PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (73)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
1.  Development of MHC-Linked Microsatellite Markers in the Domestic Cat and Their Use to Evaluate MHC Diversity in Domestic Cats, Cheetahs, and Gir Lions 
Journal of Heredity  2014;105(4):493-505.
Diversity within the major histocompatibility complex (MHC) reflects the immunological fitness of a population. MHC-linked microsatellite markers provide a simple and an inexpensive method for studying MHC diversity in large-scale studies. We have developed 6 MHC-linked microsatellite markers in the domestic cat and used these, in conjunction with 5 neutral microsatellites, to assess MHC diversity in domestic mixed breed (n = 129) and purebred Burmese (n = 61) cat populations in Australia. The MHC of outbred Australian cats is polymorphic (average allelic richness = 8.52), whereas the Burmese population has significantly lower MHC diversity (average allelic richness = 6.81; P < 0.01). The MHC-linked microsatellites along with MHC cloning and sequencing demonstrated moderate MHC diversity in cheetahs (n = 13) and extremely low diversity in Gir lions (n = 13). Our MHC-linked microsatellite markers have potential future use in diversity and disease studies in other populations and breeds of cats as well as in wild felid species.
doi:10.1093/jhered/esu017
PMCID: PMC4048552  PMID: 24620003
Acinonyx jubatus; Felis catus; major histocompatibility complex; Panthera leo
2.  Genetic Status and Timing of a Weevil Introduction to Santa Cruz Island, Galápagos 
Journal of Heredity  2014;105(3):365-380.
Successful invasive species can overcome or circumvent the potential genetic loss caused by an introduction bottleneck through a rapid population expansion and admixture from multiple introductions. We explore the genetic makeup and the timing of a species introduction to Santa Cruz Island in the Galápagos archipelago. We investigate the presence of processes that can maintain genetic diversity in populations of the broad-nosed weevil Galapaganus howdenae howdenae. Analyses of combined genotypes for 8 microsatellite loci showed evidence of past population size reductions through moment and likelihood-based estimators. No evidence of admixture through multiple introductions was found, but substantial current population sizes (N0 298, 95% credible limits 50–2300), genetic diversity comparable with long-established endemics (Mean number of alleles = 3.875), and lack of genetic structure across the introduced range (F ST = 0.01359) could suggest that foundations are in place for populations to rapidly recover any loss of genetic variability. The time estimates for the introduction into Santa Cruz support an accidental transfer during the colonization period (1832–1959) predating the spurt in human population growth. Our evaluation of the genetic status of G. h. howdenae suggests potential for population growth in addition to our field observations of a concurrent expansion in range and feeding preferences towards protected areas and endemic host plants.
doi:10.1093/jhered/est096
PMCID: PMC3984438  PMID: 24399746
bottlenecks; Galapaganus h. howdenae; microsatellite loci; Msvar; older introduction; range expansion
3.  Clock Gene Evolution: Seasonal Timing, Phylogenetic Signal, or Functional Constraint? 
Journal of Heredity  2014;105(3):407-415.
Genetic determinants of seasonal reproduction are not fully understood but may be important predictors of organism responses to climate change. We used a comparative approach to study the evolution of seasonal timing within a fish community in a natural common garden setting. We tested the hypothesis that allelic length variation in the PolyQ domain of a circadian rhythm gene, Clock1a, corresponded to interspecific differences in seasonal reproductive timing across 5 native and 1 introduced cyprinid fishes (n = 425 individuals) that co-occur in the Rio Grande, NM, USA. Most common allele lengths were longer in native species that initiated reproduction earlier (Spearman’s r = −0.70, P = 0.23). Clock1a allele length exhibited strong phylogenetic signal and earlier spawners were evolutionarily derived. Aside from length variation in Clock1a, all other amino acids were identical across native species, suggesting functional constraint over evolutionary time. Interestingly, the endangered Rio Grande silvery minnow (Hybognathus amarus) exhibited less allelic variation in Clock1a and observed heterozygosity was 2- to 6-fold lower than the 5 other (nonimperiled) species. Reduced genetic variation in this functionally important gene may impede this species’ capacity to respond to ongoing environmental change.
doi:10.1093/jhered/esu008
PMCID: PMC3984439  PMID: 24558102
circadian rhythms; climate change; Clock; comparative biology; molecular ecology; phenology
4.  Nonequilibrium Conditions Explain Spatial Variability in Genetic Structuring of Little Penguin (Eudyptula minor) 
Journal of Heredity  2015;106(3):228-237.
Factors responsible for spatial structuring of population genetic variation are varied, and in many instances there may be no obvious explanations for genetic structuring observed, or those invoked may reflect spurious correlations. A study of little penguins (Eudyptula minor) in southeast Australia documented low spatial structuring of genetic variation with the exception of colonies at the western limit of sampling, and this distinction was attributed to an intervening oceanographic feature (Bonney Upwelling), differences in breeding phenology, or sea level change. Here, we conducted sampling across the entire Australian range, employing additional markers (12 microsatellites and mitochondrial DNA, 697 individuals, 17 colonies). The zone of elevated genetic structuring previously observed actually represents the eastern half of a genetic cline, within which structuring exists over much shorter spatial scales than elsewhere. Colonies separated by as little as 27 km in the zone are genetically distinguishable, while outside the zone, homogeneity cannot be rejected at scales of up to 1400 km. Given a lack of additional physical or environmental barriers to gene flow, the zone of elevated genetic structuring may reflect secondary contact of lineages (with or without selection against interbreeding), or recent colonization and expansion from this region. This study highlights the importance of sampling scale to reveal the cause of genetic structuring.
doi:10.1093/jhered/esv009
PMCID: PMC4406270  PMID: 25833231
colonization; hybridization; isolation by distance; seabird; secondary contact; tension zone
5.  Evidence of Positive Selection for a Glycogen Synthase (GYS1) Mutation in Domestic Horse Populations 
Journal of Heredity  2013;105(2):163-172.
A dominantly inherited gain-of-function mutation in the glycogen synthase (GYS1) gene, resulting in excess skeletal muscle glycogen, has been identified in more than 30 horse breeds. This mutation is associated with the disease Equine Polysaccharide Storage Myopathy Type 1, yet persists at high frequency in some breeds. Under historical conditions of daily work and limited feed, excess muscle glycogen may have been advantageous, driving the increase in frequency of this allele. Fine-scale DNA sequencing in 80 horses and genotype assays in 279 horses revealed a paucity of haplotypes carrying the mutant allele when compared with the wild-type allele. Additionally, we found increased linkage disequilibrium, measured by relative extended haplotype homozygosity, in haplotypes carrying the mutation compared with haplotypes carrying the wild-type allele. Coalescent simulations of Belgian horse populations demonstrated that the high frequency and extended haplotype associated with the GYS1 mutation were unlikely to have arisen under neutrality or due to population demography. In contrast, in Quarter Horses, elevated relative extended haplotype homozygosity was associated with multiple haplotypes and may be the result of recent population expansion or a popular sire effect. These data suggest that the GYS1 mutation underwent historical selection in the Belgian, but not in the Quarter Horse.
doi:10.1093/jhered/est075
PMCID: PMC3920812  PMID: 24215078
equine; gain of function; glycogen synthase; Polysaccharide Storage Myopathy; selection
6.  The American Quarter Horse: Population Structure and Relationship to the Thoroughbred 
Journal of Heredity  2013;105(2):148-162.
A breed known for its versatility, the American Quarter Horse (QH), is increasingly bred for performance in specific disciplines. The impact of selective breeding on the diversity and structure of the QH breed was evaluated using pedigree analysis and genome-wide SNP data from horses representing 6 performance groups (halter, western pleasure, reining, working cow, cutting, and racing). Genotype data (36 037 single nucleotide polymorphisms [SNPs]) from 36 Thoroughbreds were also evaluated with those from the 132 performing QHs to evaluate the Thoroughbred’s influence on QH diversity. Results showed significant population structure among all QH performance groups excepting the comparison between the cutting and working cow horses; divergence was greatest between the cutting and racing QHs, the latter of which had a large contribution of Thoroughbred ancestry. Significant coancestry and the potential for inbreeding exist within performance groups, especially when considering the elite performers. Relatedness within performance groups is increasing with popular sires contributing disproportionate levels of variation to each discipline. Expected heterozygosity, inbreeding, F ST, cluster, and haplotype analyses suggest these QHs can be broadly classified into 3 categories: stock, racing, and pleasure/halter. Although the QH breed as a whole contains substantial genetic diversity, current breeding practices have resulted in this variation being sequestered into subpopulations.
doi:10.1093/jhered/est079
PMCID: PMC3920813  PMID: 24293614
breeds; coancestry; equine; performance; relatedness; selection
7.  The Population History of Endogenous Retroviruses in Mule Deer (Odocoileus hemionus) 
Journal of Heredity  2013;105(2):173-187.
Mobile elements are powerful agents of genomic evolution and can be exceptionally informative markers for investigating species and population-level evolutionary history. While several studies have utilized retrotransposon-based insertional polymorphisms to resolve phylogenies, few population studies exist outside of humans. Endogenous retroviruses are LTR-retrotransposons derived from retroviruses that have become stably integrated in the host genome during past infections and transmitted vertically to subsequent generations. They offer valuable insight into host-virus co-evolution and a unique perspective on host evolutionary history because they integrate into the genome at a discrete point in time. We examined the evolutionary history of a cervid endogenous gammaretrovirus (CrERVγ) in mule deer (Odocoileus hemionus). We sequenced 14 CrERV proviruses (CrERV-in1 to -in14), and examined the prevalence and distribution of 13 proviruses in 262 deer among 15 populations from Montana, Wyoming, and Utah. CrERV absence in white-tailed deer (O. virginianus), identical 5′ and 3′ long terminal repeat (LTR) sequences, insertional polymorphism, and CrERV divergence time estimates indicated that most endogenization events occurred within the last 200000 years. Population structure inferred from CrERVs (F ST = 0.008) and microsatellites (θ = 0.01) was low, but significant, with Utah, northwestern Montana, and a Helena herd being particularly differentiated. Clustering analyses indicated regional structuring, and non-contiguous clustering could often be explained by known translocations. Cluster ensemble results indicated spatial localization of viruses, specifically in deer from northeastern and western Montana. This study demonstrates the utility of endogenous retroviruses to elucidate and provide novel insight into both ERV evolutionary history and the history of contemporary host populations.
doi:10.1093/jhered/est088
PMCID: PMC3920814  PMID: 24336966
endogenous retrovirus; gene flow; microsatellite;  mule deer; population structure
8.  Genetic Architecture of a Hormonal Response to Gene Knockdown in Honey Bees 
Journal of Heredity  2015;106(2):155-165.
Variation in endocrine signaling is proposed to underlie the evolution and regulation of social life histories, but the genetic architecture of endocrine signaling is still poorly understood. An excellent example of a hormonally influenced set of social traits is found in the honey bee (Apis mellifera): a dynamic and mutually suppressive relationship between juvenile hormone (JH) and the yolk precursor protein vitellogenin (Vg) regulates behavioral maturation and foraging of workers. Several other traits cosegregate with these behavioral phenotypes, comprising the pollen hoarding syndrome (PHS) one of the best-described animal behavioral syndromes. Genotype differences in responsiveness of JH to Vg are a potential mechanistic basis for the PHS. Here, we reduced Vg expression via RNA interference in progeny from a backcross between 2 selected lines of honey bees that differ in JH responsiveness to Vg reduction and measured JH response and ovary size, which represents another key aspect of the PHS. Genetic mapping based on restriction site-associated DNA tag sequencing identified suggestive quantitative trait loci (QTL) for ovary size and JH responsiveness. We confirmed genetic effects on both traits near many QTL that had been identified previously for their effect on various PHS traits. Thus, our results support a role for endocrine control of complex traits at a genetic level. Furthermore, this first example of a genetic map of a hormonal response to gene knockdown in a social insect helps to refine the genetic understanding of complex behaviors and the physiology that may underlie behavioral control in general.
doi:10.1093/jhered/esu086
PMCID: PMC4323067  PMID: 25596612
Apis mellifera; complex trait genetics; genetic architecture juvenile hormone; social evolution; vitellogenin
9.  The Global Invertebrate Genomics Alliance (GIGA): Developing Community Resources to Study Diverse Invertebrate Genomes 
Journal of Heredity  2013;105(1):1-18.
Over 95% of all metazoan (animal) species comprise the “invertebrates,” but very few genomes from these organisms have been sequenced. We have, therefore, formed a “Global Invertebrate Genomics Alliance” (GIGA). Our intent is to build a collaborative network of diverse scientists to tackle major challenges (e.g., species selection, sample collection and storage, sequence assembly, annotation, analytical tools) associated with genome/transcriptome sequencing across a large taxonomic spectrum. We aim to promote standards that will facilitate comparative approaches to invertebrate genomics and collaborations across the international scientific community. Candidate study taxa include species from Porifera, Ctenophora, Cnidaria, Placozoa, Mollusca, Arthropoda, Echinodermata, Annelida, Bryozoa, and Platyhelminthes, among others. GIGA will target 7000 noninsect/nonnematode species, with an emphasis on marine taxa because of the unrivaled phyletic diversity in the oceans. Priorities for selecting invertebrates for sequencing will include, but are not restricted to, their phylogenetic placement; relevance to organismal, ecological, and conservation research; and their importance to fisheries and human health. We highlight benefits of sequencing both whole genomes (DNA) and transcriptomes and also suggest policies for genomic-level data access and sharing based on transparency and inclusiveness. The GIGA Web site (http://giga.nova.edu) has been launched to facilitate this collaborative venture.
doi:10.1093/jhered/est084
PMCID: PMC4072906  PMID: 24336862
biodiversity; comparative genomics; consortium; evolution; GIGA; invertebrates; metazoa
10.  No Boundaries: Genomes, Organisms, and Ecological Interactions Responsible for Divergence and Reproductive Isolation 
Journal of Heredity  2014;105(Suppl 1):756-770.
Revealing the genetic basis of traits that cause reproductive isolation, particularly premating or sexual isolation, usually involves the same challenges as most attempts at genotype–phenotype mapping and so requires knowledge of how these traits are expressed in different individuals, populations, and environments, particularly under natural conditions. Genetic dissection of speciation phenotypes thus requires understanding of the internal and external contexts in which underlying genetic elements are expressed. Gene expression is a product of complex interacting factors internal and external to the organism including developmental programs, the genetic background including nuclear–cytotype interactions, epistatic relationships, interactions among individuals or social effects, stochasticity, and prevailing variation in ecological conditions. Understanding of genomic divergence associated with reproductive isolation will be facilitated by functional expression analysis of annotated genomes in organisms with well-studied evolutionary histories, phylogenetic affinities, and known patterns of ecological variation throughout their life cycles. I review progress and prospects for understanding the pervasive role of host plant use on genetic and phenotypic expression of reproductive isolating mechanisms in cactophilic Drosophila mojavensis and suggest how this system can be used as a model for revealing the genetic basis for species formation in organisms where speciation phenotypes are under the joint influences of genetic and environmental factors.
doi:10.1093/jhered/esu039
PMCID: PMC4170711  PMID: 25149252
cactus; courtship song; cuticular hydrocarbon; Drosophila; gene ontology; microarray; Sonoran Desert; speciation; transcriptome
11.  Major Breeding Plumage Color Differences of Male Ruffs (Philomachus pugnax) Are Not Associated With Coding Sequence Variation in the MC1R Gene 
Journal of Heredity  2014;106(2):211-215.
Sequence variation in the melanocortin-1 receptor (MC1R) gene explains color morph variation in several species of birds and mammals. Ruffs (Philomachus pugnax) exhibit major dark/light color differences in melanin-based male breeding plumage which is closely associated with alternative reproductive behavior. A previous study identified a microsatellite marker (Ppu020) near the MC1R locus associated with the presence/absence of ornamental plumage. We investigated whether coding sequence variation in the MC1R gene explains major dark/light plumage color variation and/or the presence/absence of ornamental plumage in ruffs. Among 821bp of the MC1R coding region from 44 male ruffs we found 3 single nucleotide polymorphisms, representing 1 nonsynonymous and 2 synonymous amino acid substitutions. None were associated with major dark/light color differences or the presence/absence of ornamental plumage. At all amino acid sites known to be functionally important in other avian species with dark/light plumage color variation, ruffs were either monomorphic or the shared polymorphism did not coincide with color morph. Neither ornamental plumage color differences nor the presence/absence of ornamental plumage in ruffs are likely to be caused entirely by amino acid variation within the coding regions of the MC1R locus. Regulatory elements and structural variation at other loci may be involved in melanin expression and contribute to the extreme plumage polymorphism observed in this species.
doi:10.1093/jhered/esu079
PMCID: PMC4323066  PMID: 25534935
MC1R; melanism; pigmentation; plumage variation; sequence variation
12.  Patterns of Population Structure for Inshore Bottlenose Dolphins along the Eastern United States 
Journal of Heredity  2013;104(6):765-778.
Globally distributed, the bottlenose dolphin (Tursiops truncatus) is found in a range of offshore and coastal habitats. Using 15 microsatellite loci and mtDNA control region sequences, we investigated patterns of genetic differentiation among putative populations along the eastern US shoreline (the Indian River Lagoon, Florida, and Charleston Harbor, South Carolina) (microsatellite analyses: n = 125, mtDNA analyses: n = 132). We further utilized the mtDNA to compare these populations with those from the Northwest Atlantic, Gulf of Mexico, and Caribbean. Results showed strong differentiation among inshore, alongshore, and offshore habitats (ФST = 0.744). In addition, Bayesian clustering analyses revealed the presence of 2 genetic clusters (populations) within the 250 km Indian River Lagoon. Habitat heterogeneity is likely an important force diversifying bottlenose dolphin populations through its influence on social behavior and foraging strategy. We propose that the spatial pattern of genetic variation within the lagoon reflects both its steep longitudinal transition of climate and also its historical discontinuity and recent connection as part of Intracoastal Waterway development. These findings have important management implications as they emphasize the role of habitat and the consequence of its modification in shaping bottlenose dolphin population structure and highlight the possibility of multiple management units existing in discrete inshore habitats along the entire eastern US shoreline.
doi:10.1093/jhered/est070
PMCID: PMC3796761  PMID: 24129993
Indian River Lagoon; microsatellite; mtDNA; Tursiops truncatus
13.  Erratum 
Journal of Heredity  2013;104(5):735.
doi:10.1093/jhered/est048
PMCID: PMC3889212
14.  Composite Linkage Map and Enhanced Genome Map for Culex pipiens Complex Mosquitoes 
Journal of Heredity  2013;104(5):649-655.
We report here the development of 65 novel microsatellite loci and construction of a composite genetic linkage map for Culex pipiens complex mosquitoes. Microsatellites were identified by in silico screening of the Culex quinquefasciatus genome assembly. Cross-species utility of 73 microsatellites for population studies in C. pipiens sensu stricto and C. quinquefasciatus was evaluated by genotyping a subset of samples collected in Indiana, United States, and Point Fortin, Trinidad. Allele frequencies of 67 microsatellites were within Hardy–Weinberg expectations in both population subsets. A composite linkage map was constructed based on restriction fragment length polymorphism and microsatellite polymorphisms in 12 independent F1 intercross mapping populations. The composite map consists of 61 marker loci totaling 183.9 cM distributed across the 3 linkage groups. These loci cover 29.5, 88.8, and 65.6 cM on chromosomes I–III, respectively, and allow for assignment of 10.4% of the genome assembly and 13.5% of the protein coding genes to chromosome position. Our results suggest that these microsatellites will be useful for mapping and population studies of 2 pervasive species in the C. pipiens complex. Moreover, the composite map presented here will serve as a basis for the construction of high-resolution genetic and physical maps, as well as detection of quantitative trait loci to aid in the investigation of complex genetic traits influencing phenotypes of interest.
doi:10.1093/jhered/est040
PMCID: PMC3741631  PMID: 23846985
composite linkage map; Culex quinquefasciatus; genome assembly; house mosquito; SSR; supercontigs
15.  The i5K Initiative: Advancing Arthropod Genomics for Knowledge, Human Health, Agriculture, and the Environment 
Journal of Heredity  2013;104(5):595-600.
Insects and their arthropod relatives including mites, spiders, and crustaceans play major roles in the world’s terrestrial, aquatic, and marine ecosystems. Arthropods compete with humans for food and transmit devastating diseases. They also comprise the most diverse and successful branch of metazoan evolution, with millions of extant species. Here, we describe an international effort to guide arthropod genomic efforts, from species prioritization to methodology and informatics. The 5000 arthropod genomes initiative (i5K) community met formally in 2012 to discuss a roadmap for sequencing and analyzing 5000 high-priority arthropods and is continuing this effort via pilot projects, the development of standard operating procedures, and training of students and career scientists. With university, governmental, and industry support, the i5K Consortium aspires to deliver sequences and analytical tools for each of the arthropod branches and each of the species having beneficial and negative effects on humankind.
doi:10.1093/jhered/est050
PMCID: PMC4046820  PMID: 23940263
comparative genomics; disease vector; agriculture; insect evolution; genome sequencing
16.  OptiMAS: A Decision Support Tool for Marker-Assisted Assembly of Diverse Alleles 
Journal of Heredity  2013;104(4):586-590.
Current advances in plant genotyping lead to major progress in the knowledge of genetic architecture of traits of interest. It is increasingly important to develop decision support tools to help breeders and geneticists to conduct marker-assisted selection methods to assemble favorable alleles that are discovered. Algorithms have been implemented, within an interactive graphical interface, to 1) trace parental alleles throughout generations, 2) propose strategies to select the best plants based on estimated molecular scores, and 3) efficiently intermate them depending on the expected value of their progenies. With the possibility to consider a multi-allelic context, OptiMAS opens new prospects to assemble favorable alleles issued from diverse parents and further accelerate genetic gain.
doi:10.1093/jhered/est020
PMCID: PMC3678297  PMID: 23576670
marker-assisted selection; plant breeding; QTL; multiparental designs; gene pyramiding
17.  Several Classical Mouse Inbred Strains, Including DBA/2, NOD/Lt, FVB/N, and SJL/J, Carry a Putative Loss-of-Function Allele of Gpr84  
Journal of Heredity  2013;104(4):565-571.
G protein–coupled receptor 84 (GPR84) is a 7-transmembrane protein expressed on myeloid cells that can bind to medium-chain free fatty acids in vitro. Here, we report the discovery of a 2-bp frameshift deletion in the second exon of the Gpr84 gene in several classical mouse inbred strains. This deletion generates a premature stop codon predicted to result in a truncated protein lacking the transmembrane domains 4-7. We sequenced Gpr84 exon 2 from 58 strains representing different groups in the mouse family tree and found that 14 strains are homozygous for the deletion. Some of these strains are DBA/1J, DBA/2J, FVB/NJ, LG/J, MRL/MpJ, NOD/LtJ, and SJL/J. However, the deletion was not found in any of the wild-derived inbred strains analyzed. Haplotype analysis suggested that the deletion originates from a unique mutation event that occurred more than 100 years ago, preceding the development of the first inbred strain (DBA), from a Mus musculus domesticus source. As GPR84 ostensibly plays a role in the biology of myeloid cells, it could be relevant 1) to consider the existence of this Gpr84 nonsense mutation in several mouse strains when choosing a mouse model to study immune processes and 2) to consider reevaluating data obtained using such strains.
doi:10.1093/jhered/est023
PMCID: PMC3954108  PMID: 23616478
spontaneous mutations; G protein–coupled receptors; inbred mice; mouse models
18.  Inventory and Phylogenetic Analysis of Meiotic Genes in Monogonont Rotifers 
Journal of Heredity  2013;104(3):357-370.
A long-standing question in evolutionary biology is how sexual reproduction has persisted in eukaryotic lineages. As cyclical parthenogens, monogonont rotifers are a powerful model for examining this question, yet the molecular nature of sexual reproduction in this lineage is currently understudied. To examine genes involved in meiosis, we generated partial genome assemblies for 2 distantly related monogonont species, Brachionus calyciflorus and B. manjavacas. Here we present an inventory of 89 meiotic genes, of which 80 homologs were identified and annotated from these assemblies. Using phylogenetic analysis, we show that several meiotic genes have undergone relatively recent duplication events that appear to be specific to the monogonont lineage. Further, we compare the expression of “meiosis-specific” genes involved in recombination and all annotated copies of the cell cycle regulatory gene CDC20 between obligate parthenogenetic (OP) and cyclical parthenogenetic (CP) strains of B. calyciflorus. We show that “meiosis-specific” genes are expressed in both CP and OP strains, whereas the expression of one of the CDC20 genes is specific to cyclical parthenogenesis. The data presented here provide insights into mechanisms of cyclical parthenogenesis and establish expectations for studies of obligate asexual relatives of monogononts, the bdelloid rotifer lineage.
doi:10.1093/jhered/est011
PMCID: PMC3622358  PMID: 23487324
asexual reproduction; cyclical parthenogenesis; evolution of sex
19.  Genetic Analysis of Captive Spawning Strategies for the Endangered Rio Grande Silvery Minnow 
Journal of Heredity  2013;104(3):437-446.
Captive breeding and rearing are central elements in conservation, management, and recovery planning for many endangered species including Rio Grande Silvery Minnow, a North American freshwater cyprinid. Traditionally, the sole purpose of hatcheries was to produce as many fish as feasible for stocking and harvest. Production quotas are also an important consideration in hatchery programs for endangered species, but they must also maintain and maximize genetic diversity of fish produced through implementation of best breeding practices. Here, we assessed genetic outcomes and measures of productivity (number of eggs and larval viability) for three replicates of three mating designs that are used for this small, pelagic-spawning fish. These were 1) monogamous mating, 2) hormone-induced communal spawning, and 3) environmentally cued communal spawning. A total of 180 broodstock and 450 progeny were genotyped. Genetic diversity and egg productivity did not differ significantly among spawning designs (H e: F = 0.52, P = 0.67; H o: F = 0.12, P = 0.89; number of eggs: F = 3.59, P = 0.09), and there was evidence for variance in reproductive success among individuals in all three designs. Allelic richness declined from the broodstock to progeny generation in all breeding designs. There was no significant difference in the genetic effective size (regardless of the method used) among designs. Significantly more viable eggs were produced in environmentally cued communal spawn compared to the alternative strategies (F = 5.72, P = 0.04), but this strategy is the most difficult to implement.
doi:10.1093/jhered/est013
PMCID: PMC3695603  PMID: 23519867
captive spawning; effective population size; genetic diversity; Rio Grande Silvery Minnow
20.  Itpr3 Is Responsible for the Mouse Tufted (tf) Locus 
Journal of Heredity  2012;104(2):295-297.
The tf (tufted) locus is responsible for a classic phenotype of hair loss and regrowth in mice. It is a characteristic of the BTBR strain. Here, we use a combination of positional cloning methods and complementation mapping to identify Itpr3, the inositol triphosphate receptor type 3, as the gene responsible for the tf locus.
doi:10.1093/jhered/ess089
PMCID: PMC3570182  PMID: 23100490
BTBR mouse; hair; inosine triphosphate receptor type 3
21.  A Genomic Approach for Distinguishing between Recent and Ancient Admixture as Applied to Cattle 
Journal of Heredity  2014;105(4):445-456.
Genomic data facilitate opportunities to track complex population histories of divergence and gene flow. We developed a metric, scaled block size (SBS), which uses the nonrecombined block size of introgressed regions of chromosomes to differentiate between recent and ancient types of admixture, and applied it to the reconstruction of admixture in cattle. Cattle are descendants of 2 independently domesticated lineages, taurine and indicine, which diverged more than 200 000 years ago. Several breeds have hybrid ancestry between these divergent lineages. Using 47 506 single-nucleotide polymorphisms, we analyzed the genomic architecture of the ancestry of 1369 individuals. We focused on 4 groups with admixed ancestry, including 2 anciently admixed African breeds (n = 58; n = 43), New World cattle of Spanish origin (n = 51), and known recent hybrids (n = 46). We estimated the ancestry of chromosomal regions for each individual and used the SBS metric to differentiate the timing of admixture among groups and among individuals within groups. By comparing SBS values of test individuals with standards with known recent hybrid ancestry, we were able to differentiate individuals of recent hybrid origin from other admixed cattle. We also estimated ancestry at the chromosomal scale. The X chromosome exhibits reduced indicine ancestry in recent hybrid, New World, and western African cattle, with virtually no evidence of indicine ancestry in New World cattle.
doi:10.1093/jhered/esu001
PMCID: PMC4048551  PMID: 24510946
cattle; chromosome painting; hybridization; introgression
22.  Balancing a Cline by Influx of Migrants: A Genetic Transition in Water Frogs of Eastern Greece 
Journal of Heredity  2012;104(1):57-71.
Variation patterns of allozymes and of ND3 haplotypes of mitochondrial DNA reveal a zone of genetic transition among western Palearctic water frogs extending across northeastern Greece and European Turkey. At the western end of the zone, allozymes characteristic of Central European frogs known as Pelophylax ridibundus predominate, whereas at the eastern end, alleles characteristic of western Anatolian water frogs (P. cf. bedriagae) prevail. The ND3 haplotypes reveal 2 major clades, 1 characteristic of Anatolian frogs, the other of European; the European clade itself has distinct eastern and western subclades. Both the 2 major clades and the 2 subclades overlap within the transition zone. Using Bayesian model selection methods, allozyme data suggest considerable immigration into the Nestos River area from eastern and western populations. In contrast, the ND3 data suggest that migration rates are so high among all locations that they form a single panmictic unit; the best model for allozymes is second best for mitochondrial DNA (mtDNA). Nuclear markers (allozymes), which have roughly 4 times as deep a coalescent history as mtDNA data and thus may reflect patterns over a longer time, indicate that eastern and western refugial populations have expanded since deglaciation (in the last 10 000 years) and have met near the Nestos River, whereas the mtDNA with its smaller effective population size has already lost the signal of partitioning into refugia.
doi:10.1093/jhered/ess086
PMCID: PMC3532039  PMID: 23125403
allozymes; Bayes factors; gene flow; hybridization; migration; mitochondrial DNA; model selection; Pelophylax; sympatry; water frogs
23.  Genetic Estimates of Population Age in the Water Flea, Daphnia magna  
Journal of Heredity  2012;103(6):887-897.
Genetic datasets can be used to date evolutionary events, even on recent time scales if sufficient data are available. We used statistics calculated from multilocus microsatellite datasets to estimate population ages in data generated through coalescent simulations and in samples from populations of known age in a metapopulation of Daphnia magna in Finland. Our simulation results show that age estimates improve with additional loci and define a time frame over which these statistics are most useful. On the most recent time scales, assumptions regarding the model of mutation (infinite sites vs. stepwise mutation) have little influence on estimated ages. In older populations, size homoplasy among microsatellite alleles results in a downwards bias for estimates based on the infinite sites model (ISM). In the Finnish D. magna metapopulation, our genetically derived estimated ages were biased upwards. Potential sources of this bias include the underlying model of mutation, gene flow, founder size, and the possibility of persistent source populations in the system. Our simulated data show that genetic age estimation is possible, even for very young populations, but our empirical data highlight the importance of factors such as migration when these statistics are applied in natural populations.
doi:10.1093/jhered/ess063
PMCID: PMC3695665  PMID: 23129752
colonization; distribution; metapopulation; microsatellites; mismatch; population expansion
24.  Selkirk Rex: Morphological and Genetic Characterization of a New Cat Breed 
Journal of Heredity  2012;103(5):727-733.
Rexoid, curly hair mutations have been selected to develop new domestic cat breeds. The Selkirk Rex is the most recently established curly-coated cat breed originating from a spontaneous mutation that was discovered in the United States in 1987. Unlike the earlier and well-established Cornish and Devon Rex breeds with curly-coat mutations, the Selkirk Rex mutation is suggested as autosomal dominant and has a different curl phenotype. This study provides a genetic analysis of the Selkirk Rex breed. An informal segregation analysis of genetically proven matings supported an autosomal, incomplete dominant expression of the curly trait in the Selkirk Rex. Homozygous curl cats can be distinguished from heterozygous cats by head and body type, as well as the presentation of the hair curl. Bayesian clustering of short tandem repeat (STR) genotypes from 31 cats that represent the future breeding stock supported the close relationship of the Selkirk Rex to the British Shorthair, Scottish Fold, Persian, and Exotic Shorthair, suggesting the Selkirk as part of the Persian breed family. The high heterozygosity of 0.630 and the low mean inbreeding coefficient of 0.057 suggest that Selkirk Rex has a diverse genetic foundation. A new locus for Selkirk autosomal dominant Rex, SADRE, is suggested for the curly trait.
doi:10.1093/jhered/ess039
PMCID: PMC3695623  PMID: 22837475
curly;  dominant;  feline;  hair
25.  Geographic Selection in the Small Heat Shock Gene Complex Differentiating Populations of Drosophila pseudoobscura 
Journal of Heredity  2012;103(3):400-407.
Environmental temperature plays a crucial role in determining a species distribution and abundance by affecting individual physiological processes, metabolic activities, and developmental rates. Many studies have identified clinal variation in phenotypes associated with response to environmental stresses, but variation in traits associated with climatic adaptation directly attributed to sequence variation within candidate gene regions has been difficult to identify. Insect heat shock genes are possible agents of thermal tolerance because of their involvement in protein folding, traffic, protection, and renaturation at the cellular level in response to temperature stress. Previously, members of the Drosophila small heat shock protein (sHSP) complex (Hsp23, Hsp26, Hsp27, Hsp67Ba) have been implicated as candidate climatic adaptation genes; therefore, this research examines sequence variation at these genes in 2 distant populations of Drosophila pseudoobscura. Flies from Tempe, AZ (n = 30) and Cheney, WA (n = 17) were used in the study. We identify high differentiation in the heat-shock complex (FST : 0.219**, 0.262*, 0.279***, 0.166 not significant) as compared with neighboring genes and Tajima’s D values indicative of balancing selection (Mann–Whitney U = 38, n1 = 10 n2 = 4, P < 0.05 two-tailed), both of which are suggestive of such climatic adaptation.
doi:10.1093/jhered/esr150
PMCID: PMC3331989  PMID: 22345645
balancing selection; environmental adaptability

Results 1-25 (73)