faster and to a greater extent in the great saphenous veins compared to the medial cubital vein. PET/CT images showed activity in the superficial and deep veins of the lower extremities. No lymphatic collectors or nodes were visualized.
Neither subcutaneous nor intradermal injection of 18F-FDG allows imaging of the lower extremity lymphatic system in man.
PMCID: PMC3610292  PMID: 23497568
FDG; Sentinel lymph node; Lymphoscintigraphy; Intradermal depots; PET/CT imaging
2.  Insulin resistance and exercise tolerance in heart failure patients: linkage to coronary flow reserve and peripheral vascular function 
Insulin resistance has been linked to exercise intolerance in heart failure patients. The aim of this study was to assess the potential role of coronary flow reserve (CFR), endothelial function and arterial stiffness in explaining this linkage.
39 patients with LVEF < 35% (median LV ejection fraction (LVEF) 31 (interquartile range (IQ) 26–34), 23/39 of ischemic origin) underwent echocardiography with measurement of CFR. Peak coronary flow velocity (CFV) was measured in the LAD and coronary flow reserve was calculated as the ratio between CFV at rest and during a 2 minutes adenosine infusion. All patients performed a maximal symptom limited exercise test with measurement of peak oxygen uptake (VO2peak), digital measurement of endothelial function and arterial stiffness (augmentation index), dual X-ray absorptiometry scan (DEXA) for body composition and insulin sensitivity by a 2 hr hyperinsulinemic (40 mU/min/m2) isoglycemic clamp.
Fat free mass adjusted insulin sensitivity was significantly correlated to VO2peak (r = 0.43, p = 0.007). Median CFR was 1.77 (IQ 1.26-2.42) and was correlated to insulin sensitivity (r 0.43, p = 0.008). CFR (r = 0.48, p = 0.002), and arterial stiffness (r = −0.35, p = 0.04) were correlated to VO2peak whereas endothelial function and LVEF were not (all p > 0.15). In multivariable linear regression adjusting for age, CFR remained independently associated with VO2peak (standardized coefficient (SC) 1.98, p = 0.05) whereas insulin sensitivity (SC 1.75, p = 0.09) and arterial stiffness (SC −1.17, p = 0.29) were no longer associated with VO2peak.
The study confirms that insulin resistance is associated with exercise intolerance in heart failure patients and suggests that this is partly through reduced CFR. This is the first study to our knowledge that shows an association between CFR and exercise capacity in heart failure patients and links the relationship between insulin resistance and exercise capacity to CFR.
PMCID: PMC3444364  PMID: 22889317
Coronary flow reserve; Heart failure; Exercise capacity; Insulin sensitivity; Arterial stiffness
3.  Glucose-Dependent Insulinotropic Polypeptide May Enhance Fatty Acid Re-esterification in Subcutaneous Abdominal Adipose Tissue in Lean Humans 
Diabetes  2010;59(9):2160-2163.
Glucose-dependent insulinotropic polypeptide (GIP) has been implicated in lipid metabolism in animals. In humans, however, there is no clear evidence of GIP effecting lipid metabolism. The present experiments were performed in order to elucidate the effects of GIP on regional adipose tissue metabolism.
Eight healthy subjects were studied on four different occasions. Abdominal subcutaneous adipose tissue metabolism was assessed by measuring arterio-venous concentration differences and regional adipose tissue blood flow during GIP (1.5 pmol/kg/min) or saline infused intravenously alone or in combination with a hyperinsulinemic-hyperglycemic (HI-HG) clamp.
During GIP and HI-HG clamp, abdominal subcutaneous adipose tissue blood flow, hydrolysis of circulating triacylglycerol (TAG) (P = 0.009), and glucose uptake (P = 0.03) increased significantly while free fatty acid (FFA) output (P = 0.04) and FFA/glycerol release ratio (P = 0.02) decreased compared with saline and HI-HG clamp.
In conclusion, GIP in combination with hyperinsulinemia and slight hyperglycemia increased adipose tissue blood flow, glucose uptake, and FFA re-esterification, thus resulting in increased TAG deposition in abdominal subcutaneous adipose tissue.
PMCID: PMC2927937  PMID: 20547981

Results 1-3 (3)