Search tips
Search criteria

Results 1-8 (8)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Effect of combination tablets containing amlodipine 10 mg and irbesartan 100 mg on blood pressure and cardiovascular risk factors in patients with hypertension 
Hypertension is one of the major risk factors for cardiovascular and cerebrovascular disease and mortality. Patients who receive insufficient doses of antihypertensive agents or who are poorly adherent to multidrug treatment regimens often fail to achieve adequate blood pressure (BP) control. The aim of this study was to determine the efficacy of an angiotensin II receptor blocker (ARB) and calcium channel blocker (CCB) combination tablet containing a regular dose of irbesartan (100 mg) and a high dose of amlodipine (10 mg) with regard to lowering BP and other risk factors for cardiovascular disease.
We retrospectively evaluated data from 68 patients with essential hypertension whose treatment regimen was changed either from combination treatment with an independent ARB and a low-dose or regular-dose CCB or from a combination tablet of ARB and a low-dose or regular-dose CCB to a combination tablet containing amlodipine 10 mg and irbesartan 100 mg, because of incomplete BP control. Previous treatments did not include irbesartan as the ARB.
The combination tablet decreased systolic and diastolic BP. In addition, it significantly decreased serum uric acid, low-density lipoprotein cholesterol, and increased high-density lipoprotein cholesterol levels, independent of the BP-lowering effect. Treatment with the combination tablet did not affect serum triglycerides, plasma glucose, glycated hemoglobin, serum potassium or creatinine levels, or the urinary albumin excretion rate.
The combination tablet containing amlodipine 10 mg and irbesartan 100 mg had a greater BP-lowering effect than an ARB and a low-dose or regular-dose CCB. In addition, the combination tablet had more favorable effects on serum uric acid, low-density lipoprotein cholesterol, and high-density lipoprotein cholesterol levels in patients with hypertension.
PMCID: PMC4296916  PMID: 25624765
blood pressure; combination tablet; uric acid; low-density lipoprotein cholesterol; high-density lipoprotein cholesterol
2.  Association of lower limb muscle mass and energy expenditure with visceral fat mass in healthy men 
A high-calorie diet and physical inactivity, an imbalance between caloric intake and energy consumption, are major causes of metabolic syndrome (MetS), which manifests as accumulation of visceral fat and insulin resistance. However, the lifestyle-related factors associated with visceral fat mass in healthy men are not fully understood.
We evaluated visceral fat area (VFA), skeletal muscle mass, caloric intake, and energy expenditure in 67 healthy male participants (mean age, 36.9 ± 8.8 years; body mass index 23.4 ± 2.5 kg/m2).
Multiple regression analysis showed that the total skeletal muscle mass (P < 0.001) were negatively and age (P < 0.001) were positively associated with VFA. Lower limb muscle mass (P < 0.001) was strongly associated with VFA. However, total caloric intake, total energy expenditure, and energy expenditure during exercise were not associated with VFA.
Skeletal muscle mass especially lower limb muscle mass negatively contributes to visceral fat mass in healthy men. Therefore, maintaining lower limb muscular fitness through daily activity may be a useful strategy for controlling visceral obesity and metabolic syndrome.
PMCID: PMC3945716  PMID: 24571923
Exercise; Skeletal muscle; Metabolic syndrome; Prevention
3.  Androgen receptor promotes sex-independent angiogenesis in response to ischemia and is required for activation of vascular endothelial cell growth factor receptor signaling 
Circulation  2013;128(1):60-71.
Hypoandrogenemia is associated with an increased risk of ischemic diseases. Since actions of androgens are exerted through androgen receptor (AR) activation, we studied hind limb ischemia in AR knockout (KO) mice to elucidate the role of AR in response to ischemia.
Methods and Results
Both male and female ARKO mice exhibited impaired blood flow recovery, more cellular apoptosis and a higher incidence of autoamputation after ischemia. In ex vivo and in vivo angiogenesis studies, AR-deficient vascular endothelial cells showed reduced angiogenic capability. In ischemic limbs of ARKO mice, reductions in the phosphorylation of the Akt protein kinase and endothelial nitric oxide synthase (eNOS) were observed despite a robust increase in hypoxia-inducible factor 1α and vascular endothelial cell growth factor (VEGF) gene expression. In in vitro studies, siRNA-mediated ablation of AR in vascular endothelial cells blunted VEGF-stimulated phosphorylation of Akt and eNOS. Immunoprecipitation experiments documented an association between AR and kinase insert domain protein receptor (KDR) that promoted the recruitment of downstream signaling components.
These results document a physiological role of AR in gender-independent angiogenic potency and provide evidence for a novel cross-talk between androgen/AR signaling and VEGF/KDR signaling pathways.
PMCID: PMC3933182  PMID: 23723256
androgen receptor; angiogenesis; KDR; Akt; eNOS
4.  Gender disparities in the association between epicardial adipose tissue volume and coronary atherosclerosis: A 3-dimensional cardiac computed tomography imaging study in Japanese subjects 
Growing evidence suggests that epicardial adipose tissue (EAT) may contribute to the development of coronary artery disease (CAD). In this study, we explored gender disparities in EAT volume (EATV) and its impact on coronary atherosclerosis.
The study population consisted of 90 consecutive subjects (age: 63 ± 12 years; men: 47, women: 43) who underwent 256-slice multi-detector computed tomography (MDCT) coronary angiography. EATV was measured as the sum of cross-sectional epicardial fat area on CT images, from the lower surface of the left pulmonary artery origin to the apex. Subjects were segregated into the CAD group (coronary luminal narrowing > 50%) and non-CAD group.
EATV/body surface area (BSA) was higher among men in the CAD group than in the non-CAD group (62 ± 13 vs. 33 ± 10 cm3/m2, p < 0.0001), but did not differ significantly among women in the 2 groups (49 ± 18 vs. 42 ± 9 cm3/m2, not significant). Multivariate logistic analysis showed that EATV/BSA was the single predictor for >50% coronary luminal narrowing in men (p < 0.0001). Predictors excluded were age, body mass index, hypertension, diabetes mellitus, and hyperlipidemia.
Increased EATV is strongly associated with coronary atherosclerosis in men.
PMCID: PMC3489699  PMID: 22963346
Atherosclerosis; Gender difference; Epicardial adipose tissue; Obesity
5.  Autologous Peripheral Blood-Derived Mononuclear Cells Induced by Erythropoietin Improve Critical Ischemic Limbs 
Annals of Vascular Diseases  2012;5(1):52-60.
Purpose: Efficient and secure collection of CD34+ cells are crucial for the angiogenic therapies. We have developed autologous peripheral blood-mononuclear cell (MNC) transplantation induced by erythropoietin (rhEPO) for critical ischemic limbs.
Methods: Seven patients, including five with arteriosclerosis obliterans, one with Buerger’s disease and one with progressive systemic sclerosis, underwent ten cell therapies. The first administration of rhEPO was performed two weeks before apheresis, and the second administration and blood donation were performed one week before apheresis to activate bone marrow. MNCs including CD34+ cells, isolated from peripheral blood by apheresis, were immediately injected intramuscularly into ischemic limbs.
Results: The number of peripheral blood-CD34 + cells had significantly increased from 1.32 ± 0.83/microL, before the rhEPO induction, to 1.86 ± 0.94/microL, before the apheresis. The number of transplanted MNCs ranged between 0.5 × 109 and 16.5 × 109, and that of CD34+ cells, between 0.1 × 106 and 12.7 × 106, accounting for 0.02%–0.1% of MNCs. There were no serious complications. Finger ulcers with Buerger’s disease were significantly improved one month after the transplantations, but the same or other ulcer(s) appeared 2–6 months later. Three patients had an improvement in rest pain, and one patient extended maximum pain-free walking distance.
Conclusions: Erythropoietin-induced autologous peripheral blood-MNC transplantation is a useful and safe alternative for ischemic limbs.
PMCID: PMC3595914  PMID: 23555486
Keywordserythropoietin; angiogenesis; autologous peripheral blood-derived mononuclear cell transplantation; critical ischemic limbs
6.  Strain-dependent embryonic lethality and exaggerated vascular remodeling in heparin cofactor II–deficient mice 
Journal of Clinical Investigation  2007;117(6):1514-1526.
Heparin cofactor II (HCII) specifically inhibits thrombin action at sites of injured arterial wall, and patients with HCII deficiency exhibit advanced atherosclerosis. However, the in vivo effects and the molecular mechanism underlying the action of HCII during vascular remodeling remain elusive. To clarify the role of HCII in vascular remodeling, we generated HCII-deficient mice by gene targeting. In contrast to a previous report, HCII–/– mice were embryonically lethal. In HCII+/– mice, prominent intimal hyperplasia with increased cellular proliferation was observed after tube cuff and wire vascular injury. The number of protease-activated receptor–1–positive (PAR-1–positive) cells was increased in the thickened vascular wall of HCII+/– mice, suggesting enhanced thrombin action in this region. Cuff injury also increased the expression levels of inflammatory cytokines and chemokines in the vascular wall of HCII+/– mice. The intimal hyperplasia in HCII+/– mice with vascular injury was abrogated by human HCII supplementation. Furthermore, HCII deficiency caused acceleration of aortic plaque formation with increased PAR-1 expression and oxidative stress in apoE-KO mice. These results demonstrate that HCII protects against thrombin-induced remodeling of an injured vascular wall by inhibiting thrombin action and suggest that HCII is potentially therapeutic against atherosclerosis without causing coagulatory disturbance.
PMCID: PMC1878511  PMID: 17549254
8.  CD14 Is Expressed and Released as Soluble CD14 by Human Intestinal Epithelial Cells In Vitro: Lipopolysaccharide Activation of Epithelial Cells Revisited 
Infection and Immunity  2001;69(6):3772-3781.
Human endothelial as well as epithelial cells were shown to respond to lipopolysaccharides (LPSs). However, the expression and release of CD14 by these so-called CD14-negative cells have not been studied in detail. We investigated three human intestinal epithelial cell lines (ECLs), SW-480, HT-29, and Caco-2, for their expression of CD14 and CD11c/CD18 as well as their responsiveness to endotoxins. Fluorescence-activated cell sorter analysis revealed no expression of CD11c/CD18, but there was low expression of membrane-bound CD14 on HT-29, Caco-2, and SW-480 ECLs. Both Western blotting and reverse transcription-PCR confirmed the CD14 positivity of all three intestinal ECLs. No substantial modulation of CD14 expression was achieved after 6, 8, 18, 24, and 48 h of cultivation with 10-fold serial dilutions of LPS ranging from 0.01 ng/ml to 100 μg/ml. Interestingly, soluble CD14 was found in the tissue culture supernatants of all three ECLs. Finally, only HT-29 and SW-480, and not Caco-2, cells responded to LPS exposure (range, 0.01 ng/ml to 100 μg/ml) by interleukin 8 release. Thus, we show that HT-29, SW-480, and Caco-2 human intestinal ECLs express membrane-bound CD14. As Caco-2 cells did not respond to LPS, these cell lines might be an interesting model for studying the receptor complex for LPS. The fact that human intestinal epithelial cells are capable not only of expression but also of release of soluble CD14 may have important implications in vivo, e.g., in shaping the interaction between the mucosal immune system and bacteria in the gut and/or in the pathogenesis of endotoxin shock.
PMCID: PMC98389  PMID: 11349042

Results 1-8 (8)