PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Gender disparities in the association between epicardial adipose tissue volume and coronary atherosclerosis: A 3-dimensional cardiac computed tomography imaging study in Japanese subjects 
Background
Growing evidence suggests that epicardial adipose tissue (EAT) may contribute to the development of coronary artery disease (CAD). In this study, we explored gender disparities in EAT volume (EATV) and its impact on coronary atherosclerosis.
Methods
The study population consisted of 90 consecutive subjects (age: 63 ± 12 years; men: 47, women: 43) who underwent 256-slice multi-detector computed tomography (MDCT) coronary angiography. EATV was measured as the sum of cross-sectional epicardial fat area on CT images, from the lower surface of the left pulmonary artery origin to the apex. Subjects were segregated into the CAD group (coronary luminal narrowing > 50%) and non-CAD group.
Results
EATV/body surface area (BSA) was higher among men in the CAD group than in the non-CAD group (62 ± 13 vs. 33 ± 10 cm3/m2, p < 0.0001), but did not differ significantly among women in the 2 groups (49 ± 18 vs. 42 ± 9 cm3/m2, not significant). Multivariate logistic analysis showed that EATV/BSA was the single predictor for >50% coronary luminal narrowing in men (p < 0.0001). Predictors excluded were age, body mass index, hypertension, diabetes mellitus, and hyperlipidemia.
Conclusions
Increased EATV is strongly associated with coronary atherosclerosis in men.
doi:10.1186/1475-2840-11-106
PMCID: PMC3489699  PMID: 22963346
Atherosclerosis; Gender difference; Epicardial adipose tissue; Obesity
2.  Autologous Peripheral Blood-Derived Mononuclear Cells Induced by Erythropoietin Improve Critical Ischemic Limbs 
Annals of Vascular Diseases  2012;5(1):52-60.
Purpose: Efficient and secure collection of CD34+ cells are crucial for the angiogenic therapies. We have developed autologous peripheral blood-mononuclear cell (MNC) transplantation induced by erythropoietin (rhEPO) for critical ischemic limbs.
Methods: Seven patients, including five with arteriosclerosis obliterans, one with Buerger’s disease and one with progressive systemic sclerosis, underwent ten cell therapies. The first administration of rhEPO was performed two weeks before apheresis, and the second administration and blood donation were performed one week before apheresis to activate bone marrow. MNCs including CD34+ cells, isolated from peripheral blood by apheresis, were immediately injected intramuscularly into ischemic limbs.
Results: The number of peripheral blood-CD34 + cells had significantly increased from 1.32 ± 0.83/microL, before the rhEPO induction, to 1.86 ± 0.94/microL, before the apheresis. The number of transplanted MNCs ranged between 0.5 × 109 and 16.5 × 109, and that of CD34+ cells, between 0.1 × 106 and 12.7 × 106, accounting for 0.02%–0.1% of MNCs. There were no serious complications. Finger ulcers with Buerger’s disease were significantly improved one month after the transplantations, but the same or other ulcer(s) appeared 2–6 months later. Three patients had an improvement in rest pain, and one patient extended maximum pain-free walking distance.
Conclusions: Erythropoietin-induced autologous peripheral blood-MNC transplantation is a useful and safe alternative for ischemic limbs.
doi:10.3400/avd.oa.11.00070
PMCID: PMC3595914  PMID: 23555486
Keywordserythropoietin; angiogenesis; autologous peripheral blood-derived mononuclear cell transplantation; critical ischemic limbs

Results 1-2 (2)