Search tips
Search criteria

Results 1-8 (8)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
author:("Chan, koos-Ho")
1.  Continuation of Dabigatran Therapy in “Real-World” Practice in Hong Kong 
PLoS ONE  2014;9(8):e101245.
Dabigatran, an oral direct thrombin inhibitor, possesses several advantages over warfarin that can in principle simplify the management of stroke prevention in atrial fibrillation (AF). Nonetheless it remains unclear whether these advantages can translate to clinical practice and encourage long-term therapy. The objective was to describe long-term dabigatran therapy for stroke prevention in AF and to identify risk factors for discontinuation of therapy.
Methods and Results
We studied 467 consecutive Chinese patients (72±11 years, male: 53.8%) with a mean CHA2DS2-VASc score of 3.6 prescribed dabigatran for stroke prevention in AF from March 2010 to September 2013. Over a mean follow-up of 16 months, 101 patients (21.6%) permanently discontinued dabigatran. The mean time-to-discontinuation was 8 months. The most common reason for discontinuation was dyspepsia (30.7%), followed by other adverse events (17.8%) such as minor bleeding (8.9%), major gastrointestinal bleeding (7.9%), and intracranial hemorrhage (1%). Other reasons included dosing frequency (5.9%), fear of side effects (4.0%), lack of laboratory monitoring (1.0%), and cost (1.0%). Multivariable analysis revealed that low baseline estimated glomerular filtration rate (p = 0.02), absence of hypertension (p = 0.01), and prior use of a proton-pump inhibitor (p = 0.02) and H2-receptor blocker (p = 0.01) were independent predictors of drug discontinuation. In addition, there were altogether 9 ischemic strokes (1.5%/years), 3 intracranial hemorrhages (0.5%/year), and 24 major gastrointestinal bleedings (4.1%/year).
Dabigatran discontinuation is very common amongst Chinese AF patients. This reveals a management gap in the prevention of stroke in AF.
PMCID: PMC4118845  PMID: 25084117
2.  Stroke Patients with a Past History of Cancer Are at Increased Risk of Recurrent Stroke and Cardiovascular Mortality 
PLoS ONE  2014;9(2):e88283.
Background and Purpose
Cancer patients are at increased risk of cardiovascular and cerebrovascular events. It is unclear whether cancer confers any additional risk for recurrent stroke or cardiovascular mortality after stroke.
This was a single center, observational study of 1,105 consecutive Chinese ischemic stroke patients recruited from a large stroke rehabilitation unit based in Hong Kong. We sought to determine whether patients with cancer are at higher risk of recurrent stroke and cardiovascular mortality.
Amongst 1,105 patients, 58 patients (5.2%) had cancer, of whom 74% were in remission. After a mean follow-up of 76±18 months, 241 patients developed a recurrent stroke: 22 in patients with cancer (38%, annual incidence 13.94%/year), substantially more than those without cancer (21%, 4.65%/year) (p<0.01). In a Cox regression model, cancer, age and atrial fibrillation were the 3 independent predictors of recurrent stroke with a hazard ratio (HR) of 2.42 (95% confidence interval (CI): 1.54–3.80), 1.01 (1.00–1.03) and 1.35 (1.01–1.82) respectively. Likewise, patients with cancer had a higher cardiovascular mortality compared with those without cancer (4.30%/year vs. 2.35%/year, p = 0.08). In Cox regression analysis, cancer (HR: 2.08, 95% CI: 1.08–4.02), age (HR: 1.04, 95% CI 1.02–1.06), heart failure (HR: 3.06, 95% CI 1.72–5.47) and significant carotid atherosclerosis (HR: 1.55, 95% CI 1.02–2.36) were independent predictors for cardiovascular mortality.
Stroke patients with a past history of cancer are at increased risk of recurrent stroke and cardiovascular mortality.
PMCID: PMC3921146  PMID: 24523883
3.  Adiponectin is Protective against Oxidative Stress Induced Cytotoxicity in Amyloid-Beta Neurotoxicity 
PLoS ONE  2012;7(12):e52354.
Beta-amyloid (Aβ ) neurotoxicity is important in Alzheimer’s disease (AD) pathogenesis. Aβ neurotoxicity causes oxidative stress, inflammation and mitochondrial damage resulting in neuronal degeneration and death. Oxidative stress, inflammation and mitochondrial failure are also pathophysiological mechanisms of type 2 diabetes (T2DM) which is characterized by insulin resistance. Interestingly, T2DM increases risk to develop AD which is associated with reduced neuronal insulin sensitivity (central insulin resistance). We studied the potential protective effect of adiponectin (an adipokine with insulin-sensitizing, anti-inflammatory and anti-oxidant properties) against Aβ neurotoxicity in human neuroblastoma cells (SH-SY5Y) transfected with the Swedish amyloid precursor protein (Sw-APP) mutant, which overproduced Aβ with abnormal intracellular Aβ accumulation. Cytotoxicity was measured by assay for lactate dehydrogenase (LDH) released upon cell death and lysis. Our results revealed that Sw-APP transfected SH-SY5Y cells expressed both adiponectin receptor 1 and 2, and had increased AMP-activated protein kinase (AMPK) activation and enhanced nuclear factor-kappa B (NF-κB) activation compared to control empty-vector transfected SH-SY5Y cells. Importantly, adiponectin at physiological concentration of 10 µg/ml protected Sw-APP transfected SH-SY5Y cells against cytotoxicity under oxidative stress induced by hydrogen peroxide. This neuroprotective action of adiponectin against Aβ neurotoxicity-induced cytotoxicity under oxidative stress involved 1) AMPK activation mediated via the endosomal adaptor protein APPL1 (adaptor protein with phosphotyrosine binding, pleckstrin homology domains and leucine zipper motif) and possibly 2) suppression of NF-κB activation. This raises the possibility of novel therapies for AD such as adiponectin receptor agonists.
PMCID: PMC3531475  PMID: 23300647
4.  Prognostic implications of surrogate markers of atherosclerosis in low to intermediate risk patients with Type 2 Diabetes 
Type 2 diabetes mellitus (T2DM) patients are at increased risk of developing cardiovascular events. Unfortunately traditional risk assessment scores, including the Framingham Risk Score (FRS), have only modest accuracy in cardiovascular risk prediction in these patients.
We sought to determine the prognostic values of different non-invasive markers of atherosclerosis, including brachial artery endothelial function, carotid artery atheroma burden, ankle-brachial index, arterial stiffness and computed tomography coronary artery calcium score (CACS) in 151 T2DM Chinese patients that were identified low-intermediate risk from the FRS recalibrated for Chinese (<20% risk in 10 years). Patients were prospectively followed-up and presence of atherosclerotic events documented for a mean duration of 61 ± 16 months.
A total of 17 atherosclerotic events in 16 patients (11%) occurred during the follow-up period. The mean FRS of the study population was 5.0 ± 4.6% and area under curve (AUC) from receiver operating characteristic curve analysis for prediction of atherosclerotic events was 0.59 ± 0.07 (P = 0.21). Among different vascular assessments, CACS > 40 had the best prognostic value (AUC 0.81 ± 0.06, P < 0.01) and offered significantly better accuracy in prediction compared with FRS (P = 0.038 for AUC comparisons). Combination of FRS with CACS or other surrogate vascular markers did not further improve the prognostic values over CACS alone. Multivariate Cox regression analysis identified CACS > 40 as an independent predictor of atherosclerotic events in T2DM patients (Hazards Ratio 27.11, 95% Confidence Interval 3.36-218.81, P = 0.002).
In T2DM patients identified as low-intermediate risk by the FRS, a raised CACS > 40 was an independent predictor for atherosclerotic events.
PMCID: PMC3444371  PMID: 22900680
Vascular markers of atherosclerosis; Type 2 diabetes mellitus
5.  Human neuronal uncoupling proteins 4 and 5 (UCP4 and UCP5): structural properties, regulation, and physiological role in protection against oxidative stress and mitochondrial dysfunction 
Brain and Behavior  2012;2(4):468-478.
Uncoupling proteins (UCPs) belong to a large family of mitochondrial solute carriers 25 (SLC25s) localized at the inner mitochondrial membrane. UCPs transport protons directly from the intermembrane space to the matrix. Of five structural homologues (UCP1 to 5), UCP4 and 5 are principally expressed in the central nervous system (CNS). Neurons derived their energy in the form of ATP that is generated through oxidative phosphorylation carried out by five multiprotein complexes (Complexes I–V) embedded in the inner mitochondrial membrane. In oxidative phosphorylation, the flow of electrons generated by the oxidation of substrates through the electron transport chain to molecular oxygen at Complex IV leads to the transport of protons from the matrix to the intermembrane space by Complex I, III, and IV. This movement of protons to the intermembrane space generates a proton gradient (mitochondrial membrane potential; MMP) across the inner membrane. Complex V (ATP synthase) uses this MMP to drive the conversion of ADP to ATP. Some electrons escape to oxygen-forming harmful reactive oxygen species (ROS). Proton leakage back to the matrix which bypasses Complex V resulting in a major reduction in ROS formation while having a minimal effect on MMP and hence, ATP synthesis; a process termed “mild uncoupling.” UCPs act to promote this proton leakage as means to prevent excessive build up of MMP and ROS formation. In this review, we discuss the structure and function of mitochondrial UCPs 4 and 5 and factors influencing their expression. Hypotheses concerning the evolution of the two proteins are examined. The protective mechanisms of the two proteins against neurotoxins and their possible role in regulating intracellular calcium movement, particularly with regard to the pathogenesis of Parkinson's disease are discussed.
PMCID: PMC3432969  PMID: 22950050
Energy homeostasis; mitochondrial dysfunction; neurodegeneration; neuroprotection; oxidative stress; uncoupling proteins
6.  Uncoupling Protein-4 (UCP4) Increases ATP Supply by Interacting with Mitochondrial Complex II in Neuroblastoma Cells 
PLoS ONE  2012;7(2):e32810.
Mitochondrial uncoupling protein-4 (UCP4) protects against Complex I deficiency as induced by 1-methyl-4-phenylpyridinium (MPP+), but how UCP4 affects mitochondrial function is unclear. Here we investigated how UCP4 affects mitochondrial bioenergetics in SH-SY5Y cells. Cells stably overexpressing UCP4 exhibited higher oxygen consumption (10.1%, p<0.01), with 20% greater proton leak than vector controls (p<0.01). Increased ATP supply was observed in UCP4-overexpressing cells compared to controls (p<0.05). Although state 4 and state 3 respiration rates of UCP4-overexpressing and control cells were similar, Complex II activity in UCP4-overexpressing cells was 30% higher (p<0.05), associated with protein binding between UCP4 and Complex II, but not that of either Complex I or IV. Mitochondrial ADP consumption by succinate-induced respiration was 26% higher in UCP4-overexpressing cells, with 20% higher ADP:O ratio (p<0.05). ADP/ATP exchange rate was not altered by UCP4 overexpression, as shown by unchanged mitochondrial ADP uptake activity. UCP4 overexpression retained normal mitochondrial morphology in situ, with similar mitochondrial membrane potential compared to controls. Our findings elucidate how UCP4 overexpression increases ATP synthesis by specifically interacting with Complex II. This highlights a unique role of UCP4 as a potential regulatory target to modulate mitochondrial Complex II and ATP output in preserving existing neurons against energy crisis.
PMCID: PMC3303587  PMID: 22427795
7.  Mitochondrial neuronal uncoupling proteins: a target for potential disease-modification in Parkinson's disease 
This review gives a brief insight into the role of mitochondrial dysfunction and oxidative stress in the converging pathogenic processes involved in Parkinson's disease (PD). Mitochondria provide cellular energy in the form of ATP via oxidative phosphorylation, but as an integral part of this process, superoxides and other reactive oxygen species are also produced. Excessive free radical production contributes to oxidative stress. Cells have evolved to handle such stress via various endogenous anti-oxidant proteins. One such family of proteins is the mitochondrial uncoupling proteins (UCPs), which are anion carriers located in the mitochondrial inner membrane. There are five known homologues (UCP1 to 5), of which UCP4 and 5 are predominantly expressed in neural cells. In a series of previous publications, we have shown how these neuronal UCPs respond to 1-methyl-4-phenylpyridinium (MPP+; toxic metabolite of MPTP) and dopamine-induced toxicity to alleviate neuronal cell death by preserving ATP levels and mitochondrial membrane potential, and reducing oxidative stress. We also showed how their expression can be influenced by nuclear factor kappa-B (NF-κB) signaling pathway specifically in UCP4. Furthermore, we previously reported an interesting link between PD and metabolic processes through the protective effects of leptin (hormone produced by adipocytes) acting via UCP2 against MPP+-induced toxicity. There is increasing evidence that these endogenous neuronal UCPs can play a vital role to protect neurons against various pathogenic stresses including those associated with PD. Their expression, which can be induced, may well be a potential therapeutic target for various drugs to alleviate the harmful effects of pathogenic processes in PD and hence modify the progression of this disease.
PMCID: PMC3506996  PMID: 23210978
uncoupling proteins; mitochondria; Parkinson's disease; ATP; oxidative stress; neuroprotection
8.  Mitochondrial Uncoupling Protein-2 (UCP2) Mediates Leptin Protection Against MPP+ Toxicity in Neuronal Cells 
Neurotoxicity Research  2009;17(4):332-343.
Mitochondrial dysfunction is involved in the pathogenesis of neurodegenerative diseases, including Parkinson’s disease (PD). Uncoupling proteins (UCPs) delink ATP production from biofuel oxidation in mitochondria to reduce oxidative stress. UCP2 is expressed in brain, and has neuroprotective effects under various toxic insults. We observed induction of UCP2 expression by leptin in neuronal cultures, and hypothesize that leptin may preserve neuronal survival via UCP2. We showed that leptin preserved cell survival in neuronal SH-SY5Y cells against MPP+ toxicity (widely used in experimental Parkinsonian models) by maintaining ATP levels and mitochondrial membrane potential (MMP); these effects were accompanied by increased UCP2 expression. Leptin had no effect in modulating reactive oxygen species levels. Stable knockdown of UCP2 expression reduced ATP levels, and abolished leptin protection against MPP+-induced mitochondrial depolarization, ATP deficiency, and cell death, indicating that UCP2 is critical in mediating these neuroprotective effects of leptin against MPP+ toxicity. Interestingly, UCP2 knockdown increased UCP4 expression, but not of UCP5. Our findings show that leptin preserves cell survival by maintaining MMP and ATP levels mediated through UCP2 in MPP+-induced toxicity.
PMCID: PMC2946553  PMID: 19763737
Uncoupling protein; UCP2; Leptin; Mitochondrial dysfunction; MPP+; Parkinson’s disease

Results 1-8 (8)