Search tips
Search criteria

Results 1-25 (454)

Clipboard (0)

Select a Filter Below

Year of Publication
1.  Delivery of antiviral small interfering RNA with gold nanoparticles inhibits dengue virus infection in vitro 
The Journal of General Virology  2014;95(Pt 8):1712-1722.
Dengue virus (DENV) infection in humans can cause flu-like illness, life-threatening haemorrhagic fever or even death. There is no specific anti-DENV therapeutic or approved vaccine currently available, partially due to the possibility of antibody-dependent enhancement reaction. Small interfering RNAs (siRNAs) that target specific viral genes are considered a promising therapeutic alternative against DENV infection. However, in vivo, siRNAs are vulnerable to degradation by serum nucleases and rapid renal excretion due to their small size and anionic character. To enhance siRNA delivery and stability, we complexed anti-DENV siRNAs with biocompatible gold nanoparticles (AuNPs) and tested them in vitro. We found that cationic AuNP–siRNA complexes could enter Vero cells and significantly reduce DENV serotype 2 (DENV-2) replication and infectious virion release under both pre- and post-infection conditions. In addition, RNase-treated AuNP–siRNA complexes could still inhibit DENV-2 replication, suggesting that AuNPs maintained siRNA stability. Collectively, these results demonstrated that AuNPs were able to efficiently deliver siRNAs and control infection in vitro, indicating a novel anti-DENV strategy.
PMCID: PMC4103068  PMID: 24828333
2.  Poliomyelitis in transgenic mice expressing CD155 under the control of the Tage4 promoter after oral and parenteral poliovirus inoculation 
The Journal of General Virology  2014;95(Pt 8):1668-1676.
An important step in poliovirus (PV) infection by the oral route in humans is replication of the virus in lymphatic tissues of the gastrointestinal (GI) tract, thought to be mainly in the Peyer’s patches of the small intestine. No immunocompetent transgenic (tg) mice that express human PV receptor (CD155) under the control of different promoters can be infected orally. The mouse orthologue of human CD155 is Tage4, a protein expressed at the surface of enterocytes and in the Peyer’s patches. We describe here the generation of a tg mouse model in which the Tage4 promoter was used to drive expression of the human PV receptor-coding region (Tage4-CD155tg mice). In this model, CD155 expression was observed by immunostaining in different regions in the Peyer’s patches but not in their germinal centres. Although a similar pattern of staining was observed between 3- and 6-week-old Tage4-CD155tg mice, poliomyelitis was only seen in the younger mice after PV infection by the oral route. When compared with TgPVR21 mice that expressed CD155 driven by its human promoter, 3-week-old Tage4-CD155tg mice were more susceptible to gut infection and paralysis following feeding with PV. Also, Tage4-CD155tg mice exhibited higher susceptibility to poliomyelitis after parenteral inoculation of PV. Remarkably, the LD50 after intracerebral inoculation of PV was similar in both CD155 tg mouse strains. The CD155 tg mouse model reported here, although moderately susceptible to oral infection, may be suitable to study mechanisms of PV replication in the gastrointestinal tract and to dissect important aspects of PV neuroinvasiveness.
PMCID: PMC4103066  PMID: 24784416
3.  Origin of hepatitis C virus genotype 3 in Africa as estimated through an evolutionary analysis of the full-length genomes of nine subtypes, including the newly sequenced 3d and 3e 
The Journal of General Virology  2014;95(Pt 8):1677-1688.
We characterized the full-length genomes of nine hepatitis C virus genotype 3 (HCV-3) isolates: QC7, QC8, QC9, QC10, QC34, QC88, NE145, NE274 and 811. To the best of our knowledge, NE274 and NE145 were the first full-length genomes for confirming the provisionally assigned subtypes 3d and 3e, respectively, whereas 811 represented the first HCV-3 isolate that had its extreme 3′ UTR terminus sequenced. Based on these full-length genomes, together with 42 references representing eight assigned subtypes and an unclassified variant of HCV-3, and 10 sequences of six other genotypes, a timescaled phylogenetic tree was reconstructed after an evolutionary analysis using a coalescent Bayesian procedure. The results indicated that subtypes 3a, 3d and 3e formed a subset with a common ancestor dated to ~202.89 [95 % highest posterior density (HPD): 160.11, 264.6] years ago. The analysis of all of the HCV-3 sequences as a single lineage resulted in the dating of the divergence time to ~457.81 (95 % HPD: 350.62, 587.53) years ago, whereas the common ancestor of all of the seven HCV genotypes dated to ~780.86 (95 % HPD: 592.15, 1021.34) years ago. As subtype 3h and the unclassified variant were relatives, and represented the oldest HCV-3 lineages with origins in Africa and the Middle East, these findings may indicate the ancestral origin of HCV-3 in Africa. We speculate that the ancestral HCV-3 strains may have been brought to South Asia from Africa by land and/or across the sea to result in its indigenous circulation in that region. The spread was estimated to have occurred in the era after Vasco da Gama had completed his expeditions by sailing along the eastern coast of Africa to India. However, before this era, Arabians had practised slave trading from Africa to the Middle East and South Asia for centuries, which may have mediated the earliest spread of HCV-3.
PMCID: PMC4103067  PMID: 24795446
4.  A hydrophobic domain within the small capsid protein of Kaposi’s sarcoma-associated herpesvirus is required for assembly 
The Journal of General Virology  2014;95(Pt 8):1755-1769.
Kaposi’s sarcoma-associated herpesvirus (KSHV) capsids can be produced in insect cells using recombinant baculoviruses for protein expression. All six capsid proteins are required for this process to occur and, unlike for alphaherpesviruses, the small capsid protein (SCP) ORF65 is essential for this process. This protein decorates the capsid shell by virtue of its interaction with the capsomeres. In this study, we have explored the SCP interaction with the major capsid protein (MCP) using GFP fusions. The assembly site within the nucleus of infected cells was visualized by light microscopy using fluorescence produced by the SCP–GFP polypeptide, and the relocalization of the SCP to these sites was evident only when the MCP and the scaffold protein were also present – indicative of an interaction between these proteins that ensures delivery of the SCP to assembly sites. Biochemical assays demonstrated a physical interaction between the SCP and MCP, and also between this complex and the scaffold protein. Self-assembly of capsids with the SCP–GFP polypeptide was evident. Potentially, this result can be used to engineer fluorescent KSHV particles. A similar SCP–His6 polypeptide was used to purify capsids from infected cell lysates using immobilized affinity chromatography and to directly label this protein in capsids using chemically derivatized gold particles. Additional studies with SCP–GFP polypeptide truncation mutants identified a domain residing between aa 50 and 60 of ORF65 that was required for the relocalization of SCP–GFP to nuclear assembly sites. Substitution of residues in this region and specifically at residue 54 with a polar amino acid (lysine) disrupted or abolished this localization as well as capsid assembly, whereas substitution with non-polar residues did not affect the interaction. Thus, this study identified a small conserved hydrophobic domain that is important for the SCP–MCP interaction.
PMCID: PMC4103069  PMID: 24824860
5.  Complex proteinopathy with accumulations of prion protein, hyperphosphorylated tau, α-synuclein and ubiquitin in experimental bovine spongiform encephalopathy of monkeys 
The Journal of General Virology  2014;95(Pt 7):1612-1618.
Proteins aggregate in several slowly progressive neurodegenerative diseases called ‘proteinopathies’. Studies with cell cultures and transgenic mice overexpressing mutated proteins suggested that aggregates of one protein induced misfolding and aggregation of other proteins as well – a possible common mechanism for some neurodegenerative diseases. However, most proteinopathies are ‘sporadic’, without gene mutation or overexpression. Thus, proteinopathies in WT animals genetically close to humans might be informative. Squirrel monkeys infected with the classical bovine spongiform encephalopathy agent developed an encephalopathy resembling variant Creutzfeldt–Jakob disease with accumulations not only of abnormal prion protein (PrPTSE), but also three other proteins: hyperphosphorylated tau (p-tau), α-synuclein and ubiquitin; β-amyloid protein (Aβ) did not accumulate. Severity of brain lesions correlated with spongiform degeneration. No amyloid was detected. These results suggested that PrPTSE enhanced formation of p-tau and aggregation of α-synuclein and ubiquitin, but not Aβ, providing a new experimental model for neurodegenerative diseases associated with complex proteinopathies.
PMCID: PMC4059271  PMID: 24769839
6.  Relationship between genotypes and serotypes of genogroup 1 recoviruses: a model for human norovirus antigenic diversity 
The Journal of General Virology  2014;95(Pt 7):1469-1478.
Human norovirus (NoV) research greatly relies on cell culture-propagable surrogate caliciviruses, including murine NoVs and the prototype ‘recovirus’ (ReCV), Tulane virus. However, the extreme biological diversity of human NoVs cannot be modelled by a uniform group of viruses or single isolate. Based on a diverse group of recently described ReCVs, a more advanced model reflecting human NoV biological diversity is currently under development. Here, we have reported the genotypic and serotypic relationships among 10 G1 ReCV isolates, including Tulane virus and nine other recent cell culture-adapted strains. Based on the amino acid sequences of virus capsid protein, VP1, and classification constraints established for NoVs, G1 ReCVs were separated into three genotypes, with variable organization of the three open reading frames. Interestingly, cross-neutralization plaque assays revealed the existence of four distinct serotypes, two of which were detected among the G1.2 strains. The amino acid (aa) difference between the two G1.2 ReCV serotypes (12%) was less than the minimum 13 % difference established between NoV genotypes. Interestingly, one of the G1.3 ReCVs was equally neutralized by antisera raised against the G1.3 (6 % aa difference) and G1.1 (25 % aa difference) representative strains. These results imply the existence of a large number of human NoV serotypes, but also shared cross-neutralization epitopes between some strains of different genotypes. In conclusion, the newly developed ReCV surrogate model can be applied to address biologically relevant questions pertaining to enteric CV diversity.
PMCID: PMC4059267  PMID: 24700099
7.  Full-length genomes of 16 hepatitis C virus genotype 1 isolates representing subtypes 1c, 1d, 1e, 1g, 1h, 1i, 1j and 1k, and two new subtypes 1m and 1n, and four unclassified variants reveal ancestral relationships among subtypes 
The Journal of General Virology  2014;95(Pt 7):1479-1487.
We characterized the full-length genomes of 16 distinct hepatitis C virus genotype 1 (HCV-1) isolates. Among them, four represented the first full-length genomes for subtypes 1d (QC103), 1i (QC181), 1j (QC329) and 1k (QC82), and another four corresponded to subtypes 1c (QC165), 1g (QC78), 1h (QC156) and 1e (QC172). Both QC196 and QC87 were assigned into a new subtype 1m, and QC113 and QC74 into another new subtype 1n. The remaining four (QC60, QC316, QC152 and QC180) did not classify among the established subtypes and corresponded to four new lineages. Subtypes 1j, 1k, 1m, 1n and the unclassified isolate QC60 were identified in Haitian immigrants. In the updated HCV nomenclature of 2005, a total of 12 subtypes of HCV-1 were designated. Including the data from the present study, all but subtype 1f now have their full-length genomes defined. Further analysis of partial NS5B sequences available in GenBank denoted a total of 21 unclassified lineages, indicating the taxonomic complexity of HCV-1. Among them, six have had their full-length genomes characterized. Based on the available full-length genome sequences, a timescale phylogenetic tree was reconstructed which estimated important time points in the evolution of HCV-1. It revealed that subtype 1a diverged from its nearest relatives 135 years ago and subtype 1b diverged from its nearest relatives 112 years ago. When subtypes 1a, 1j, 1k, 1m, 1n and six close relatives (all but one from Haitian immigrants) were considered as a whole, the divergence time was 176 years ago. This diversification was concurrent with the time period when the transatlantic slave trade was active. When taking all the HCV-1 isolates as a single lineage, the divergence time was 326 years ago. This analysis suggested the existence of a recent common ancestor for subtype 1a and the Haitian variants; a co-origin for subtypes 1b, 1i and 1d was also implied.
PMCID: PMC4059268  PMID: 24718832
8.  Differential restriction patterns of mRNA decay factor AUF1 during picornavirus infections 
The Journal of General Virology  2014;95(Pt 7):1488-1492.
During infection by picornaviruses, the cellular environment is modified to favour virus replication. This includes the modification of specific host proteins, including the recently discovered viral proteinase cleavage of mRNA decay factor AU-rich binding factor 1 (AUF1). This cellular RNA-binding protein was shown previously to act as a restriction factor during poliovirus, rhinovirus and coxsackievirus infection. During infection by these viruses, AUF1 relocalizes to the cytoplasm and is cleaved by the viral 3C/3CD proteinase. In this study, we demonstrated that replication of encephalomyocarditis virus (EMCV), a picornavirus belonging to the genus Cardiovirus, is AUF1 independent. During EMCV infection, AUF1 relocalized to the cytoplasm; however, unlike what is seen during enterovirus infections, AUF1 was not cleaved to detectable levels, even at late times after infection. This suggests that AUF1 does not act broadly as an inhibitor of picornavirus infections but may instead act as a selective restriction factor targeting members of the genus Enterovirus.
PMCID: PMC4059269  PMID: 24722678
9.  Molecular characterization of avian influenza H5N1 virus in Egypt and the emergence of a novel endemic subclade 
The Journal of General Virology  2014;95(Pt 7):1444-1463.
Clade 2.2 highly pathogenic H5N1 viruses have been in continuous circulation in Egyptian poultry since 2006. Their persistence caused significant genetic drift that led to the reclassification of these viruses into subclades 2.2.1 and Here, we conducted full-genome sequence and phylogenetic analyses of 45 H5N1 isolated during 2006–2013 through systematic surveillance in Egypt, and 53 viruses that were sequenced previously and available in the public domain. Results indicated that H5N1 viruses in Egypt continue to evolve and a new distinct cluster has emerged. Mutations affecting viral virulence, pathogenicity, transmission, receptor-binding preference and drug resistance were studied. In light of our findings that H5N1 in Egypt continues to evolve, surveillance and molecular studies need to be sustained.
PMCID: PMC4059266  PMID: 24722680
10.  Consequences of in vitro host shift for St. Louis encephalitis virus 
The Journal of General Virology  2014;95(Pt 6):1281-1288.
Understanding the potential for host range shifts and expansions of RNA viruses is critical to predicting the evolutionary and epidemiological paths of these pathogens. As arthropod-borne viruses (arboviruses) experience frequent spillover from their amplification cycles and are generalists by nature, they are likely to experience a relatively high frequency of success in a range of host environments. Despite this, the potential for host expansion, the genetic correlates of adaptation to novel environments and the costs of such adaptations in originally competent hosts are still not characterized fully for arboviruses. In the studies presented here, we utilized experimental evolution of St. Louis encephalitis virus (SLEV; family Flaviviridae, genus Flavivirus) in vitro in the Dermacentor andersoni line of tick cells to model adaptation to a novel invertebrate host. Our results demonstrated that levels of adaptation and costs in alternate hosts are highly variable among lineages, but also that significant fitness increases in tick cells are achievable with only modest change in consensus genetic sequence. In addition, although accumulation of diversity may at times buffer against phenotypic costs within the SLEV swarm, an increased proportion of variants with an impaired capacity to infect and spread on vertebrate cell culture accumulated with tick cell passage. Isolation and characterization of a subset of these variants implicates the NS3 gene as an important host range determinant for SLEV.
PMCID: PMC4027038  PMID: 24643879
11.  Palmitoylation is required for intracellular trafficking of influenza B virus NB protein and efficient influenza B virus growth in vitro 
The Journal of General Virology  2014;95(Pt 6):1211-1220.
All influenza viruses bud and egress from lipid rafts within the apical plasma membrane of infected epithelial cells. As a result, all components of progeny virions must be transported to these lipid rafts for assembly and budding. Although the mechanism of transport for other influenza proteins has been elucidated, influenza B virus (IBV) glycoprotein NB subcellular localization and transport are not understood completely. To address the aforementioned properties of NB, a series of trafficking experiments were conducted. Here, we showed that NB co-localized with markers specific for the endoplasmic reticulum (ER) and Golgi region. The data from chemical treatment of NB-expressing cells by Brefeldin A, a fungal antibiotic and a known chemical inhibitor of the protein secretory pathway, further confirmed that NB is transported through the ER–Golgi pathway as it restricted NB localization to the perinuclear region. Using NB deletion mutants, the hydrophobic transmembrane domain was identified as being required for NB transport to the plasma membrane. Furthermore, palmitoylation was also required for transport of NB to the plasma membrane. Systematic mutation of cysteines to serines in NB demonstrated that cysteine 49, likely in a palmitoylated form, is also required for transport to the plasma membrane. Surprisingly, further analysis demonstrated that in vitro replication of NBC49S mutant virus was delayed relative to the parental IBV. The results demonstrated that NB is the third influenza virus protein to have been shown to be palmitoylated and together these findings may aid in future studies aimed at elucidating the function of NB.
PMCID: PMC4027035  PMID: 24671751
12.  A C-terminal, cysteine-rich site in poliovirus 2CATPase is required for morphogenesis 
The Journal of General Virology  2014;95(Pt 6):1255-1265.
The morphogenesis of viruses belonging to the genus Enterovirus in the family Picornaviridae is still poorly understood despite decades-long investigations. However, we recently provided evidence that 2CATPase gives specificity to poliovirus encapsidation through an interaction with capsid protein VP3. The polypeptide 2CATPase is a highly conserved non-structural protein of enteroviruses with important roles in RNA replication, encapsidation and uncoating. We have identified a site (K279/R280) near the C terminus of the polypeptide that is required for morphogenesis. The aim of the current project was to search for additional functional sites near the C terminus of the 2CATPase polypeptide, with particular interest in those that are required for encapsidation. We selected for analysis a cysteine-rich site of the polypeptide and constructed four mutants in which cysteines or a histidine was changed to an alanine. The RNA transcripts were transfected into HeLa cells yielding two lethal, one temperature-sensitive and one quasi-infectious mutants. All four mutants exhibited normal protein translation in vitro and three of them possessed severe RNA replication defects. The quasi-infectious mutant (C286A) yielded variants with a pseudo-reversion at the original site (A286D), but some also contained one additional mutation: A138V or M293V. The temperature-sensitive mutant (C272A/H273A) exhibited an encapsidation and possibly also an uncoating defect at 37 °C. Variants of this mutant revealed suppressor mutations at three different sites in the 2CATPase polypeptide: A138V, M293V and K295R. We concluded that the cysteine-rich site near the C terminus of 2CATPase is involved in encapsidation, possibly through an interaction with an upstream segment located between boxes A and B of the nucleotide-binding domain.
PMCID: PMC4027037  PMID: 24558221
13.  Human pegivirus RNA is found in multiple blood mononuclear cells in vivo and serum-derived viral RNA-containing particles are infectious in vitro 
The Journal of General Virology  2014;95(Pt 6):1307-1319.
Human pegivirus (HPgV; previously called GB virus C/hepatitis G virus) has limited pathogenicity, despite causing persistent infection, and is associated with prolonged survival in human immunodeficiency virus-infected individuals. Although HPgV RNA is found in and produced by T- and B-lymphocytes, the primary permissive cell type(s) are unknown. We quantified HPgV RNA in highly purified CD4+ and CD8+ T-cells, including naïve, central memory and effector memory populations, and in B-cells (CD19+), NK cells (CD56+) and monocytes (CD14+) using real-time reverse transcription-PCR. Single-genome sequencing was performed on viruses within individual cell types to estimate genetic diversity among cell populations. HPgV RNA was present in CD4+ and CD8+ T-lymphocytes (nine of nine subjects), B-lymphocytes (seven of ten subjects), NK cells and monocytes (both four of five). HPgV RNA levels were higher in naïve (CD45RA+) CD4+ cells than in central memory and effector memory cells (P<0.01). HPgV sequences were highly conserved among subjects (0.117±0.02 substitutions per site; range 0.58–0.14) and within subjects (0.006±0.003 substitutions per site; range 0.006–0.010). The non-synonymous/synonymous substitution ratio was 0.07, suggesting a low selective pressure. Carboxyfluorescein succinimidyl ester (CFSE)-labelled HPgV RNA-containing particles precipitated by a commercial exosome isolation reagent delivered CSFE to uninfected monocytes, NK cells and T- and B-lymphocytes, and HPgV RNA was transferred to PBMCs with evidence of subsequent virus replication. Thus, HPgV RNA-containing serum particles including microvesicles may contribute to delivery of HPgV to PBMCs in vivo, explaining the apparent broad tropism of this persistent human RNA virus.
PMCID: PMC4027039  PMID: 24668525
14.  Arboretum and Puerto Almendras viruses: two novel rhabdoviruses isolated from mosquitoes in Peru 
The Journal of General Virology  2014;95(Pt 4):787-792.
Arboretum virus (ABTV) and Puerto Almendras virus (PTAMV) are two mosquito-associated rhabdoviruses isolated from pools of Psorophora albigenu and Ochlerotattus fulvus mosquitoes, respectively, collected in the Department of Loreto, Peru, in 2009. Initial tests suggested that both viruses were novel rhabdoviruses and this was confirmed by complete genome sequencing. Analysis of their 11 482 nt (ABTV) and 11 876 (PTAMV) genomes indicates that they encode the five canonical rhabdovirus structural proteins (N, P, M, G and L) with an additional gene (U1) encoding a small hydrophobic protein. Evolutionary analysis of the L protein indicates that ABTV and PTAMV are novel and phylogenetically distinct rhabdoviruses that cannot be classified as members of any of the eight currently recognized genera within the family Rhabdoviridae, highlighting the vast diversity of this virus family.
PMCID: PMC3973475  PMID: 24421116
15.  Isolation, propagation, genome analysis and epidemiology of HKU1 betacoronaviruses 
The Journal of General Virology  2014;95(Pt 4):836-848.
From 1 January 2009 to 31 May 2013, 15 287 respiratory specimens submitted to the Clinical Virology Laboratory at the Children’s Hospital Colorado were tested for human coronavirus RNA by reverse transcription-PCR. Human coronaviruses HKU1, OC43, 229E and NL63 co-circulated during each of the respiratory seasons but with significant year-to-year variability, and cumulatively accounted for 7.4–15.6 % of all samples tested during the months of peak activity. A total of 79 (0.5 % prevalence) specimens were positive for human betacoronavirus HKU1 RNA. Genotypes HKU1 A and B were both isolated from clinical specimens and propagated on primary human tracheal–bronchial epithelial cells cultured at the air–liquid interface and were neutralized in vitro by human intravenous immunoglobulin and by polyclonal rabbit antibodies to the spike glycoprotein of HKU1. Phylogenetic analysis of the deduced amino acid sequences of seven full-length genomes of Colorado HKU1 viruses and the spike glycoproteins from four additional HKU1 viruses from Colorado and three from Brazil demonstrated remarkable conservation of these sequences with genotypes circulating in Hong Kong and France. Within genotype A, all but one of the Colorado HKU1 sequences formed a unique subclade defined by three amino acid substitutions (W197F, F613Y and S752F) in the spike glycoprotein and exhibited a unique signature in the acidic tandem repeat in the N-terminal region of the nsp3 subdomain. Elucidating the function of and mechanisms responsible for the formation of these varying tandem repeats will increase our understanding of the replication process and pathogenicity of HKU1 and potentially of other coronaviruses.
PMCID: PMC3973476  PMID: 24394697
16.  The ORF4b-encoded accessory proteins of Middle East respiratory syndrome coronavirus and two related bat coronaviruses localize to the nucleus and inhibit innate immune signalling 
The Journal of General Virology  2014;95(Pt 4):874-882.
The recently emerged Middle East respiratory syndrome coronavirus (MERS-CoV), a betacoronavirus, is associated with severe pneumonia and renal failure. The environmental origin of MERS-CoV is as yet unknown; however, its genome sequence is closely related to those of two bat coronaviruses, named BtCoV-HKU4 and BtCoV-HKU5, which were derived from Chinese bat samples. A hallmark of highly pathogenic respiratory viruses is their ability to evade the innate immune response of the host. CoV accessory proteins, for example those from severe acute respiratory syndrome CoV (SARS-CoV), have been shown to block innate antiviral signalling pathways. MERS-CoV, similar to SARS-CoV, has been shown to inhibit type I IFN induction in a variety of cell types in vitro. We therefore hypothesized that MERS-CoV and the phylogenetically related BtCoV-HKU4 and BtCoV-HKU5 may encode proteins with similar capabilities. In this study, we have demonstrated that the ORF4b-encoded accessory protein (p4b) of MERS-CoV, BtCoV-HKU4 and BtCoV-HKU5 may indeed facilitate innate immune evasion by inhibiting the type I IFN and NF-κB signalling pathways. We also analysed the subcellular localization of p4b from MERS-CoV, BtCoV-HKU4 and BtCoV-HKU5 and demonstrated that all are localized to the nucleus.
PMCID: PMC3973478  PMID: 24443473
17.  Cyclovirus in nasopharyngeal aspirates of Chilean children with respiratory infections 
The Journal of General Virology  2014;95(Pt 4):922-927.
Some respiratory tract infections remain unexplained despite extensive testing for common pathogens. Nasopharyngeal aspirates (NPAs) from 120 Chilean infants from Santiago with acute lower respiratory tract infections were analysed by viral metagenomics, revealing the presence of nucleic acids from anelloviruses, adenovirus-associated virus and 12 known respiratory viral pathogens. A single sequence read showed translated protein similarity to cycloviruses. We used inverse PCR to amplify the complete circular ssDNA genome of a novel cyclovirus we named CyCV-ChileNPA1. Closely related variants were detected using PCR in the NPAs of three other affected children that also contained anelloviruses. This report increases the current knowledge of the genetic diversity of cycloviruses whose detection in multiple NPAs may reflect a tropism for human respiratory tissues.
PMCID: PMC3973479  PMID: 24421114
18.  Roles of conserved residues within the pre-NH2-terminal domain of herpes simplex virus 1 DNA polymerase in replication and latency in mice 
The Journal of General Virology  2014;95(Pt 4):940-947.
The catalytic subunit of the herpes simplex virus 1 DNA polymerase (HSV-1 Pol) is essential for viral DNA synthesis and production of infectious virus in cell culture. While mutations that affect 5′–3′ polymerase activity have been evaluated in animal models of HSV-1 infection, mutations that affect other functions of HSV-1 Pol have not. In a previous report, we utilized bacterial artificial chromosome technology to generate defined HSV-1 pol mutants with lesions in the previously uncharacterized pre-NH2-terminal domain. We found that the extreme N-terminal 42 residues (deletion mutant polΔN43) were dispensable for replication in cell culture, while residues 44–49 (alanine-substitution mutant polA6) were required for efficient viral DNA synthesis and production of infectious virus. In this study, we sought to address the importance of these conserved elements in viral replication in a mouse corneal infection model. Mutant virus polΔN43 exhibited no meaningful defect in acute or latent infection despite strong conservation of residues 1–42 with HSV-2 Pol. The polA6 mutation caused a modest defect in replication at the site of inoculation, and was severely impaired for ganglionic replication, even at high inocula that permitted efficient corneal replication. Additionally, the polA6 mutation resulted in reduced latency establishment and subsequent reactivation. Moreover, we found that the polA6 replication defect in cultured cells was exacerbated in resting cells as compared to dividing cells. These results reveal an important role for the conserved motif at residues 44–49 of HSV-1 Pol for ganglionic viral replication.
PMCID: PMC3973481  PMID: 24413420
19.  Anti-HIV-1 activity of Trim 37 
The Journal of General Virology  2014;95(Pt 4):960-967.
Trim 5α was the first member of the tripartite motif (TRIM) family of proteins that was identified to potently restrict human immunodeficiency virus type 1 (HIV-1) replication. The breadth of antiretroviral activity of TRIM family members is an active area of investigation. In this study, we demonstrate that human Trim 37 possesses anti-HIV-1 activity. This antiretroviral activity and the manner in which it was displayed were implicated by (1) decreased viral replication upon Trim 37 transient overexpression in virus-producing cells, (2) correlation of the reduction of viral infectivity with Trim 37 virion incorporation, (3) increased HIV-1 replication during siRNA depletion of Trim 37 expression, and (4) reduction in viral DNA synthesis upon Trim 37 transient overexpression. Our findings provide the first demonstration, to our knowledge, of the potent antiviral activity of human Trim 37, and implicate an antiviral mechanism whereby Trim 37 interferes with viral DNA synthesis.
PMCID: PMC3973482  PMID: 24317724
20.  Hamburger polyomaviruses 
The Journal of General Virology  2015;96(Pt 4):833-839.
Epidemiological studies have suggested that consumption of beef may correlate with an increased risk of colorectal cancer. One hypothesis to explain this proposed link might be the presence of a carcinogenic infectious agent capable of withstanding cooking. Polyomaviruses are a ubiquitous family of thermostable non-enveloped DNA viruses that are known to be carcinogenic. Using virion enrichment, rolling circle amplification (RCA) and next-generation sequencing, we searched for polyomaviruses in meat samples purchased from several supermarkets. Ground beef samples were found to contain three polyomavirus species. One species, bovine polyomavirus 1 (BoPyV1), was originally discovered as a contaminant in laboratory FCS. A previously unknown species, BoPyV2, occupies the same clade as human Merkel cell polyomavirus and raccoon polyomavirus, both of which are carcinogenic in their native hosts. A third species, BoPyV3, is related to human polyomaviruses 6 and 7. Examples of additional DNA virus families, including herpesviruses, adenoviruses, circoviruses and gyroviruses were also detected either in ground beef samples or in comparison samples of ground pork and ground chicken. The results suggest that the virion enrichment/RCA approach is suitable for random detection of essentially any DNA virus with a detergent-stable capsid. It will be important for future studies to address the possibility that animal viruses commonly found in food might be associated with disease.
PMCID: PMC4361794  PMID: 25568187
21.  Rapid evolution of the env gene leader sequence in cats naturally infected with feline immunodeficiency virus 
The Journal of General Virology  2015;96(Pt 4):893-903.
Analysing the evolution of feline immunodeficiency virus (FIV) at the intra-host level is important in order to address whether the diversity and composition of viral quasispecies affect disease progression. We examined the intra-host diversity and the evolutionary rates of the entire env and structural fragments of the env sequences obtained from sequential blood samples in 43 naturally infected domestic cats that displayed different clinical outcomes. We observed in the majority of cats that FIV env showed very low levels of intra-host diversity. We estimated that env evolved at a rate of 1.16×10−3 substitutions per site per year and demonstrated that recombinant sequences evolved faster than non-recombinant sequences. It was evident that the V3–V5 fragment of FIV env displayed higher evolutionary rates in healthy cats than in those with terminal illness. Our study provided the first evidence that the leader sequence of env, rather than the V3–V5 sequence, had the highest intra-host diversity and the highest evolutionary rate of all env fragments, consistent with this region being under a strong selective pressure for genetic variation. Overall, FIV env displayed relatively low intra-host diversity and evolved slowly in naturally infected cats. The maximum evolutionary rate was observed in the leader sequence of env. Although genetic stability is not necessarily a prerequisite for clinical stability, the higher genetic stability of FIV compared with human immunodeficiency virus might explain why many naturally infected cats do not progress rapidly to AIDS.
PMCID: PMC4361796  PMID: 25535323
22.  Interferon-β and mycophenolic acid are potent inhibitors of Middle East respiratory syndrome coronavirus in cell-based assays 
The Journal of General Virology  2014;95(Pt 3):571-577.
The Middle East respiratory syndrome coronavirus (MERS-CoV) presents a novel emerging threat to public health worldwide. Several treatments for infected individuals have been suggested including IFN, ribavirin and passive immunotherapy with convalescent plasma. Administration of IFN-α2b and ribavirin has improved outcomes of MERS-CoV infection in rhesus macaques when administered within 8 h post-challenge. However, detailed and systematic evidence on the activity of other clinically available drugs is limited. Here we compared the susceptibility of MERS-CoV with different IFN products (IFN-α2b, IFN-γ, IFN-universal, IFN-α2a and IFN-β), as well as with two antivirals, ribavirin and mycophenolic acid (MPA), against MERS-CoV (Hu/Jordan-N3/2012) in vitro. Of all the IFNs tested, IFN-β showed the strongst inhibition of MERS-CoV in vitro, with an IC50 of 1.37 U ml−1, 41 times lower than the previously reported IC50 (56.08 U ml−1) of IFN-α2b. IFN-β inhibition was confirmed in the virus yield reduction assay, with an IC90 of 38.8 U ml−1. Ribavirin did not inhibit viral replication in vitro at a dose that would be applicable to current treatment protocols in humans. In contrast, MPA showed strong inhibition, with an IC50 of 2.87 µM. This drug has not been previously tested against MERS-CoV and may provide an alternative to ribavirin for treatment of MERS-CoV. In conclusion, IFN-β, MPA or a combination of the two may be beneficial in the treatment of MERS-CoV or as a post-exposure intervention in high-risk patients with known exposures to MERS-CoV.
PMCID: PMC3929173  PMID: 24323636
23.  Intrahaemocoelic infection of Trichoplusia ni with the baculovirus Autographa californica M nucleopolyhedrovirus does not induce tracheal cell basal lamina remodelling 
The Journal of General Virology  2014;95(Pt 3):719-723.
Infection of the lepidopteran insect Trichoplusia ni with the baculovirus Autographa californica M nucleopolyhedrovirus (AcMNPV) by the oral route stimulates activation of host matrix metalloproteases (MMP) and effector caspases, a process dependent on expression of the viral fibroblast growth factor (vFGF). This pathway leads to tracheal cell basal lamina remodelling, enabling virus escape from the primary site of infection, the midgut epithelium, and establishment of efficient systemic infection. In this study, we asked whether the MMP–caspase pathway was also activated following infection by intrahaemocoelic injection. We found that intrahaemocoelic infection did not lead to any observable tracheal cell or midgut epithelium basal lamina remodelling. MMP and caspase activities were not significantly stimulated. We conclude that the main role of the AcMNPV vFGF is in facilitating virus midgut escape.
PMCID: PMC3929174  PMID: 24300553
24.  Human immunodeficiency virus type 1 Vpr polymorphisms associated with progressor and nonprogressor individuals alter Vpr-associated functions 
The Journal of General Virology  2014;95(Pt 3):700-711.
Following infection with Human immunodeficiency virus 1 (HIV-1) there is a remarkable variation in virus replication and disease progression. Both host and viral factors have been implicated in the observed differences in disease status. Here, we focus on understanding the contribution of HIV-1 viral protein R (Vpr) by evaluating the disease-associated Vpr polymorphism and its biological functions from HIV-1 positive rapid progressor (RP) and long-term nonprogressor (LTNP) subjects. Results presented here show distinct variation in phenotypes of Vpr alleles from LTNP and RP subjects. Most notably, the polymorphism of Vpr at R36W and L68M associated with RP shows higher levels of oligomerization, and increased virus replication, whereas R77Q exhibits poor replication kinetics. Interestingly, we did not observe correlation with cell cycle arrest function. Together these results indicate that polymorphisms in Vpr in part may contribute to altered virus replication kinetics leading to the observed differences in disease progression in LTNP and RP groups.
PMCID: PMC3929175  PMID: 24300552
25.  Increasing similarity in the dynamics of influenza in two adjacent subtropical Chinese cities following the relaxation of border restrictions 
The Journal of General Virology  2014;95(Pt 3):531-538.
The drivers of influenza seasonality remain heavily debated, especially in tropical/subtropical regions where influenza activity can peak in winter, during the rainy season, or remain constant throughout the year. We compared the epidemiological and evolutionary patterns of seasonal influenza epidemics in Hong Kong and Shenzhen, two adjacent cities in subtropical southern China. This comparison represents a unique natural experiment, as connectivity between these two cities has increased over the past decade. We found that, whilst summer influenza epidemics in Shenzhen used to peak 1–3 months later than those in Hong Kong, the difference decreased after 2005 (P<0.0001). Phylogenetic analysis revealed that influenza isolates from Shenzhen have become genetically closer to those circulating in Hong Kong over time (P = 0.045). Furthermore, although Shenzhen isolates used to be more distant from the global putative source of influenza viruses than isolates from Hong Kong (P<0.001), this difference has narrowed (P = 0.02). Overall, our study reveals that influenza activities show remarkably distinct epidemiological and evolutionary patterns in adjacent subtropical cities and suggests that human mobility patterns can play a major role in influenza dynamics in the subtropics.
PMCID: PMC3929176  PMID: 24310518

Results 1-25 (454)