PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (37)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Size and competitive mating success in the yeast Saccharomyces cerevisiae  
Behavioral Ecology  2013;25(2):320-327.
Lay Summary
Yeast cells that are too big or too small are more likely to remain virgins. Big yeast cells are fitter than small cells when food is plentiful, but smaller cells are fitter when food is scarce. When there is a choice of different size potential mates, the best size partner for the conditions is more likely to be chosen for sex, ensuring that the resulting offspring are of a fit size.
In unicellular organisms like yeast, mating with the right partner is critical to future fitness because each individual can only mate once. Because cell size is important for viability, mating with a partner of the right size could be a significant advantage. To investigate this idea, we manipulated the size of unmated yeast cells and showed that their viability depended on environmental conditions; large cells do better on rich medium and small cells do better on poor medium. We also found that the fitness of offspring is determined by the size of their parents. Finally, we demonstrated that when a focal cell of one mating type was placed with a large and a small cell of the opposite mating type, it was more likely to mate with the cell that was closer to the optimum size for growth in a given environment. This pattern was not generated by differences in passive mating efficiency of large and small cells across environments but by competitive mating behavior, mate preference, or both. We conclude that the most likely mechanism underlying this interesting behavior is that yeast cells compete for mates by producing pheromone signals advertising their viability, and cells with the opportunity to choose prefer to mate with stronger signalers because such matings produce more viable offspring.
doi:10.1093/beheco/art117
PMCID: PMC3945744  PMID: 24616602
body size; cell size; mate choice; mating; Saccharomyces cerevisiae; sexual selection.
2.  Effects of age and experience on contest behavior in the burying beetle, Nicrophorus vespilloides  
Behavioral Ecology  2013;25(1):172-179.
Lay summary:
Aggression and likelihood of winning contests are expected to change as a male ages. We test this idea in burying beetles, a species which competes over small mammal carcasses as a breeding resource. We find that male size relative to his opponent is far more important in determining contest outcome than any effects of age or social experience.
Contest behavior forms an important part of reproductive investment. Life-history theory predicts that as individuals age and their residual reproductive value decreases, they should increase investment in contest behavior. However, other factors such as social experience may also be important in determining age-related variation in contest behavior. To understand how selection acts on contest behavior over an individual’s lifetime, it is therefore important to tease apart the effects of age per se from other factors that may vary with age. Here, we independently manipulate male age and social experience to examine their effects on male contest behavior in the burying beetle Nicrophorus vespilloides. We found that social experience, but not age, influenced male contest behavior but that these changes in behavior did not alter contest outcomes. Male size (relative to his opponent) was overwhelmingly the most important factor determining contest outcome. Our results suggest that in systems with high variation in fighting ability among males, there may be little opportunity for selection to act on factors that influence contest outcomes by altering motivation to win.
doi:10.1093/beheco/art101
PMCID: PMC3860834  PMID: 24347998
age; contest behavior; fighting; male competition; Nicrophorus vespilloides; social experience; terminal investment; winner–loser effect.
3.  Biparental incubation patterns in a high-Arctic breeding shorebird: how do pairs divide their duties? 
Behavioral Ecology  2013;25(1):152-164.
Lay summary:
Parents may be in conflict over the care they provide to their offspring. To understand this conflict, an accurate description of who does what and when is necessary. We used an automated system to continuously monitor which parent incubated the eggs in an arctic breeding shorebird. Birds sat on the eggs around 11 h at a time, but females sat longer than males. In compensation, females were off-duty more when feeding was easier.
In biparental species, parents may be in conflict over how much they invest into their offspring. To understand this conflict, parental care needs to be accurately measured, something rarely done. Here, we quantitatively describe the outcome of parental conflict in terms of quality, amount, and timing of incubation throughout the 21-day incubation period in a population of semipalmated sandpipers (Calidris pusilla) breeding under continuous daylight in the high Arctic. Incubation quality, measured by egg temperature and incubation constancy, showed no marked difference between the sexes. The amount of incubation, measured as length of incubation bouts, was on average 51min longer per bout for females (11.5h) than for males (10.7h), at first glance suggesting that females invested more than males. However, this difference may have been offset by sex differences in the timing of incubation; females were more often off nest during the warmer period of the day, when foraging conditions were presumably better. Overall, the daily timing of incubation shifted over the incubation period (e.g., for female incubation from evening–night to night–morning) and over the season, but varied considerably among pairs. At one extreme, pairs shared the amount of incubation equally, but one parent always incubated during the colder part of the day; at the other extreme, pairs shifted the start of incubation bouts between days so that each parent experienced similar conditions across the incubation period. Our results highlight how the simultaneous consideration of different aspects of care across time allows sex-specific investment to be more accurately quantified.
doi:10.1093/beheco/art098
PMCID: PMC3860833  PMID: 24347997
Arctic; Calidris pusilla; continuous daylight; incubation pattern; incubation timing; negotiation; nest attendance; parental care division; semipalmated sandpiper; sexual conflict.
4.  Boldness behavior and stress physiology in a novel urban environment suggest rapid correlated evolutionary adaptation 
Behavioral Ecology  2012;23(5):960-969 .
Novel or changing environments expose animals to diverse stressors that likely require coordinated hormonal and behavioral adaptations. Predicted adaptations to urban environments include attenuated physiological responses to stressors and bolder exploratory behaviors, but few studies to date have evaluated the impact of urban life on codivergence of these hormonal and behavioral traits in natural systems. Here, we demonstrate rapid adaptive shifts in both stress physiology and correlated boldness behaviors in a songbird, the dark-eyed junco, following its colonization of a novel urban environment. We compared elevation in corticosterone (CORT) in response to handling and flight initiation distances in birds from a recently established urban population in San Diego, California to birds from a nearby wildland population in the species' ancestral montane breeding range. We also measured CORT and exploratory behavior in birds raised from early life in a captive common garden study. We found persistent population differences for both reduced CORT responses and bolder exploratory behavior in birds from the colonist population, as well as significant negative covariation between maximum CORT and exploratory behavior. Although early developmental effects cannot be ruled out, these results suggest contemporary adaptive evolution of correlated hormonal and behavioral traits associated with colonization of an urban habitat.
doi:10.1093/beheco/ars059
PMCID: PMC3431113  PMID: 22936840
adaptation; boldness; corticosterone; evolution; junco; urbanization
5.  Nest site and weather affect the personality of harvester ant colonies 
Behavioral Ecology  2012;23(5):1022-1029.
Environmental conditions and physical constraints both influence an animal's behavior. We investigate whether behavioral variation among colonies of the black harvester ant, Messor andrei, remains consistent across foraging and disturbance situations and ask whether consistent colony behavior is affected by nest site and weather. We examined variation among colonies in responsiveness to food baits and to disturbance, measured as a change in numbers of active ants, and in the speed with which colonies retrieved food and removed debris. Colonies differed consistently, across foraging and disturbance situations, in both responsiveness and speed. Increased activity in response to food was associated with a smaller decrease in response to alarm. Speed of retrieving food was correlated with speed of removing debris. In all colonies, speed was greater in dry conditions, reducing the amount of time ants spent outside the nest. While a colony occupied a certain nest site, its responsiveness was consistent in both foraging and disturbance situations, suggesting that nest structure influences colony personality.
doi:10.1093/beheco/ars066
PMCID: PMC3431114  PMID: 22936841
behavioral syndromes; collective behavior; harvester ant; Messor andrei; nest structure; personality; plasticity; social insects; temperament
6.  Photorefractoriness and energy availability interact to permit facultative timing of spring breeding 
Behavioral Ecology  2012;23(5):1049-1058.
In seasonally breeding mammals, vernal reproductive development is not directly triggered by increases in day length, rather, an endogenous program of photorefractoriness to short winter days initiates spontaneous development in advance of spring. The transition to the reproductive phenotype is energetically demanding. How food availability in late winter and early spring impacts the onset and expression of photorefractoriness is not known. In this study, male Siberian hamsters were born into a simulated natural photoperiod, and at the winter solstice, they were subjected to a restricted feeding protocol in which a daily food ration was provided in an amount equal to ad libitum (AL) intake during the weeks preceding the solstice. Over the next several months, AL–fed control hamsters exhibited spontaneous recrudescence or spontaneous development. In contrast, vernal reproductive development was abolished in most food-rationed hamsters. In food-rationed hamsters that did exhibit recrudescence, conspicuous delays in the onset of gonadal development and decreases in the magnitude of growth were evident. In all hamsters, the termination of food rationing triggered rapid gonadal development. The data indicate that late winter/early spring increases in environmental food availability are required for the normal manifestation of photorefractoriness-induced reproductive development and suggest that a function of photorefractoriness may be merely to disinhibit the reproductive axis from photoperiodic suppression. Vernal gonadal development or recrudescence appears to be strongly affected by proximate energy availability.
doi:10.1093/beheco/ars074
PMCID: PMC3431115  PMID: 22936842
energy balance; food availability; photoperiodism; seasonality; Siberian hamster
7.  Rates of agonism among female primates: a cross-taxon perspective 
Behavioral Ecology  2013;24(6):1369-1380.
Lay summary:
It has long been thought that female-female aggression in primates is higher in species that primarily eat fruits than in those that feed more on leaves or insects. Here we test this hypothesis with data from 23 primate species, and show that primates that eat more fruits do not engage in more aggression. Instead, rates of aggression increase with group size and time spent on the ground. Thus, female aggression depends on the density of competitors and the ease or costs of aggression.
Agonism is common in group-living animals, shaping dominance relationships and ultimately impacting individual fitness. Rates of agonism vary considerably among taxa, however, and explaining this variation has been central in ecological models of female social relationships in primates. Early iterations of these models posited a link to diet, with more frequent agonism predicted in frugivorous species due to the presumed greater contestability of fruits relative to other food types. Although some more recent studies have suggested that dietary categories may be poor predictors of contest competition among primates, to date there have been no broad, cross-taxa comparisons of rates of female–female agonism in relation to diet. This study tests whether dietary variables do indeed predict rates of female agonism and further investigates the role of group size (i.e., number of competitors) and substrate use (i.e., degree of arboreality) on the frequency of agonism. Data from 44 wild, unprovisioned groups, including 3 strepsirhine species, 3 platyrrhines, 5 colobines, 10 cercopithecines, and 2 hominoids were analyzed using phylogenetically controlled and uncontrolled methods. Results indicate that diet does not predict agonistic rates, with trends actually being in the opposite direction than predicted for all taxa except cercopithecines. In contrast, agonistic rates are positively associated with group size and possibly degree of terrestriality. Competitor density and perhaps the risk of fighting, thus, appear more important than general diet in predicting agonism among female primates. We discuss the implications of these results for socio-ecological hypotheses.
doi:10.1093/beheco/art076
PMCID: PMC3796709  PMID: 24137045
aggression; feeding competition; folivory; frugivory; group size; terrestriality.
8.  Spatial movements and social networks in juvenile male song sparrows 
Behavioral Ecology  2011;23(1):141-152.
The time between fledging and breeding is a critical period in songbird ontogeny, but the behavior of young songbirds in the wild is relatively unstudied. The types of social relationships juveniles form with other individuals can provide insight into the process through which they learn complex behaviors crucial for survival, territory establishment, and mate attraction. We used radio telemetry to observe social associations of young male song sparrows (Melospiza melodia) from May to November. Juvenile song sparrows were frequently observed in social flocks and generally associated with more birds in the summer than in the autumn months. Most juvenile subjects formed stable social relationships with other birds and were seen with the same individual on up to 60% of the days observed. The strongest associations occurred with other juvenile males, and these individuals were often seen <1 m from the subject, even when the subject moved large distances between tracking observations. Associations also had long-term behavioral consequences as subjects were more likely to establish territories near their associates and learn shared song types. Our results indicate that male song sparrows spend a large percentage of the juvenile life stage forming social relationships and suggest that these associations may be important for the ecology of young birds and the ontogeny of their behaviors.
doi:10.1093/beheco/arr167
PMCID: PMC3242974  PMID: 22479140
9.  Eyespot display in the peacock butterfly triggers antipredator behaviors in naïve adult fowl 
Behavioral Ecology  2012;24(1):305-310.
Large conspicuous eyespots have evolved in multiple taxa and presumably function to thwart predator attacks. Traditionally, large eyespots were thought to discourage predator attacks because they mimicked eyes of the predators’ own predators. However, this idea is controversial and the intimidating properties of eyespots have recently been suggested to simply be a consequence of their conspicuousness. Some lepidopteran species include large eyespots in their antipredation repertoire. In the peacock butterfly, Inachis io, eyespots are typically hidden during rest and suddenly exposed by the butterfly when disturbed. Previous experiments have shown that small wild passerines are intimidated by this display. Here, we test whether eyespots also intimidate a considerably larger bird, domestic fowl, Gallus gallus domesticus, by staging interactions between birds and peacock butterflies that were sham-painted or had their eyespots painted over. Our results show that birds typically fled when peacock butterflies performed their display regardless of whether eyespots were visible or painted over. However, birds confronting butterflies with visible eyespots delayed their return to the butterfly, were more vigilant, and more likely to utter alarm calls associated with detection of ground-based predators, compared with birds confronting butterflies with eyespots painted over. Because production of alarm calls and increased vigilance are antipredation behaviors in the fowl, their reaction suggests that eyespots may elicit fear rather than just an aversion to conspicuous patterns. Our results, therefore, suggest that predators perceive large lepidopteran eyespots as belonging to the eyes of a potential predator.
doi:10.1093/beheco/ars167
PMCID: PMC3518204  PMID: 23243378
chicken; predator–prey interactions; startle display
10.  Geometric analysis of macronutrient selection in breeds of the domestic dog, Canis lupus familiaris  
Behavioral Ecology  2012;24(1):293-304.
Although many herbivores and omnivores have been shown to balance their intake of macronutrients when faced with nutritionally variable foods, study of this ability has been relatively neglected in carnivores, largely on the assumption that prey are less variable in nutrient composition than the foods of herbivores and omnivores and such mechanisms therefore unnecessary. We performed diet selection studies in 5 breeds of adult dog (Canis lupus familiaris) to determine whether these domesticated carnivores regulate macronutrient intake. Using nutritional geometry, we show that the macronutrient content of the diet was regulated to a protein:fat:carbohydrate ratio of approximately 30%:63%:7% by energy, a value that was remarkably similar across breeds. These values, which the analysis suggests are dietary target values, are based on intakes of dogs with prior experience of the respective experimental food combinations. On initial exposure to the diets (i.e., when naive), the same dogs self-selected a diet that was marginally but significantly lower in fat, suggesting that learning played a role in macronutrient regulation. In contrast with the tight regulation of macronutrient ratios, the total amount of food and energy eaten was far higher than expected based on calculated maintenance energy requirements. We interpret these results in relation to the evolutionary history of domestic dogs and compare them to equivalent studies on domestic cats.
doi:10.1093/beheco/ars168
PMCID: PMC3518205  PMID: 23243377
Canis lupus; carnivore nutrition; domestication; domestic dog; geometric framework; macronutrient regulation; predation; right-angled mixture triangles
11.  Green symphonies: a call for studies on acoustic communication in plants 
Behavioral Ecology  2012;24(4):789-796.
Sound and its use in communication have significantly contributed to shaping the ecology, evolution, behavior, and ultimately the success of many animal species. Yet, the ability to use sound is not a prerogative of animals. Plants may also use sound, but we have been unable to effectively research what the ecological and evolutionary implications might be in a plant’s life. Why should plants emit and receive sound and is there information contained in those sounds? I hypothesize that it would be particularly advantageous for plants to learn about the surrounding environment using sound, as acoustic signals propagate rapidly and with minimal energetic or fitness costs. In fact, both emission and detection of sound may have adaptive value in plants by affecting responses in other organisms, plants, and animals alike. The systematic exploration of the functional, ecological, and evolutionary significance of sound in the life of plants is expected to prompt a reinterpretation of our understanding of these organisms and galvanize the emergence of novel concepts and perspectives on their communicative complexity.
doi:10.1093/beheco/ars206
PMCID: PMC3677178  PMID: 23754865
behavior; bioacoustics; communication; frequencies; plants signaling; sound.
12.  Intrasexual competition in females: evidence for sexual selection? 
Behavioral Ecology  2011;22(6):1131-1140.
In spite of recent interest in sexual selection in females, debate exists over whether traits that influence female–female competition are sexually selected. This review uses female–female aggressive behavior as a model behavioral trait for understanding the evolutionary mechanisms promoting intrasexual competition, focusing especially on sexual selection. I employ a broad definition of sexual selection, whereby traits that influence competition for mates are sexually selected, whereas those that directly influence fecundity or offspring survival are naturally selected. Drawing examples from across animal taxa, including humans, I examine 4 predictions about female intrasexual competition based on the abundance of resources, the availability of males, and the direct or indirect benefits those males provide. These patterns reveal a key sex difference in sexual selection: Although females may compete for the number of mates, they appear to compete more so for access to high-quality mates that provide direct and indirect (genetic) benefits. As is the case in males, intrasexual selection in females also includes competition for essential resources required for access to mates. If mate quality affects the magnitude of mating success, then restricting sexual selection to competition for quantity of mates may ignore important components of fitness in females and underestimate the role of sexual selection in shaping female phenotype. In the future, understanding sex differences in sexual selection will require further exploration of the extent of mutual intrasexual competition and the incorporation of quality of mating success into the study of sexual selection in both sexes.
doi:10.1093/beheco/arr106
PMCID: PMC3199163  PMID: 22479137
aggression; female competition; intrasexual selection; mating success; sexual selection
13.  By any name, female–female competition yields differential mating success 
Behavioral Ecology  2011;22(6):1144-1146.
doi:10.1093/beheco/arr111
PMCID: PMC3199164  PMID: 22479138
female aggression; female competition; sexual selection
14.  What is sexual selection and the short herstory of female trait variation 
Behavioral Ecology  2011;22(6):1146-1147.
doi:10.1093/beheco/arr113
PMCID: PMC3199165  PMID: 22479139
sexual selection
15.  Do men’s faces really signal heritable immunocompetence? 
Behavioral Ecology  2012;24(3):579-589.
In the literature on human mate choice, masculine facial morphology is often proposed to be an intersexual signal of heritable immunocompetence, and hence an important component of men’s attractiveness. This hypothesis has received considerable research attention, and is increasingly treated as plausible and well supported. In this article, we propose that the strength of the evidence for the immunocompetence hypothesis is somewhat overstated, and that a number of difficulties have been under-acknowledged. Such difficulties include (1) the tentative nature of the evidence regarding masculinity and disease in humans, (2) the complex and uncertain picture emerging from the animal literature on sexual ornaments and immunity, (3) the absence of consistent, cross-cultural support for the predictions of the immunocompetence hypothesis regarding preferences for masculinized stimuli, and (4) evidence that facial masculinity contributes very little, if anything, to overall attractiveness in real men. Furthermore, alternative explanations for patterns of preferences, in particular the proposal that masculinity is primarily an intrasexual signal, have been neglected. We suggest that immunocompetence perspectives on masculinity, whilst appealing in many ways, should still be regarded as speculative, and that other perspectives–and other traits–should be the subject of greater attention for researchers studying human mate preferences.
doi:10.1093/beheco/ars092
PMCID: PMC3613940  PMID: 23555177
attractiveness; competition; faces; female choice; humans; immunocompetence; males; masculinity; mate preferences; testosterone
16.  Wind selectivity and partial compensation for wind drift among nocturnally migrating passerines 
Behavioral Ecology  2012;23(5):1089-1101.
A migrating bird’s response to wind can impact its timing, energy expenditure, and path taken. The extent to which nocturnal migrants select departure nights based on wind (wind selectivity) and compensate for wind drift remains unclear. In this paper, we determine the effect of wind selectivity and partial drift compensation on the probability of successfully arriving at a destination area and on overall migration speed. To do so, we developed an individual-based model (IBM) to simulate full drift and partial compensation migration of juvenile Willow Warblers (Phylloscopus trochilus) along the southwesterly (SW) European migration corridor to the Iberian coast. Various degrees of wind selectivity were tested according to how large a drift angle and transport cost (mechanical energy per unit distance) individuals were willing to tolerate on departure after dusk. In order to assess model results, we used radar measurements of nocturnal migration to estimate the wind selectivity and proportional drift among passerines flying in SW directions. Migration speeds in the IBM were highest for partial compensation populations tolerating at least 25% extra transport cost compared to windless conditions, which allowed more frequent departure opportunities. Drift tolerance affected migration speeds only weakly, whereas arrival probabilities were highest with drift tolerances below 20°. The radar measurements were indicative of low drift tolerance, 25% extra transport cost tolerance and partial compensation. We conclude that along migration corridors with generally nonsupportive winds, juvenile passerines should not strictly select supportive winds but partially compensate for drift to increase their chances for timely and accurate arrival.
doi:10.1093/beheco/ars078
PMCID: PMC3431116  PMID: 22936843
individual-based model; partial compensation; passerine migration; vector orientation; wind drift; wind selectivity
17.  Resource quality or competition: why increase resource acceptance in the presence of conspecifics? 
Behavioral Ecology  2011;22(4):730-737.
Some animal species increase resource acceptance rates in the presence of conspecifics. Such responses may be adaptive if the presence of conspecifics is a reliable indicator of resource quality. Similarly, these responses could represent an adaptive reduction in choosiness under high levels of scramble competition. Although high resource quality and high levels of scramble competition should both favor increased resource acceptance, the contexts in which the increase occurs should differ. In this paper, we tested the effect of social environment on egg-laying and aggressive behavior in the walnut fly, Rhagoletis juglandis, in multiple contexts to determine whether increased resource acceptance in the presence of conspecifics was better viewed as a response to increased host quality or increased competition. We found that grouped females oviposit more readily than isolated females when provided small (low-quality) artificial hosts but not when provided large (high-quality) artificial hosts, indicating that conspecific presence reduces choosiness. Increased resource acceptance was observed even when exposure to conspecifics was temporally or spatially separate from exposure to the resource. Finally, we found that individuals showed reduced aggression after being housed in groups, as expected under high levels of scramble competition. These results indicate that the pattern of resource acceptance in the presence of conspecifics may be better viewed as a response to increased scramble competition rather than as a response to public information about resource quality.
doi:10.1093/beheco/arr042
PMCID: PMC3117901  PMID: 22479135
conspecific attraction; experience; host choice; Rhagoletis; social facilitation; social information
18.  Progressive parenting behavior in wild golden lion tamarins 
Behavioral Ecology  2011;22(4):745-754.
Young primates in the family Callitrichidae (the marmosets and tamarins) receive extensive and relatively prolonged care from adults. Of particular note, callitrichid young are routinely provisioned until well after weaning by parents and helpers, which is in stark contrast to typical juvenile primates, who must acquire most of their food independently once they are weaned. Adults of some callitrichid species produce a specialized vocalization that encourages immature group members to take proffered food from the caller. Here, I report that wild adult golden lion tamarins (Leontopithecus rosalia) not only used this food-offering call to encourage young, mobile offspring to approach and take captured prey from them, but as the young began to spend significant time foraging for themselves and to acquire prey by independent means, the frequency of these vocalizations in the context of food transfer declined. Adults then began to use food-offering calls in a novel context: to direct juveniles to foraging sites that contained hidden prey that the adults had found but not captured. During the period of these most frequent adult-directed prey captures, the independent prey-capture success rates of juveniles improved. Thus, adults modified their provisioning behavior in a progressive developmentally sensitive manner that may have facilitated learning how to find food. I hypothesize that as a result of these demonstrations by adults, juveniles either may be encouraged to continue foraging despite low return rates or to learn the properties of productive prey-foraging substrates in a complex environment.
doi:10.1093/beheco/arr055
PMCID: PMC3117902  PMID: 22479136
golden lion tamarin; infant development; parenting behavior; prey foraging; provisioning; teaching
19.  Linking amphibian call structure to the environment: the interplay between phenotypic flexibility and individual attributes 
Behavioral Ecology  2011;22(3):520-526.
The structure of the environment surrounding signal emission produces different patterns of degradation and attenuation. The expected adjustment of calls to ensure signal transmission in an environment was formalized in the acoustic adaptation hypothesis. Within this framework, most studies considered anuran calls as fixed attributes determined by local adaptations. However, variability in vocalizations as a product of phenotypic expression has also been reported. Empirical evidence supporting the association between environment and call structure has been inconsistent, particularly in anurans. Here, we identify a plausible causal structure connecting environment, individual attributes, and temporal and spectral adjustments as direct or indirect determinants of the observed variation in call attributes of the frog Hypsiboas pulchellus. For that purpose, we recorded the calls of 40 males in the field, together with vegetation density and other environmental descriptors of the calling site. Path analysis revealed a strong effect of habitat structure on the temporal parameters of the call, and an effect of site temperature conditioning the size of organisms calling at each site and thus indirectly affecting the dominant frequency of the call. Experimental habitat modification with a styrofoam enclosure yielded results consistent with field observations, highlighting the potential role of call flexibility on detected call patterns. Both, experimental and correlative results indicate the need to incorporate the so far poorly considered role of phenotypic plasticity in the complex connection between environmental structure and individual call attributes.
doi:10.1093/beheco/arr011
PMCID: PMC3078827  PMID: 22479134
acoustic adaptation hypothesis; call adjustment; Hypsiboas pulchellus; local adaptation; phenotypic plasticity; scale
20.  Colony variation in the collective regulation of foraging by harvester ants 
Behavioral Ecology  2011;22(2):429-435.
This study investigates variation in collective behavior in a natural population of colonies of the harvester ant, Pogonomyrmex barbatus. Harvester ant colonies regulate foraging activity to adjust to current food availability; the rate at which inactive foragers leave the nest on the next trip depends on the rate at which successful foragers return with food. This study investigates differences among colonies in foraging activity and how these differences are associated with variation among colonies in the regulation of foraging. Colonies differ in the baseline rate at which patrollers leave the nest, without stimulation from returning ants. This baseline rate predicts a colony's foraging activity, suggesting there is a colony-specific activity level that influences how quickly any ant leaves the nest. When a colony's foraging activity is high, the colony is more likely to regulate foraging. Moreover, colonies differ in the propensity to adjust the rate of outgoing foragers to the rate of forager return. Naturally occurring variation in the regulation of foraging may lead to variation in colony survival and reproductive success.
doi:10.1093/beheco/arq218
PMCID: PMC3071749  PMID: 22479133
behavioral reaction norm; behavioral syndrome; individual variation
21.  Terminal investment and senescence in rhesus macaques (Macaca mulatta) on Cayo Santiago 
Behavioral Ecology  2010;21(5):972-978.
Long-lived iteroparous species often show aging-related changes in reproduction that may be explained by 2 non-mutually exclusive hypotheses. The terminal investment hypothesis predicts increased female reproductive effort toward the end of the life span, as individuals have little to gain by reserving effort for the future. The senescence hypothesis predicts decreased female reproductive output toward the end of the life span due to an age-related decline in body condition. Nonhuman primates are ideal organisms for testing these hypotheses, as they are long lived and produce altricial offspring heavily dependent on maternal investment. In this study, we integrated 50 years of continuous demographic records for the Cayo Santiago rhesus macaque (Macaca mulatta) population with new morphometric and behavioral data to test the senescence and terminal investment hypotheses. We examined relationships between maternal age and activity, mother and infant body condition, interbirth intervals, measures of behavioral investment in offspring, and offspring survival and fitness to test for age-associated declines in reproduction that would indicate senescence, and for age-associated increases in maternal effort that would indicate terminal investment. Compared with younger mothers, older mothers had lower body mass indices and were less active, had longer interbirth intervals, and spent more time in contact with infants, but had infants of lower masses and survival rates. Taken together, our results provide strong evidence for the occurrence of reproductive senescence in free-ranging female rhesus macaques but are also consistent with some of the predictions of the terminal investment hypothesis.
doi:10.1093/beheco/arq098
PMCID: PMC2920293  PMID: 22475990
aging; life history; maternal investment; offspring fitness; reproductive senescence; rhesus macaques
22.  A behavioral mechanism underlying ecological divergence in the malaria mosquito Anopheles gambiae 
Behavioral Ecology  2010;21(5):1087-1092.
Disruptive selection mediated by predation on aquatic immature stages has been proposed as a major force driving ecological divergence and fostering speciation between the M and S molecular forms of the African malaria mosquito, Anopheles gambiae. In the dry savannahs of West Africa where both molecular forms co-occur, the S form thrives in temporary pools filled with rainwater, whereas the M form preferentially breeds in permanent freshwater habitats where predator pressure is higher. Here, we explored the proximal mechanisms by which predation may contribute to habitat segregation between molecular forms using progeny of female mosquitoes captured in Burkina Faso. We show that the S form suffers higher predation rates than the M form when simultaneously exposed to the widespread predator, Anisops jaczewskii in an experimental arena. Furthermore, behavioral plasticity induced by exposure to the predator was observed in the M form, but not in the S form, and may partially explain its habitat use and ecological divergence from the S form. We discuss the role of adaptive phenotypic plasticity in allowing successful colonization of a new ecological niche by the M form and highlight further research areas that need to be addressed for a better understanding of the ultimate mechanisms underlying ecological speciation in this pest of major medical importance.
doi:10.1093/beheco/arq114
PMCID: PMC2920295  PMID: 22476108
adaptation; Anopheles gambiae; behavior; habitat divergence; mosquito; notonectidae; phenotypic plasticity, predation; speciation
23.  Birds flee en mass from New Year’s Eve fireworks 
Behavioral Ecology  2011;22(6):1173-1177.
Anthropogenic disturbances of wildlife, such as noise, human presence, hunting activity, and motor vehicles, are becoming an increasing concern in conservation biology. Fireworks are an important part of celebrations worldwide, and although humans often find fireworks spectacular, fireworks are probably perceived quite differently by wild animals. Behavioral responses to fireworks are difficult to study at night, and little is known about the negative effects fireworks may have on wildlife. Every year, thousands of tons of fireworks are lit by civilians on New Year’s Eve in the Netherlands. Using an operational weather radar, we quantified the reaction of birds to fireworks in 3 consecutive years. Thousands of birds took flight shortly after midnight, with high aerial movements lasting at least 45 min and peak densities measured at 500 m altitude. The highest densities were observed over grasslands and wetlands, including nature conservation sites, where thousands of waterfowl rest and feed. The Netherlands is the most important winter staging area for several species of waterfowl in Europe. We estimate that hundreds of thousands of birds in the Netherlands take flight due to fireworks. The spatial and temporal extent of disturbance is substantial, and potential consequences are discussed. Weather radar provides a unique opportunity to study the reaction of birds to fireworks, which has otherwise remained elusive.
doi:10.1093/beheco/arr102
PMCID: PMC3199162  PMID: 22476363
birds; disturbance; fireworks; flight; Natura 2000; radar; waterfowl
24.  Color signal information content and the eye of the beholder: a case study in the rhesus macaque 
Behavioral Ecology  2010;21(4):739-746.
Animal coloration has provided many classical examples of both natural and sexual selection. Methods to study color signals range from human assessment to models of receiver vision, with objective measurements commonly involving spectrometry or digital photography. However, signal assessment by a receiver is not objective but linked to receiver perception. Here, we use standardized digital photographs of female rhesus macaque (Macaca mulatta) face and hindquarter regions, combined with estimates of the timing of the female fertile phase, to assess how color varies with respect to this timing. We compare objective color measures (camera sensor responses) with models of rhesus vision (retinal receptor stimulation and visual discriminability). Due to differences in spectral separation between camera sensors and rhesus receptors, camera measures overestimated color variation and underestimated luminance variation compared with rhesus macaques. Consequently, objective digital camera measurements can produce statistically significant relationships that are probably undetectable to rhesus macaques, and hence biologically irrelevant, while missing variation in the measure that may be relevant. Discrimination modeling provided results that were most meaningful (as they were directly related to receiver perception) and were easiest to relate to underlying physiology. Further, this gave new insight into the function of such signals, revealing perceptually salient signal luminance changes outside of the fertile phase that could potentially enhance paternity confusion. Our study demonstrates how, even for species with similar visual systems to humans, models of vision may provide more accurate and meaningful information on the form and function of visual signals than objective color measures do.
doi:10.1093/beheco/arq047
PMCID: PMC2892627  PMID: 22475874
color signaling; communication; receiver perception; visual discrimination threshold modeling
25.  Feeding decisions of eastern bluebirds are situationally influenced by fledgling plumage color 
Behavioral Ecology  2010;21(3):456-464.
The relative amount of resources that avian parents provide to individual offspring within a brood represents a strategy that can have large effects on reproductive success. We tested whether parental feeding decisions of eastern bluebirds Sialia sialis are influenced by offspring plumage color by presenting pairs of differently colored fledglings side by side and observing how they were provisioned by parents. After a control period, we manipulated blue plumage color so that one sibling in each trial became relatively dark and one became relatively bright. During neither the control nor the experimental periods did either parent consistently feed naturally brighter or experimentally brightened sons more than drab sons. Under specific circumstances, however, both parents directed a higher proportion of their feeding attempts to more brightly colored sons. Paternal feeding attempts to brighter offspring during both the control and experimental periods increased in relation to the brightness of these fledglings relative to their brothers. Maternal feeding decision, on the other hand, were influenced by numerous variables during control and experimental periods including the date of the trial, the difference in mass between fledglings, the feeding behavior of fathers during the trial, the relative investment by fathers during the nestling stage, and the amount of UV chroma in fledgling plumage. Taken together, these results suggest that equal provisioning of offspring is the strategy most commonly adopted by eastern bluebirds but more brightly colored offspring will be fed preferentially when resources for offspring are limited.
doi:10.1093/beheco/arq002
PMCID: PMC2854528  PMID: 22476433
color; juvenal plumage; ornaments; parent–offspring interactions; plumage; relative parental investment; Sialia sialis

Results 1-25 (37)