PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-6 (6)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  X-ray structure of acid-sensing ion channel 1–snake toxin complex reveals open state of a Na+-selective channel 
Cell  2014;156(4):717-729.
Summary
Acid sensing ion channels (ASICs) detect extracellular protons produced during inflammation or ischemic injury and belong to the super family of degenerin/epithelial sodium channels. Here, we determine the cocrystal structure of chicken ASIC1a with MitTx, a pain-inducing toxin from the Texas coral snake, to define the structure of the open state of ASIC1a. In the MitTx-bound open state and in the previously determined low pH desensitized state, TM2 is a discontinuous α-helix in which the Gly-Ala-Ser selectivity filter adopts an extended, belt-like conformation, swapping the cytoplasmic one-third of TM2 with an adjacent subunit. Gly 443 residues of the selectivity filter provide a ring of 3 carbonyl oxygen atoms with a radius of ~3.6 Å, presenting an energetic barrier for hydrated ions. The ASIC1a-MitTx complex illuminates the mechanism of MitTx action, defines the structure of the selectivity filter of voltage-independent, sodium-selective ion channels and captures the open state of an ASIC.
doi:10.1016/j.cell.2014.01.011
PMCID: PMC4190031  PMID: 24507937
2.  Receptor-targeting mechanisms of pain-causing toxins: How ow? 
Toxicon  2012;60(3):254-264.
Venoms often target vital processes to cause paralysis or death, but many types of venom also elicit notoriously intense pain. While these pain-producing effects can result as a byproduct of generalized tissue trauma, there are now multiple examples of venom-derived toxins that target somatosensory nerve terminals in order to activate nociceptive (pain-sensing) neural pathways. Intriguingly, investigation of the venom components that are responsible for evoking pain has revealed novel roles and/or configurations of well-studied toxin motifs. This review serves to highlight pain-producing toxins that target the capsaicin receptor, TRPV1, or members of the acid-sensing ion channel family, and to discuss the utility of venom-derived multivalent and multimeric complexes.
doi:10.1016/j.toxicon.2012.04.336
PMCID: PMC3383939  PMID: 22538196
3.  A heteromeric Texas coral snake toxin targets acid-sensing ion channels to produce pain 
Nature  2011;479(7373):410-414.
Natural products that elicit discomfort or pain represent invaluable tools for probing molecular mechanisms underlying pain sensation1. Plant-derived irritants have predominated in this regard, but animal venoms have also evolved to avert predators by targeting neurons and receptors whose activation produces noxious sensations2-6. As such, venoms provide a rich and varied source of small molecule and protein pharmacophores7,8 that can be exploited to characterize and manipulate key components of the pain-signaling pathway. With this in mind, we carried out an unbiased in vitro screen to identify snake venoms capable of activating somatosensory neurons. Venom from the Texas coral snake (Micrurus tener tener), whose bite produces intense and unremitting pain9, excited a large cohort of sensory neurons. The purified active species (MitTx) consists of a heteromeric complex between Kunitz- and phospholipase A2-like proteins that together function as a potent, persistent, and selective agonist for acid-sensing ion channels (ASICs), showing equal or greater efficacy when compared with acidic pH. MitTx is highly selective for the ASIC1 subtype at neutral pH; under more acidic conditions (pH < 6.5), MitTx massively potentiates (>100-fold) proton-evoked activation of ASIC2a channels. These observations raise the possibility that ASIC channels function as coincidence detectors for extracellular protons and other, as yet unidentified, endogenous factors. Purified MitTx elicits robust pain-related behavior in mice via activation of ASIC1 channels on capsaicin-sensitive nerve fibers. These findings reveal a mechanism whereby snake venoms produce pain, and highlight an unexpected contribution of ASIC1 channels to nociception.
doi:10.1038/nature10607
PMCID: PMC3226747  PMID: 22094702
4.  Assembly of the Complex between Archaeal RNase P Proteins RPP30 and Pop5 
Archaea  2011;2011:891531.
RNase P is a highly conserved ribonucleoprotein enzyme that represents a model complex for understanding macromolecular RNA-protein interactions. Archaeal RNase P consists of one RNA and up to five proteins (Pop5, RPP30, RPP21, RPP29, and RPP38/L7Ae). Four of these proteins function in pairs (Pop5-RPP30 and RPP21–RPP29). We have used nuclear magnetic resonance (NMR) spectroscopy and isothermal titration calorimetry (ITC) to characterize the interaction between Pop5 and RPP30 from the hyperthermophilic archaeon Pyrococcus furiosus (Pfu). NMR backbone resonance assignments of free RPP30 (25 kDa) indicate that the protein is well structured in solution, with a secondary structure matching that observed in a closely related crystal structure. Chemical shift perturbations upon the addition of Pop5 (14 kDa) reveal its binding surface on RPP30. ITC experiments confirm a net 1 : 1 stoichiometry for this tight protein-protein interaction and exhibit complex isotherms, indicative of higher-order binding. Indeed, light scattering and size exclusion chromatography data reveal the complex to exist as a 78 kDa heterotetramer with two copies each of Pop5 and RPP30. These results will inform future efforts to elucidate the functional role of the Pop5-RPP30 complex in RNase P assembly and catalysis.
doi:10.1155/2011/891531
PMCID: PMC3227427  PMID: 22162665
5.  A Bivalent Tarantula Toxin Activates the Capsaicin Receptor, TRPV1, by Targeting the Outer Pore Domain 
Cell  2010;141(5):834-845.
SUMMARY
Toxins have evolved to target regions of membrane ion channels that underlie ligand binding, gating, or ion permeation, and have thus served as invaluable tools for probing channel structure and function. Here we describe a peptide toxin from the Earth Tiger tarantula that selectively and irreversibly activates the capsaicin- and heat-sensitive channel, TRPV1. This high avidity interaction derives from a unique tandem repeat structure of the toxin that endows it with an antibody-like bivalency, illustrating a new paradigm in toxin structure and evolution. The ‘double-knot’ toxin traps TRPV1 in the open state by interacting with residues in the presumptive pore-forming region of the channel, highlighting the importance of conformational changes in the outer pore region of TRP channels during activation.
doi:10.1016/j.cell.2010.03.052
PMCID: PMC2905675  PMID: 20510930
6.  A Yeast Genetic Screen Reveals a Critical Role for the Pore Helix Domain in TRP Channel Gating 
Neuron  2008;58(3):362-373.
SUMMARY
TRP cation channels function as cellular sensors in uni- and multicellular eukaryotes. Despite intensive study, the mechanisms of TRP channel activation by chemical or physical stimuli remain poorly understood. To identify amino acid residues crucial for TRP channel gating, we developed an unbiased, high-throughput genetic screen in yeast that uncovered rare, constitutively active mutants of the capsaicin receptor, TRPV1. We show that mutations within the pore helix domain dramatically increase basal channel activity and responsiveness to chemical and thermal stimuli. Mutation of corresponding residues within two related TRPV channels leads to comparable effects on their activation properties. Our data suggest that conformational changes in the outer pore region are critical for determining the balance between open and closed states, providing evidence for a general role for this domain in TRP channel activation.
doi:10.1016/j.neuron.2008.04.012
PMCID: PMC2422846  PMID: 18466747

Results 1-6 (6)