PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (63)
 

Clipboard (0)
None

Select a Filter Below

Year of Publication
1.  Enhanced FASP (eFASP) to Increase Proteome Coverage and Sample Recovery for Quantitative Proteomic Experiments 
Journal of Proteome Research  2014;13(4):1885-1895.
The integrity of quantitative proteomic experiments depends on the reliability and the robustness of the protein extraction, solubilization, and digestion methods utilized. Combinations of detergents, chaotropes, and mechanical disruption can yield successful protein preparations; however, the methods subsequently required to eliminate these added contaminants, in addition to the salts, nucleic acids, and lipids already in the sample, can result in significant sample losses and incomplete contaminant removal. A recently introduced method for proteomic sample preparation, filter-aided sample preparation (FASP), cleverly circumvents many of the challenges associated with traditional protein purification methods but is associated with significant sample loss. Presented here is an enhanced FASP (eFASP) approach that incorporates alternative reagents to those of traditional FASP, improving sensitivity, recovery, and proteomic coverage for processed samples. The substitution of 0.2% deoxycholic acid for urea during eFASP digestion increases tryptic digestion efficiency for both cytosolic and membrane proteins yet obviates needed cleanup steps associated with use of the deoxycholate sodium salt. For classic FASP, prepassivating Microcon filter surfaces with 5% TWEEN-20 reduces peptide loss by 300%. An express eFASP method uses tris(2-carboxyethyl)phosphine and 4-vinylpyridine to alkylate proteins prior to deposition on the Microcon filter, increasing alkylation specificity and speeding processing.
doi:10.1021/pr4010019
PMCID: PMC3993969  PMID: 24552128
filter-aided sample preparation; quantitative proteomics; detergent; ammonium deoxycholate; MSE
2.  Native Top-Down ESI-MS of 158 kDa Protein Complex by High Resolution Fourier Transform Ion Cyclotron Resonance Mass Spectrometry 
Analytical chemistry  2013;86(1):317-320.
Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) delivers high resolving power, mass measurement accuracy, and the capabilities for unambiguously sequencing by a top-down MS approach. Here, we report isotopic resolution of a 158 kDa protein complex - tetrameric aldolase with an average absolute deviation of 0.36 ppm and an average resolving power of ~520,000 at m/z 6033 for the 26+ charge state in magnitude mode. Phase correction further improves the resolving power and average absolute deviation by 1.3 fold. Furthermore, native top-down electron capture dissociation (ECD) enables the sequencing of 149 C-terminal amino acid (AA) residues out of 463 total AAs. Combining the data from top-down MS of native and denatured aldolase complexes, a total of 58% of the backbone cleavages efficiency is achieved. The observation of complementary product ion pairs confirms the correctness of the sequence and also the accuracy of the mass fitting of the isotopic distribution of the aldolase tetramer. Top-down MS of the native protein provides complementary sequence information to top-down ECD and CAD MS of the denatured protein. Moreover, native top-down ECD of aldolase tetramer reveals that ECD fragmentation is not limited only to the flexible regions of protein complexes and that regions located on the surface topology are prone to ECD cleavage.
doi:10.1021/ac4033214
PMCID: PMC3908771  PMID: 24313806
3.  Decoy Plasminogen Receptor Containing a Selective Kunitz-Inhibitory Domain 
Biochemistry  2014;53(3):505-517.
Kunitz domain 1 (KD1) of tissue factor pathway inhibitor-2 in which P2′ residue Leu17 (bovine pancreatic trypsin inhibitor numbering) is mutated to Arg selectively inhibits the active site of plasmin with ∼5-fold improved affinity. Thrombin cleavage (24 h extended incubation at a 1:50 enzyme-to-substrate ratio) of the KD1 mutant (Leu17Arg) yielded a smaller molecule containing the intact Kunitz domain with no detectable change in the active-site inhibitory function. The N-terminal sequencing and MALDI-TOF/ESI data revealed that the starting molecule has a C-terminal valine (KD1L17R-VT), whereas the smaller molecule has a C-terminal lysine (KD1L17R-KT). Because KD1L17R-KT has C-terminal lysine, we examined whether it could serve as a decoy receptor for plasminogen/plasmin. Such a molecule might inhibit plasminogen activation as well as the active site of generated plasmin. In surface plasmon resonance experiments, tissue plasminogen activator (tPA) and Glu-plasminogen bound to KD1L17R-KT (Kd ∼ 0.2 to 0.3 μM) but not to KD1L17R-VT. Furthermore, KD1L17R-KT inhibited tPA-induced plasma clot fibrinolysis more efficiently than KD1L17R-VT. Additionally, compared to ε-aminocaproic acid KD1L17R-KT was more effective in reducing blood loss in a mouse liver-laceration injury model, where the fibrinolytic system is activated. In further experiments, the micro(μ)-plasmin–KD1L17R-KT complex inhibited urokinase-induced plasminogen activation on phorbol-12-myristate-13-acetate-stimulated U937 monocyte-like cells, whereas the μ-plasmin–KD1L17R-VT complex failed to inhibit this process. In conclusion, KD1L17R-KT inhibits the active site of plasmin as well as acts as a decoy receptor for the kringle domain(s) of plasminogen/plasmin; hence, it limits both plasmin generation and activity. With its dual function, KD1L17R-KT could serve as a preferred agent for controlling plasminogen activation in pathological processes.
doi:10.1021/bi401584b
PMCID: PMC3985851  PMID: 24383758
4.  Measuring Protein-Ligand Interactions Using Liquid Sample Desorption Electrospray Ionization Mass Spectrometry 
Analytical chemistry  2013;85(24):11966-11972.
We have shown previously that liquid sample desorption electrospray ionization-mass spectrometry (DESI-MS) is able to measure large proteins and noncovalently-bound protein complexes (to 150 kDa) (Ferguson et al., Anal. Chem. 2011, 83, 6468-6473). In this study, we further investigate the application of liquid sample DESI-MS to probe protein-ligand interactions. Liquid sample DESI allows the direct formation of intact protein-ligand complex ions by spraying ligands toward separate protein sample solutions. This type of “reactive” DESI methodology can provide rapid information on binding stiochiometry, selectivity, and kinetics, as demonstrated by the binding of ribonuclease A (RNaseA, 13.7 kDa) with cytidine nucleotide ligands and the binding of lysozyme (14.3 kDa) with acetyl chitose ligands. A higher throughput method for ligand screening by liquid sample DESI was demonstrated, in which different ligands were sequentially injected as a segmented flow for DESI ionization. Furthermore, supercharging to enhance analyte charge can be integrated with liquid sample DESI-MS without interfering with the formation of protein-ligand complexes.
doi:10.1021/ac402906d
PMCID: PMC3901310  PMID: 24237005
Desorption electrospray ionization; mass spectrometry; noncovalent protein-ligand complexes; ligand screening; supercharging
5.  Mass Spectrometry-Based Tissue Imaging of Small Molecules 
Mass spectrometry imaging (MSI) of tissue samples is a promising analytical tool that has quickly become associated with biomedical and pharmacokinetic studies. It eliminates several labor-intensive protocols associated with more classical imaging techniques, and provides accurate, histological data at a rapid pace. Because mass spectrometry is used as the readout, MSI can be applied to almost any molecule, especially those that are biologically relevant. Many examples of its utility in the study of peptides and proteins have been reported; here we discuss its value in the mass range of small molecules. We explore its success and potential in the analysis of lipids, medicinals, and metal-based compounds by featuring representative studies from mass spectrometry imaging laboratories around the globe.
doi:10.1007/978-3-319-06068-2_12
PMCID: PMC4183127  PMID: 24952187
6.  Protein Complexes: Breaking Up is Hard to Do Well 
Structure (London, England : 1993)  2013;21(8):1265-1266.
Mass spectrometry of protein assemblies reveals size and stoichiometry. In this issue of Structure, Hall et al. (2013) demonstrate that gas-phase dissociations can recapitulate solution structure for complexes with few intersubunit salt bridges, high charge density, inflexible subunits, or small intersubunit interfaces.
doi:10.1016/j.str.2013.07.013
PMCID: PMC3775335  PMID: 23931137
7.  Cofilin-Induced Changes in F-Actin Detected via Cross-Linking with Benzophenone-4-maleimide 
Biochemistry  2013;52(32):5503-5509.
Cofilin is a member of the actin depolymerizing factor (ADF)/cofilin family of proteins. It plays a key role in actin dynamics by promoting disassembly and assembly of actin filaments. Upon its binding, cofilin has been shown to bridge two adjacent protomers in filamentous actin (F-actin) and promote the displacement and disordering of subdomain 2 of actin. Here, we present evidence for cofilin promoting a new structural change in the actin filament, as detected via a switch in cross-linking sites. Benzophenone-4-maleimide, which normally forms intramolecular cross-linking in F-actin, cross-links F-actin intermolecularly upon cofilin binding. We mapped the cross-linking sites and found that in the absence of cofilin intramolecular cross-linking occurred between residues Cys374 and Asp11. In contrast, cofilin shifts the cross-linking by this reagent to intermolecular, between residue Cys374, located within subdomain 1 of the upper protomer, and Met44, located in subdomain 2 of the lower protomer. The intermolecular cross-linking of F-actin slows the rate of cofilin dissociation from the filaments and decreases the effect of ionic strength on cofilin−actin binding. These results are consistent with a significant role of filament flexibility in cofilin−actin interactions.
doi:10.1021/bi400715z
PMCID: PMC4017919  PMID: 23862734
8.  A Conserved START Domain Coenzyme Q-binding Polypeptide is Required for Efficient Q Biosynthesis, Respiratory Electron Transport, and Antioxidant Function in Saccharomyces cerevisiae 
Biochimica et biophysica acta  2012;1831(4):776-791.
Coenzyme Qn (ubiquinone or Qn) is a redox active lipid composed of a fully substituted benzoquinone ring and a polyisoprenoid tail of n isoprene units. Saccharomyces cerevisiae coq1-coq9 mutants have defects in Q biosynthesis, lack Q6, are respiratory defective, and sensitive to stress imposed by polyunsaturated fatty acids. The hallmark phenotype of the Q-less yeast coq mutants is that respiration in isolated mitochondria can be rescued by the addition of Q2, a soluble Q analog. Yeast coq10 mutants share each of these phenotypes, with the surprising exception that they continue to produce Q6. Structure determination of the Caulobacter crescentus Coq10 homolog (CC1736) revealed a steroidogenic acute regulatory protein-related lipid transfer (START) domain, a hydrophobic tunnel known to bind specific lipids in other START domain family members. Here we show that purified CC1736 binds Q2, Q3, Q10, or demethoxy-Q3 in an equimolar ratio, but fails to bind 3-farnesyl-4-hydroxybenzoic acid, a farnesylated analog of an early Q-intermediate. Over-expression of C. crescentus CC1736 or COQ8 restores respiratory electron transport and antioxidant function of Q6 in the yeast coq10 null mutant. Studies with stable isotope ring precursors of Q reveal that early Q-biosynthetic intermediates accumulate in the coq10 mutant and de novo Q-biosynthesis is less efficient than in the wild-type yeast or rescued coq10 mutant. The results suggest that the Coq10 polypeptide:Q (protein:ligand) complex may serve essential functions in facilitating de novo Q biosynthesis and in delivering newly synthesized Q to one or more complexes of the respiratory electron transport chain.
doi:10.1016/j.bbalip.2012.12.007
PMCID: PMC3909687  PMID: 23270816
Ubiquinone; yeast mitochondria; lipid binding; steroidogenic acute regulatory protein; respiratory electron transport; lipid autoxidation
9.  Addressing the needs of traumatic brain injury with clinical proteomics 
Clinical proteomics  2014;11(1):11.
Background
Neurotrauma or injuries to the central nervous system (CNS) are a serious public health problem worldwide. Approximately 75% of all traumatic brain injuries (TBIs) are concussions or other mild TBI (mTBI) forms. Evaluation of concussion injury today is limited to an assessment of behavioral symptoms, often with delay and subject to motivation. Hence, there is an urgent need for an accurate chemical measure in biofluids to serve as a diagnostic tool for invisible brain wounds, to monitor severe patient trajectories, and to predict survival chances. Although a number of neurotrauma marker candidates have been reported, the broad spectrum of TBI limits the significance of small cohort studies. Specificity and sensitivity issues compound the development of a conclusive diagnostic assay, especially for concussion patients. Thus, the neurotrauma field currently has no diagnostic biofluid test in clinical use.
Content
We discuss the challenges of discovering new and validating identified neurotrauma marker candidates using proteomics-based strategies, including targeting, selection strategies and the application of mass spectrometry (MS) technologies and their potential impact to the neurotrauma field.
Summary
Many studies use TBI marker candidates based on literature reports, yet progress in genomics and proteomics have started to provide neurotrauma protein profiles. Choosing meaningful marker candidates from such ‘long lists’ is still pending, as only few can be taken through the process of preclinical verification and large scale translational validation. Quantitative mass spectrometry targeting specific molecules rather than random sampling of the whole proteome, e.g., multiple reaction monitoring (MRM), offers an efficient and effective means to multiplex the measurement of several candidates in patient samples, thereby omitting the need for antibodies prior to clinical assay design. Sample preparation challenges specific to TBI are addressed. A tailored selection strategy combined with a multiplex screening approach is helping to arrive at diagnostically suitable candidates for clinical assay development. A surrogate marker test will be instrumental for critical decisions of TBI patient care and protection of concussion victims from repeated exposures that could result in lasting neurological deficits.
doi:10.1186/1559-0275-11-11
PMCID: PMC3976360  PMID: 24678615
Traumatic brain injury; Biomarker; Clinical proteomics; Mass spectrometry; Multiple reaction monitoring
10.  Investigation of stable and transient protein-protein interactions: past, present and future 
Proteomics  2013;13(0):10.1002/pmic.201200328.
This article presents an overview of the literature and a review of recent advances in the analysis of stable and transient protein-protein interactions (PPIs) with a focus on their function within cells, organs and organisms. The significance of post-translational modifications within the PPIs is also discussed. We focus on methods to study PPIs and methods of detecting PPIs, with particular emphasis on electrophoresis-based and mass spectrometry (MS)-based investigation of PPIs, including specific examples. The validation of PPIs is emphasized and the limitations of the current methods for studying stable and transient PPIs are discussed. Perspectives regarding PPIs, with focus on bioinformatics and transient PPIs are also provided.
doi:10.1002/pmic.201200328
PMCID: PMC3813600  PMID: 23193082
Protein-protein interactions; electrophoresis; mass spectrometry; proteomics; bioinformatics
11.  Thermal-stable proteins of fruit of long-living Sacred Lotus Nelumbo nucifera Gaertn var. China Antique 
Tropical plant biology  2013;6(2-3):10.1007/s12042-013-9124-2.
Single-seeded fruit of the sacred lotus Nelumbo nucifera Gaertn var. China Antique from NE China have viability as long as ~1300 years determined by direct radiocarbon-dating, having a germination rate of 84%. The pericarp, a fruit tissue that encloses the single seeds of Nelumbo, is considered one of the major factors that contribute to fruit longevity. Proteins that are heat stable and have protective function may be equally important to seed viability. We show proteins of Nelumbo fruit that are able to withstand heating, 31% of which remained soluble in the 110°C-treated embryo-axis of a 549-yr-old fruit and 76% retained fluidity in its cotyledons. Genome of Nelumbo is published. The amino-acid sequences of 11 “thermal proteins” (soluble at 100°C) of modern Nelumbo embryo-axes and cotyledons, identified by mass spectrometry, Western blot and bioassay, are assembled and aligned with those of an archaeal-hyperthermophile Methancaldococcus jannaschii (Mj; an anaerobic methanogen having a growth optimum of 85°C) and with five mesophile angiosperms. These thermal proteins have roles in protection and repair under stress. More than half of the Nelumbo thermal proteins (55%) are present in the archaean Mj, indicating their long-term durability and history. One Nelumbo protein-repair enzyme exhibits activity at 100°C, having a higher heat-tolerance than that of Arabidopsis. A list of 30 sequenced but unassembled thermal proteins of Nelumbo is supplemented.
doi:10.1007/s12042-013-9124-2
PMCID: PMC3869599  PMID: 24363819
Nelumbo nucifera China Antique; Eleven 100°C-Heat-Soluble Proteins; Hyperthermophile-Mesophile Protein-Alignments; Stress-and-Repair Proteins; 30 Additional Thermal-Proteins
12.  The Heat Shock Protein Inhibitor Quercetin Attenuates Hepatitis C Virus Production 
Hepatology (Baltimore, Md.)  2009;50(6):10.1002/hep.23232.
The hepatitis C viral (HCV) genome is translated through an internal ribosome entry site (IRES) as a single polyprotein precursor that is subsequently cleaved into individual mature viral proteins. Non-structural protein 5A (NS5A) is one of these proteins that has been implicated in regulation of viral genome replication, translation from the viral IRES and viral packaging. We sought to identify cellular proteins that interact with NS5A and determine whether these interactions may play a role in viral production. Mass spectrometric analysis of coimmunoprecipitated NS5A complexes from cell extracts identified heat shock proteins (HSPs) 40 and 70.Weconfirmed anNS5A/HSPinteraction by confocal microscopy demonstrating colocalization of NS5A with HSP40 and with HSP70. Western analysis of coimmunoprecipitated NS5A complexes further confirmed interaction of HSP40 and HSP70 with NS5A.Atransient transfection, luciferase-based, tissue culture IRES assay demonstrated NS5A augmentation of HCV IRES-mediated translation, and small interfering RNA (siRNA)-mediated knockdown of HSP70 reduced this augmentation. Treatment with an inhibitor of HSP synthesis, Quercetin, markedly reduced baseline IRES activity and its augmentation by NS5A. HSP70 knockdown also modestly reduced viral protein accumulation, whereas HSP40 and HSP70 knockdown both reduced infectious viral particle production in an HCV cell culture system using the J6/JFH virus fused to the Renilla luciferase reporter. Treatment with Quercetin reduced infectious particle production at nontoxic concentrations. The marked inhibition of virus production by Quercetin may partially be related to reduction of HSP40 and HSP70 and their potential involvement in IRES translation, as well as viral morphogenesis or secretion.
Conclusion
Quercetin may allow for dissection of the viral life cycle and has potential therapeutic use to reduce virus production with low associated toxicity.
doi:10.1002/hep.23232
PMCID: PMC3846025  PMID: 19839005
13.  A Heparin-Mimicking Polymer Conjugate Stabilizes Basic Fibroblast Growth Factor (bFGF) 
Nature chemistry  2013;5(3):221-227.
Basic fibroblast growth factor (bFGF) plays a crucial role in diverse cellular functions from wound healing to bone regeneration. However, a major obstacle to the widespread application of bFGF is its inherent instability during storage and delivery. Herein, we describe stabilization of bFGF by covalent conjugation of a heparin-mimicking polymer, a copolymer consisting of styrene sulfonate units and methyl methacrylate units bearing poly(ethylene glycol) side chains. The bFGF conjugate of this polymer retained bioactivity after synthesis and was stable to a variety of environmentally and therapeutically relevant stressors such as heat, mild and harsh acidic conditions, storage, and proteolytic degradation, compared to native bFGF. After applied stress, the conjugate was also significantly more active than the control conjugate system where the styrene sulfonate units were omitted from the polymer structure. This research has important implications for the clinical use of bFGF and for stabilization of heparin-binding growth factors in general.
doi:10.1038/nchem.1573
PMCID: PMC3579505  PMID: 23422564
14.  Network Organization of the Huntingtin Proteomic Interactome in Mammalian Brain 
Neuron  2012;75(1):41-57.
SUMMARY
We used affinity-purification mass spectrometry to identify 747 candidate proteins that are complexed with Huntingtin (Htt) in distinct brain regions and ages in Huntington’s disease (HD) and wildtype mouse brains. To gain a systems-level view of the Htt interactome, we applied Weighted Gene Correlation Network Analysis (WGCNA) to the entire proteomic dataset to unveil a verifiable rank of Htt-correlated proteins and a network of Htt-interacting protein modules, with each module highlighting distinct aspects of Htt biology. Importantly, the Htt-containing module is highly enriched with proteins involved in 14-3-3 signaling, microtubule-based transport, and proteostasis. Top-ranked proteins in this module were validated as novel Htt interactors and genetic modifiers in an HD Drosophila model. Together, our study provides a compendium of spatiotemporal Htt-interacting proteins in the mammalian brain, and presents a conceptually novel approach to analyze proteomic interactome datasets to build in vivo protein networks in complex tissues such as the brain.
doi:10.1016/j.neuron.2012.05.024
PMCID: PMC3432264  PMID: 22794259
15.  Click Chemistry Facilitates Formation of Reporter Ions and Simplified Synthesis of Amine-Reactive Multiplexed Isobaric Tags for Protein Quantification 
We report the development of novel reagents for cell-level protein quantification, referred to as Caltech Isobaric Tags (CITs), which offer several advantages in comparison with other isobaric tags (e.g., iTRAQ and TMT). Click chemistry, copper-catalyzed azide-alkyne cycloaddition (CuAAC), is applied to generate a gas-phase cleavable linker suitable for the formation of reporter ions. Upon collisional activation, the 1,2,3-triazole ring constructed by CuAAC participates in a nucleophilic displacement reaction forming a six-membered ring and releasing a stable cationic reporter ion. To investigate its utility in peptide mass spectrometry, the energetics of the observed fragmentation pathway are examined by density functional theory. When this functional group is covalently attached to a target peptide, it is found that the nucleophilic displacement occurs in competition with formation of b- and y-type backbone fragment ions regardless of the amino acid side-chains present in the parent bioconjugate, confirming that calculated reaction energetics of reporter ion formation are similar to those of backbone fragmentations. Based on these results, we apply this selective fragmentation pathway for the development of CIT reagents. For demonstration purposes, duplex CIT reagent is prepared using a single isotope-coded precursor, allyl-d5-bromide, with reporter ions appearing at m/z 164 and 169. Isotope-coded allyl azides for the construction of the reporter ion group can be prepared from halogenated alkyl groups which are also employed for the mass balance group via N-alkylation, reducing the cost and effort for synthesis of isobaric pairs. Owing to their modular designs, an unlimited number of isobaric combinations of CIT reagents are, in principle, possible. The reporter ion mass can be easily tuned to avoid overlapping with common peptide MS/MS fragments as well as the low mass cut-off problems inherent in ion trap mass spectrometers. The applicability of the CIT reagent is tested with several model systems involving protein mixtures and cellular systems.
doi:10.1021/ja2099003
PMCID: PMC3668889  PMID: 22225568
16.  Integrating Native Mass Spectrometry and Top-Down MS for Defining Protein Interactions Important in Biology and Medicine 
Mass Spectrometry  2013;2(Spec Iss):S0013.
Native protein mass spectrometry (MS), the measurement of proteins and protein complexes from non-denaturing solutions, with electrospray ionization (ESI) has utility in the biological sciences. Protein complexes exceeding 1 MDa have been measured by MS and ion mobility spectrometry (IMS), and the data yields information not only regarding size, but structural details can be revealed also. ESI-IMS allows the relative stability of protein–ligand binding to be measured. Top-down MS, the direct dissociation of the intact gas phase biomolecule, can generate sequence and identity information for monomeric (denatured) proteins, and topology information for noncovalent protein complexes. For protein complexes with small molecule ligands, i.e., drugs, cofactors, metals, etc., top-down MS with electron capture dissociation can be used to elucidate the site(s) of ligand binding. Increasing protein ESI charging, e.g., supercharging, enhances the efficiency for dissociation of protein complexes.
doi:10.5702/massspectrometry.S0013
PMCID: PMC3809962  PMID: 24349932
electrospray; protein; top-down; supercharging; hemoglobin; enolase; adenylate kinase
18.  A Novel “Molecular Tweezer” Inhibitor of α-Synuclein Neurotoxicity in Vitro and in Vivo 
Neurotherapeutics  2012;9(2):464-476.
Summary
Aggregation of α-synuclein (α-syn) is implicated as being causative in the pathogenesis of Parkinson’s disease, multiple system atrophy, and dementia with Lewy bodies. Despite several therapies that improve symptoms in these disorders, none slow disease progression. Recently, a novel “molecular tweezer” (MT) termed CLR01 has been described as a potent inhibitor of assembly and toxicity of multiple amyloidogenic proteins. Here we investigated the ability of CLR01 to inhibit assembly and toxicity of α-syn. In vitro, CLR01 inhibited the assembly of α-syn into β-sheet-rich fibrils and caused disaggregation of pre-formed fibrils, as determined by thioflavin T fluorescence and electron microscopy. α-Syn toxicity was studied in cell cultures and was completely mitigated by CLR01 when α-syn was expressed endogenously or added exogenously. To determine if CLR01 was also protective in vivo, we used a novel zebrafish model of α-syn toxicity (α-syn-ZF), which expresses human, wild-type α-syn in neurons. α-Syn-ZF embryos developed severe deformities due to neuronal apoptosis and most of them died within 48 to 72 h. CLR01 added to the water significantly improved zebrafish phenotype and survival, suppressed α-syn aggregation in neurons, and reduced α-syn-induced apoptosis. α-Syn expression was found to inhibit the ubiquitin proteasome system in α-syn-ZF neurons, resulting in further accumulation of α-syn. Treatment with CLR01 almost completely mitigated the proteasome inhibition. The data suggest that CLR01 is a promising therapeutic agent for the treatment of Parkinson’s disease and other synucleinopathies.
Electronic supplementary material
The online version of this article (doi:10.1007/s13311-012-0105-1) contains supplementary material, which is available to authorized users.
doi:10.1007/s13311-012-0105-1
PMCID: PMC3337029  PMID: 22373667
Parkinson’s disease; zebrafish; synucleinopathy; amyloid; neuroprotection
19.  Designer Reagents for Mass Spectrometry-Based Proteomics: Clickable Cross-Linkers for Elucidation of Protein Structures and Interactions 
Analytical Chemistry  2012;84(6):2662-2669.
We present novel homobifunctional amine-reactive clickable cross-linkers (CXLs) for investigation of three-dimensional protein structures and protein-protein interactions (PPIs). CXLs afford consolidated advantages not previously available in a simple cross-linker, including (1) their small size and cationic nature at physiological pH, resulting in good water solubility and cell permeability, (2) an alkyne group for bio-orthogonal conjugation to affinity tags via the click reaction for enrichment of cross-linked peptides, (3) a nucleophilic displacement reaction involving the 1,2,3-triazole ring formed in the click reaction, yielding a lock-mass reporter ion for only clicked peptides, and (4) higher charge states of cross-linked peptides in the gas-phase for augmented electron transfer dissociation (ETD) yields. Ubiquitin, a lysine-abundant protein, is used as a model system to demonstrate structural studies using CXLs. To validate the sensitivity of our approach, biotin-azide labeling and subsequent enrichment of cross-linked peptides are performed for cross-linked ubiquitin digests mixed with yeast cell lysates. Cross-linked peptides are detected and identified by collision induced dissociation (CID) and ETD with linear quadrupole ion trap (LTQ)-Fourier transform ion cyclotron resonance (FTICR) and LTQ-Orbitrap mass spectrometers. The application of CXLs to more complex systems (e.g., in vivo cross-linking) is illustrated by Western blot detection of Cul1 complexes including known binders, Cand1 and Skp2, in HEK 293 cells, confirming good water solubility and cell-permeability.
doi:10.1021/ac202637n
PMCID: PMC3310289  PMID: 22339618
Chemical Cross-linkers; Cross-linked Peptide; Protein Structure; Protein-Protein Interaction; Mass Spectrometry; Copper-Catalyzed Azide-Alkyne Cycloaddition; Reporter Ion
21.  Concomitant Inhibition of HSP90, Its Mitochondrial Localized Homologue TRAP1 and HSP27 by Green Tea in Pancreatic Cancer HPAF-II Cells 
Proteomics  2011;11(24):4638-4647.
Pancreatic cancer is a deadly disease characterized by poor prognosis and patient survival. Green tea polyphenols have been shown to exhibit multiple antitumor activities in various cancers, but studies on the pancreatic cancer are very limited. To identify the cellular targets of green tea action, we exposed a green tea extract (GTE) to human pancreatic ductal adenocarcinoma HPAF-II cells and performed two-dimensional gel electrophoresis of the cell lysates. We identified 32 proteins with significantly altered expression levels. These proteins are involved in drug resistance, gene regulation, motility, detoxification and metabolism of cancer cells. In particular, we found GTE inhibited molecular chaperones heat-shock protein 90 (Hsp90), its mitochondrial localized homologue Hsp75 (tumor necrosis factor receptor-associated protein 1, or Trap1) and heat-shock protein 27 (Hsp27) concomitantly. Western blot analysis confirmed the inhibition of Hsp90, Hsp75 and Hsp27 by GTE, but increased phosphorylation of Ser78 of Hsp27. Furthermore, we showed that GTE inhibited Akt activation and the levels of mutant p53 protein, and induced apoptosis and growth suppression of the cells. Our study has identified multiple new molecular targets of GTE and provided further evidence on the anticancer activity of green tea in pancreatic cancer.
doi:10.1002/pmic.201100242
PMCID: PMC3517060  PMID: 22116673
Green tea; human pancreatic adenocarcinoma HPAF-II cells; Hsp90; Trap1; Hsp27
22.  Lysine-specific molecular tweezers are broad-spectrum inhibitors of assembly and toxicity of amyloid proteins 
Journal of the American Chemical Society  2011;133(42):16958-16969.
Amyloidoses are diseases characterized by abnormal protein folding and self-assembly, for which no cure is available. Inhibition or modulation of abnormal protein self-assembly therefore is an attractive strategy for prevention and treatment of amyloidoses. We examined Lys-specific molecular tweezers and discovered a lead compound termed CLR01, which is capable of inhibiting the aggregation and toxicity of multiple amyloidogenic proteins by binding to Lys residues and disrupting hydrophobic and electrostatic interactions important for nucleation, oligomerization, and fibril elongation. Importantly, CLR01 shows no toxicity at concentrations substantially higher than those needed for inhibition. We used amyloid β-protein (Aβ) to further explore the binding site(s) of CLR01 and the impact of its binding on the assembly process. Mass-spectrometry and solution-state NMR demonstrated binding of CLR01 to the Lys residues in Aβ at the earliest stages of assembly. The resulting complexes were indistinguishable in size and morphology from Aβ oligomers but were non-toxic and were not recognized by the oligomer-specific antibody A11. Thus, CLR01 binds already at the monomer stage and modulates the assembly reaction into formation of non-toxic structures. The data suggest that molecular tweezers are unique, process-specific inhibitors of aberrant protein aggregation and toxicity, which hold promise for developing disease-modifying therapy for amyloidoses.
doi:10.1021/ja206279b
PMCID: PMC3210512  PMID: 21916458
Inhibitor; Protein aggregation; Alzheimer’s disease; Amyloid β-protein; Tau; Islet amyloid polypeptide; Insulin; Calcitonin; β2-microglobulin; Transthyretin; Toxicity
23.  Direct Ionization of Large Proteins and Protein Complexes by Desorption Electrospray Ionization-Mass Spectrometry 
Analytical chemistry  2011;83(17):6468-6473.
Desorption electrospray ionization-mass spectrometry (DESI-MS) has advantages for rapid sample analysis with little or no sample pretreatment, but performance for large biomolecules has not been demonstrated. In this study, liquid sample DESI, an extended version of DESI used for analysis of liquid sample, was shown to have capabilities for direct ionization of large noncovalent protein complexes (>45 kDa) and proteins (up to 150 kDa). Protein complex ions (e.g., superoxide dismutase, enolase, and hemoglobin) desorbed from solution by liquid sample DESI were measured intact, indicating the capability of DESI for preserving weak noncovalent interactions. Doping the DESI spray solvent with supercharging reagents resulted in protein complex ions having increased multiple charging without complex dissociation. Ion mobility measurements of model protein cytochrome c showed that the supercharging reagent favored the more compact conformation for the lower charged protein ions. Liquid sample DESI of hydrophobic peptide gramicidin D suggests that the ionization mechanism involves a droplet pick-up mixing process. Measurement of liquid samples significantly extends the mass range of DESI-MS, allowing the analysis of high-mass proteins such as 150 kDa immunoglobulin G (IgG), and thus represents the largest protein successfully ionized by DESI to date.
doi:10.1021/ac201390w
PMCID: PMC3165113  PMID: 21774530
desorption electrospray ionization; mass spectrometry; noncovalent protein complexes; ion mobility
24.  Characterization of Morphine-Glucose-6-Phosphate Dehydrogenase Conjugates by Mass Spectrometry 
Bioconjugate chemistry  2011;22(8):1595-1604.
A key characteristic of the analyte-reporter enzyme conjugate used in the enzyme-multiplied immunoassay technique (EMIT) is the inhibition of the conjugate enzyme upon anti-analyte antibody binding. Toward understanding the antibody-induced inhibition mechanism, characterization of morphine-glucose-6-phosphate dehydrogenase (G6PDH) conjugates as model EMIT analyte-reporter enzyme conjugates was pursued. Morphine-G6PDH conjugates were prepared by acylating predominantly the primary amines on G6PDH with morphine-3-glucuronide NHS-ester molecules. In this study, morphine-G6PDH conjugates were characterized using a combination of methods including tryptic digestion, immunoprecipitation, matrix-assisted laser desorption/ionization mass spectrometry, and electrospray ionization tandem mass spectrometry. Twenty-six conjugation sites were identified. The identified sites all were found to be primary amines. The degree of conjugation was determined to be less than the number of conjugation sites, suggesting heterogeneity within the morphine-G6PDH conjugate population. Two catalytically important residues in the active site (K22 and K183) were among the identified conjugation sites, explaining at least partially, the cause of activity loss due to the coupling reaction.
doi:10.1021/bc2001352
PMCID: PMC3157545  PMID: 21678975
25.  Identification of the Major Expressed S-Layer and Cell Surface-Layer-Related Proteins in the Model Methanogenic Archaea: Methanosarcina barkeri Fusaro and Methanosarcina acetivorans C2A 
Archaea  2012;2012:873589.
Many archaeal cell envelopes contain a protein coat or sheath composed of one or more surface exposed proteins. These surface layer (S-layer) proteins contribute structural integrity and protect the lipid membrane from environmental challenges. To explore the species diversity of these layers in the Methanosarcinaceae, the major S-layer protein in Methanosarcina barkeri strain Fusaro was identified using proteomics. The Mbar_A1758 gene product was present in multiple forms with apparent sizes of 130, 120, and 100 kDa, consistent with post-translational modifications including signal peptide excision and protein glycosylation. A protein with features related to the surface layer proteins found in Methanosarcina acetivorans C2A and Methanosarcina mazei Goel was identified in the M. barkeri genome. These data reveal a distinct conserved protein signature with features and implied cell surface architecture in the Methanosarcinaceae that is absent in other archaea. Paralogous gene expression patterns in two Methanosarcina species revealed abundant expression of a single S-layer paralog in each strain. Respective promoter elements were identified and shown to be conserved in mRNA coding and upstream untranslated regions. Prior M. acetivorans genome annotations assigned S-layer or surface layer associated roles of eighty genes: however, of 68 examined none was significantly expressed relative to the experimentally determined S-layer gene.
doi:10.1155/2012/873589
PMCID: PMC3361143  PMID: 22666082

Results 1-25 (63)