Search tips
Search criteria

Results 1-4 (4)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Fluorescent Advanced Glycation End Products and Their Soluble Receptor: The Birth of New Plasmatic Biomarkers for Risk Stratification of Acute Coronary Syndrome 
PLoS ONE  2013;8(9):e74302.
Advanced glycation end products (AGEs) have pathophysiological implications in cardiovascular diseases. The aim of our study was to evaluate the prognostic value of fluorescent AGEs and its soluble receptor (sRAGE) in the context of acute coronary syndrome (ACS), both in-hospital phase and follow-up period.
A prospective clinical study was performed in patients with debut’s ACS. The endpoints were the development of cardiac events (cardiac deaths, re-infarction and new-onset heart failure) during in-hospital phase and follow-up period (366 days, inter-quartile range: 273–519 days). 215 consecutive ACS patients admitted to the coronary care unit (62.7±13.0 years, 24.2% female) were included. 47.4% had a diagnosis of ST segment elevation myocardial infarction. AGEs and sRAGE were analysed by fluorescence spectroscopy and competitive ELISA, respectively. Risk scores (GRACE, TIMI, PURSUIT) were calculated retrospectively using prospective data. The complexity of coronary artery disease was evaluated by SYNTAX score.
The mean fluorescent AGEs and sRAGE levels were 57.7±45.1 AU and 1045.4±850.0 pg/mL, respectively. 19 patients presented cardiac events during in-hospital phase and 29 during the follow-up. In-hospital cardiac events were significantly associated with higher sRAGE levels (p = 0.001), but not long-term cardiac events (p = 0.365). Regarding fluorescent AGE the opposite happened. After multivariate analysis correcting by gender, left ventricular ejection fraction, glucose levels, haemoglobin, GRACE and SYNTAX scores, sRAGE was significantly associated with in-hospital prognosis, whereas fluorescent AGEs was significantly associated with long-term prognosis.
We conclude that elevated values of sRAGE are associated with worse in-hospital prognosis, whereas high fluorescent AGE levels are associated with more follow-up events.
PMCID: PMC3772878  PMID: 24058542
2.  Current status of NADPH oxidase research in cardiovascular pharmacology 
The implications of reactive oxygen species in cardiovascular disease have been known for some decades. Rationally, therapeutic antioxidant strategies combating oxidative stress have been developed, but the results of clinical trials have not been as good as expected. Therefore, to move forward in the design of new therapeutic strategies for cardiovascular disease based on prevention of production of reactive oxygen species, steps must be taken on two fronts, ie, comprehension of reduction-oxidation signaling pathways and the pathophysiologic roles of reactive oxygen species, and development of new, less toxic, and more selective nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitors, to clarify both the role of each NADPH oxidase isoform and their utility in clinical practice. In this review, we analyze the value of NADPH oxidase as a therapeutic target for cardiovascular disease and the old and new pharmacologic agents or strategies to prevent NADPH oxidase activity. Some inhibitors and different direct or indirect approaches are available. Regarding direct NADPH oxidase inhibition, the specificity of NADPH oxidase is the focus of current investigations, whereas the chemical structure-activity relationship studies of known inhibitors have provided pharmacophore models with which to search for new molecules. From a general point of view, small-molecule inhibitors are preferred because of their hydrosolubility and oral bioavailability. However, other possibilities are not closed, with peptide inhibitors or monoclonal antibodies against NADPH oxidase isoforms continuing to be under investigation as well as the ongoing search for naturally occurring compounds. Likewise, some different approaches include inhibition of assembly of the NADPH oxidase complex, subcellular translocation, post-transductional modifications, calcium entry/release, electron transfer, and genetic expression. High-throughput screens for any of these activities could provide new inhibitors. All this knowledge and the research presently underway will likely result in development of new drugs for inhibition of NADPH oxidase and application of therapeutic approaches based on their action, for the treatment of cardiovascular disease in the next few years.
PMCID: PMC3750863  PMID: 23983473
nicotinamide adenine dinucleotide phosphate oxidase; NOX; cardiovascular therapeutic targets; inhibitors; pharmacophore models
3.  Predictive value of advanced glycation end products for the development of post-infarction heart failure: a preliminary report 
Since post-infarction heart failure (HF) determines a great morbidity and mortality, and given the physiopathology implications of advanced glycation end products (AGE) in the genesis of myocardial dysfunction, it was intended to analyze the prognostic value of these molecules in order to predict post-infarction HF development.
A prospective clinical study in patients after first acute coronary syndrome was conducted. The follow-up period was consisted in 1 year. In 194 patients consecutively admitted in the coronary unit for myocardial infarct fluorescent AGE levels were measured. The association between glycaemic parameters and the development of post-infarction HF were analyzed in those patients. Finally, we identified the variables with independent predictor value by performing a multivariate analysis of Hazard ratio for Cox regression.
Eleven out of 194 patients (5.6%) developed HF during follow-up (median: 1.0 years [0.8 - 1.5 years]). Even though basal glucose, fructosamine and glycated haemoglobin were significant predictive factors in the univariate analysis, after being adjusted by confounding variables and AGE they lost their statistical signification. Only AGE (Hazard Ratio 1.016, IC 95%: 1.006-1.026; p<0,001), together with NT-proBNP and the infarct extension were predictors for post-infarction HF development, where AGE levels over the median value 5-fold increased the risk of HF development during follow-up.
AGE are an independent marker of post-infarction HF development risk.
PMCID: PMC3489693  PMID: 22909322
Advanced glycation end products; Heart failure; Myocardial infarct; Ventricular remodelling; Diabetes mellitus
4.  Study of the mechanisms involved in the vasorelaxation induced by (−)-epigallocatechin-3-gallate in rat aorta 
British Journal of Pharmacology  2005;147(3):269-280.
This study investigated several mechanisms involved in the vasorelaxant effects of (−)-epigallocatechin-3-gallate (EGCG).EGCG (1 μM–1 mM) concentration dependently relaxed, after a transient increase in tension, contractions induced by noradrenaline (NA, 1 μM), high extracellular KCl (60 mM), or phorbol 12-myristate 13-acetate (PMA, 1 μM) in intact rat aortic rings. In a Ca2+-free solution, EGCG (1 μM–1 mM) relaxed 1 μM PMA-induced contractions, without previous transient contraction. However, EGCG (1 μM–1 mM) did not affect the 1 μM okadaic acid-induced contractions. Removal of endothelium and/or pretreatment with glibenclamide (10 μM), tetraethylammonium (2 mM) or charybdotoxin (100 nM) plus apamin (500 nM) did not modify the vasorelaxant effects of EGCG. In addition, EGCG noncompetitively antagonized the contractions induced by NA (in 1.5 mM Ca2+-containing solution) and Ca2+ (in depolarizing Ca2+-free high KCl 60 mM solution).In rat aortic smooth muscle cells (RASMC), EGCG (100 μM) reduced increases in cytosolic free Ca2+ concentration ([Ca2+]i) induced by angiotensin II (ANG II, 100 nM) and KCl (60 mM) in 1.5 mM CaCl2-containing solution and by ANG II (100 nM) in the absence of extracellular Ca2+.In RASMC, EGCG (100 μM) did not modify basal generation of cAMP or cGMP, but significantly reversed the inhibitory effects of NA (1 μM) and high KCl (60 mM) on cAMP and cGMP production.EGCG inhibited the enzymatic activity of all the cyclic nucleotide PDE isoenzymes present in vascular tissue, being more effective on PDE2 (IC50∼17) and on PDE1 (IC50∼25).Our results suggest that the vasorelaxant effects of EGCG in rat aorta are mediated, at least in part, by an inhibition of PDE activity, and the subsequent increase in cyclic nucleotide levels in RASMC, which, in turn, can reduce agonist- or high KCl concentration-induced increases in [Ca2+]i.
PMCID: PMC1751301  PMID: 16299547
(−)-Epigallocatechin-3-gallate; cyclic nucleotide PDE; cAMP; cGMP; cytosolic free Ca2+ concentration; fura-2; rat aorta; vascular smooth muscle cells; vasorelaxation

Results 1-4 (4)