Search tips
Search criteria

Results 1-25 (427)

Clipboard (0)

Select a Filter Below

Year of Publication
1.  A role for vaccinia virus protein C16 in reprogramming cellular energy metabolism 
The Journal of General Virology  2015;96(Pt 2):395-407.
Vaccinia virus (VACV) is a large DNA virus that replicates in the cytoplasm and encodes about 200 proteins of which approximately 50 % may be non-essential for viral replication. These proteins enable VACV to suppress transcription and translation of cellular genes, to inhibit the innate immune response, to exploit microtubule- and actin-based transport for virus entry and spread, and to subvert cellular metabolism for the benefit of the virus. VACV strain WR protein C16 induces stabilization of the hypoxia-inducible transcription factor (HIF)-1α by binding to the cellular oxygen sensor prolylhydroxylase domain-containing protein (PHD)2. Stabilization of HIF-1α is induced by several virus groups, but the purpose and consequences are unclear. Here, 1H-NMR spectroscopy and liquid chromatography-mass spectrometry are used to investigate the metabolic alterations during VACV infection in HeLa and 2FTGH cells. The role of C16 in such alterations was examined by comparing infection to WT VACV (strain WR) and a derivative virus lacking gene C16L (vΔC16). Compared with uninfected cells, VACV infection caused increased nucleotide and glutamine metabolism. In addition, there were increased concentrations of glutamine derivatives in cells infected with WT VACV compared with vΔC16. This indicates that C16 contributes to enhanced glutamine metabolism and this may help preserve tricarboxylic acid cycle activity. These data show that VACV infection reprogrammes cellular energy metabolism towards increased synthesis of the metabolic precursors utilized during viral replication, and that C16 contributes to this anabolic reprogramming of the cell, probably via the stabilization of HIF-1α.
PMCID: PMC4298679  PMID: 25351724
2.  Comparative analysis of disease pathogenesis and molecular mechanisms of New World and Old World arenavirus infections 
The Journal of General Virology  2014;95(Pt 1):1-15.
Arenaviruses can cause fatal human haemorrhagic fever (HF) diseases for which vaccines and therapies are extremely limited. Both the New World (NW) and Old World (OW) groups of arenaviruses contain HF-causing pathogens. Although these two groups share many similarities, important differences with regard to pathogenicity and molecular mechanisms of virus infection exist. These closely related pathogens share many characteristics, including genome structure, viral assembly, natural host selection and the ability to interfere with innate immune signalling. However, members of the NW and OW viruses appear to use different receptors for cellular entry, as well as different mechanisms of virus internalization. General differences in disease signs and symptoms and pathological lesions in patients infected with either NW or OW arenaviruses are also noted and discussed herein. Whilst both the OW Lassa virus (LASV) and the NW Junin virus (JUNV) can cause disruption of the vascular endothelium, which is an important pathological feature of HF, the immune responses to these related pathogens seem to be quite distinct. Whereas LASV infection results in an overall generalized immune suppression, patients infected with JUNV seem to develop a cytokine storm. Additionally, the type of immune response required for recovery and clearance of the virus is different between NW and OW infections. These differences may be important to allow the viruses to evade host immune detection. Understanding these differences will aid the development of new vaccines and treatment strategies against deadly HF viral infections.
PMCID: PMC4093776  PMID: 24068704
3.  The adenovirus 55 residue E1A protein is a transcriptional activator and binds the unliganded thyroid hormone receptor 
The Journal of General Virology  2014;95(Pt 1):142-152.
The early region 1A (E1A) of human adenovirus types 2 and 5 is differentially spliced to yield five distinct mRNAs that encode different proteins. The smallest E1A RNA transcript encodes a 55 residue (55R) protein that shares only 28 amino acid residues with the other E1A proteins. Even though it is the most abundant E1A transcript at late times post-infection, little is known about the functions of this E1A isoform. In this study, we show that the E1A 55R protein interacts with, and modulates the activity of the unliganded thyroid hormone receptor (TR). We demonstrate that E1A 55R contains a signature motif known as the CoRNR box that confers interaction with the unliganded TR; this motif was originally identified in cellular corepressors. Using a system reconstituted in the yeast Saccharomyces cerevisiae, which lack endogenous TR and TR coregulators, we show that E1A 55R nonetheless differs from cellular corepressors as it functions as a strong co-activator of TR-dependent transcription and that it possesses an intrinsic transcriptional activation domain. These data indicate that the E1A 55R protein functions as a transcriptional regulator.
PMCID: PMC3917064  PMID: 24136366
4.  Glucocorticosteroids trigger reactivation of human cytomegalovirus from latently infected myeloid cells and increase the risk for HCMV infection in D+R+ liver transplant patients 
The Journal of General Virology  2015;96(Pt 1):131-143.
Graft rejection in transplant patients is managed clinically by suppressing T-cell function with immunosuppressive drugs such as prednisolone and methylprednisolone. In such immunocompromised hosts, human cytomegalovirus (HCMV) is an important opportunistic pathogen and can cause severe morbidity and mortality. Currently, the effect of glucocorticosteroids (GCSs) on the HCMV life cycle remains unclear. Previous reports showed enhanced lytic replication of HCMV in vitro in the presence of GCSs. In the present study, we explored the implications of steroid exposure on latency and reactivation. We observed a direct effect of several GCSs used in the clinic on the activation of a quiescent viral major immediate-early promoter in stably transfected THP-1 monocytic cells. This activation was prevented by the glucocorticoid receptor (GR) antagonist Ru486 and by shRNA-mediated knockdown of the GR. Consistent with this observation, prednisolone treatment of latently infected primary monocytes resulted in HCMV reactivation. Analysis of the phenotype of these cells showed that treatment with GCSs was correlated with differentiation to an anti-inflammatory macrophage-like cell type. On the basis that these observations may be pertinent to HCMV reactivation in post-transplant settings, we retrospectively evaluated the incidence, viral kinetics and viral load of HCMV in liver transplant patients in the presence or absence of GCS treatment. We observed that combination therapy of baseline prednisolone and augmented methylprednisolone, upon organ rejection, significantly increased the incidence of HCMV infection in the intermediate risk group where donor and recipient are both HCMV seropositive (D+R+) to levels comparable with the high risk D+R− group.
PMCID: PMC4268819  PMID: 25312585
5.  Porcine sapovirus replication is restricted by the type I interferon response in cell culture 
The Journal of General Virology  2015;96(Pt 1):74-84.
Porcine sapovirus (PSaV) of the family Caliciviridae, is the only member of the genus Sapovirus with cell culture and reverse genetics systems. When combined with the piglet model, these approaches provide a system to understand the molecular basis of sapovirus pathogenesis. The replication of PSaV in cell culture is, however, restricted, displaying an absolute requirement for bile acids and producing lower levels of infectious virus than other caliciviruses. The effect of bile acids has previously been linked to a reduction in the signal transducer and activator of transcription (STAT1)-mediated signalling pathway. In the current study, we observed that even in the presence of bile acids, PSaV replication in cell culture was restricted by soluble factors produced from infected cells. This effect was at least partially due to secreted IFN because treatment of cells with recombinant porcine IFN-β resulted in significantly reduced viral replication. Moreover, IFN-mediated signalling pathways (IFN, STAT1 and the 2′,5′-oligoadenylate synthetase) were activated during PSaV infection. Characterization of PSaV growth in cell lines deficient in their ability to induce or respond to IFN showed a 100–150-fold increase in infectious virus production, indicating that the primary role of bile acids was not the inactivation of the innate immune response. Furthermore, the use of IFN-deficient cell lines enabled more efficient recovery of PSaV from cDNA constructs. Overall, the highly efficient cell culture and reverse genetics system established here for PSaV highlighted the key role of the innate immune response in the restriction of PSaV infection and should greatly facilitate further molecular studies on sapovirus host–cell interactions.
PMCID: PMC4268822  PMID: 25304652
6.  Deep sequencing identifies two genotypes and high viral genetic diversity of human pegivirus (GB virus C) in rural Ugandan patients 
The Journal of General Virology  2013;94(Pt 12):2670-2678.
Human pegivirus (HPgV), formerly ‘GB virus C’ or ‘hepatitis G virus’, is a member of the genus Flavivirus (Flaviviridae) that has garnered significant attention due to its inhibition of HIV, including slowing disease progression and prolonging survival in HIV-infected patients. Currently, there are six proposed HPgV genotypes that have roughly distinct geographical distributions. Genotypes 2 and 3 are the most comprehensively characterized, whereas those genotypes occurring on the African continent, where HPgV prevalence is highest, are less well studied. Using deep sequencing methods, we identified complete coding HPgV sequences in four of 28 patients (14.3 %) in rural Uganda, east Africa. One of these sequences corresponds to genotype 1 and is the first complete genome of this genotype from east Africa. The remaining three sequences correspond to genotype 5, a genotype that was previously considered exclusively South African. All four positive samples were collected within a geographical area of less than 25 km2, showing that multiple HPgV genotypes co-circulate in this area. Analysis of intra-host viral genetic diversity revealed that total single-nucleotide polymorphism frequency was approximately tenfold lower in HPgV than in hepatitis C virus. Finally, one patient was co-infected with HPgV and HIV, which, in combination with the high prevalence of HIV, suggests that this region would be a useful locale to study the interactions and co-evolution of these viruses.
PMCID: PMC3836497  PMID: 24077364
7.  Kolente virus, a rhabdovirus species isolated from ticks and bats in the Republic of Guinea 
The Journal of General Virology  2013;94(Pt 12):2609-2615.
Kolente virus (KOLEV) is a rhabdovirus originally isolated from ticks and a bat in Guinea, West Africa, in 1985. Although tests at the time of isolation suggested that KOLEV is a novel rhabdovirus, it has remained largely uncharacterized. We assembled the complete genome sequence of the prototype strain DakAr K7292, which was found to encode the five canonical rhabdovirus structural proteins (N, P, M, G and L) with alternative ORFs (>180 nt) in the P and L genes. Serologically, KOLEV exhibited a weak antigenic relationship with Barur and Fukuoka viruses in the Kern Canyon group. Phylogenetic analysis revealed that KOLEV represents a distinct and divergent lineage that shows no clear relationship to any rhabdovirus except Oita virus, although with limited phylogenetic resolution. In summary, KOLEV represents a novel species in the family Rhabdoviridae.
PMCID: PMC3836499  PMID: 24062532
8.  Mutation tryptophan to leucine at position 222 of haemagglutinin could facilitate H3N2 influenza A virus infection in dogs 
The Journal of General Virology  2013;94(Pt 12):2599-2608.
An avian-like H3N2 influenza A virus (IAV) has recently caused sporadic canine influenza outbreaks in China and Korea, but the molecular mechanisms involved in the interspecies transmission of H3N2 IAV from avian to canine species are not well understood. Sequence analysis showed that residue 222 in haemagglutinin (HA) is predominantly tryptophan (W) in the closely related avian H3N2 IAV, but was leucine (L) in canine H3N2 IAV. In this study, reassortant viruses rH3N2-222L (canine-like) and rH3N2-222W (avian-like) with HA mutation L222W were generated using reverse genetics to evaluate the significance of the L222W mutation on receptor binding and host tropism of H3N2 IAV. Compared with rH3N2-222W, rH3N2-222L grew more rapidly in MDCK cells and had significantly higher infectivity in primary canine tracheal epithelial cells. Tissue-binding assays demonstrated that rH3N2-222L had a preference for canine tracheal tissues rather avian tracheal tissues, whereas rH3N2-222W favoured slightly avian rather canine tracheal tissues. Glycan microarray analysis suggested both rH3N2-222L and rH3N2-222W bound preferentially to α2,3-linked sialic acids. However, the rH3N2-222W had more than twofold less binding affinity than rH3N2-222L to a set of glycans with Neu5Aca2–3Galb1–4(Fuca-)-like or Neu5Aca2–3Galb1–3(Fuca-)-like structures. These data suggest the W to L mutation at position 222 of the HA could facilitate infection of H3N2 IAV in dogs, possibly by increasing the binding affinities of the HA to specific receptors with Neu5Aca2–3Galb1–4(Fuca-) or Neu5Aca2–3Galb1–3(Fuca-)-like structures that are present in dogs.
PMCID: PMC4093785  PMID: 23994833
9.  Inhibition of the foot-and-mouth disease virus subgenomic replicon by RNA aptamers 
The Journal of General Virology  2014;95(Pt 12):2649-2657.
We have previously documented the inhibitory activity of RNA aptamers to the RNA-dependent RNA polymerase of foot-and-mouth disease virus (3Dpol). Here we report their modification and use with a subgenomic replicon incorporating GFP (pGFP-PAC replicon), allowing replication to be monitored and quantified in real-time. GFP expression in transfected BHK-21 cells reached a maximum at approximately 8 h post-transfection, at which time change in morphology of the cells was consistent with a virus-induced cytopathic effect. However, transfection of replicon-bearing cells with a 3Dpol aptamer RNA resulted in inhibition of GFP expression and maintenance of normal cell morphology, whereas a control aptamer RNA had little effect. The inhibition was correlated with a reduction in 3Dpol (detected by immunoblotting) and shown to be dose dependent. The 3Dpol aptamers appeared to be more effective than 2′-C-methylcytidine (2′CMC). Aptamers to components of the replication complex are therefore useful molecular tools for studying viral replication and also have potential as diagnostic molecules in the future.
PMCID: PMC4233629  PMID: 25096816
10.  Hantaan virus nucleocapsid protein stimulates MDM2-dependent p53 degradation 
The Journal of General Virology  2013;94(Pt 11):2424-2428.
Apoptosis has been shown to be induced and downregulated by the Hantaan virus (HTNV) nucleocapsid (N) protein. To address these conflicting data, expression of the p53 protein, one of the key molecules involved in apoptosis, was assessed in the presence of the N protein in A549 and HeLa cells. The amount of p53, increased by drug treatment, was reduced when cells were infected with HTNV or transfected with an expression vector of the HTNV N protein. When cells were treated with a proteasome inhibitor (MG132) or an MDM2 antagonist (Nutlin-3), p53 expression was not reduced in N protein-overexpressed cells. We concluded that the HTNV N protein ubiquitinates and degrades p53 MDM2-dependently. Here we report downregulation of p53 expression through a post-translational mechanism: MDM2-dependent ubiquitination and degradation by the HTNV N protein. These results indicate that N protein-dependent p53 degradation through the ubiquitin proteasome system is one of the anti-apoptotic mechanisms employed by HTNV.
PMCID: PMC4093783  PMID: 23994832
11.  A virus-encoded potassium ion channel is a structural protein in the chlorovirus Paramecium bursaria chlorella virus 1 virion 
The Journal of General Virology  2013;94(Pt 11):2549-2556.
Most chloroviruses encode small K+ channels, which are functional in electrophysiological assays. The experimental finding that initial steps in viral infection exhibit the same sensitivity to channel inhibitors as the viral K+ channels has led to the hypothesis that the channels are structural proteins located in the internal membrane of the virus particles. This hypothesis was questioned recently because proteomic studies failed to detect the channel protein in virions of the prototype chlorovirus Paramecium bursaria chlorella virus 1 (PBCV-1). Here, we used a mAb raised against the functional K+ channel from chlorovirus MA-1D to search for the viral K+ channel in the virus particle. The results showed that the antibody was specific and bound to the tetrameric channel on the extracellular side. The antibody reacted in a virus-specific manner with protein extracts from chloroviruses that encoded channels similar to that from MA-1D. There was no cross-reactivity with chloroviruses that encoded more diverse channels or with a chlorovirus that lacked a K+ channel gene. Together with electron microscopic imaging, which revealed labelling of individual virus particles with the channel antibody, these results establish that the viral particles contain an active K+ channel, presumably located in the lipid membrane that surrounds the DNA in the mature virions.
PMCID: PMC4093784  PMID: 23918407
12.  Longitudinal analysis of intra-host simian immunodeficiency virus recombination in varied tissues of the rhesus macaque model for neuroAIDS 
The Journal of General Virology  2013;94(Pt 11):2469-2479.
Human immunodeficiency virus intra-host recombination has never been studied in vivo both during early infection and throughout disease progression. The CD8-depleted rhesus macaque model of neuroAIDS was used to investigate the impact of recombination from early infection up to the onset of neuropathology in animals inoculated with a simian immunodeficiency virus (SIV) swarm. Several lymphoid and non-lymphoid tissues were collected longitudinally at 21 days post-infection (p.i.), 61 days p.i. and necropsy (75–118 days p.i.) from four macaques that developed SIV-encephalitis or meningitis, as well as from two animals euthanized at 21 days p.i. The number of recombinant sequences and breakpoints in different tissues and over time from each primate were compared. Breakpoint locations were mapped onto predicted RNA and protein secondary structures. Recombinants were found at each time point and in each primate as early as 21 days p.i. No association was found between recombination rates and specific tissue of origin. Several identical breakpoints were identified in sequences derived from different tissues in the same primate and among different primates. Breakpoints predominantly mapped to unpaired nucleotides or pseudoknots in RNA secondary structures, and proximal to glycosylation sites and cysteine residues in protein sequences, suggesting selective advantage in the emergence of specific recombinant sequences. Results indicate that recombinant sequences can become fixed very early after infection with a heterogeneous viral swarm. Features of RNA and protein secondary structure appear to play a role in driving the production of recombinants and their selection in the rapid disease model of neuroAIDS.
PMCID: PMC3809109  PMID: 23963535
13.  H7N9 influenza viruses interact preferentially with α2,3-linked sialic acids and bind weakly to α2,6-linked sialic acids 
The Journal of General Virology  2013;94(Pt 11):2417-2423.
The recent human outbreak of H7N9 avian influenza A virus has caused worldwide concerns. Receptor binding specificity is critical for viral pathogenicity, and still not thoroughly studied for this emerging virus. Here, we evaluated the receptor specificity of the haemagglutinin (HA) of two human H7N9 isolates (A/Shanghai/1/13 and A/Anhui/1/13) through a solid-phase binding assay and a flow cytometry-based assay. In addition, we compared it with those from several HAs from human and avian influenza viruses. We observed that the HAs from the novel H7 isolates strongly interacted with α2,3-linked sialic acids. Importantly, they also showed low levels of binding to α2,6-linked sialic acids, but significantly higher than other avian H7s.
PMCID: PMC3809111  PMID: 23950563
14.  NS2 is dispensable for efficient assembly of hepatitis C virus-like particles in a bipartite trans-encapsidation system 
The Journal of General Virology  2014;95(Pt 11):2427-2441.
Infectious hepatitis C virus (HCV) particle production in the genotype 2a JFH-1-based cell culture system involves non-structural proteins in addition to canonical virion components. NS2 has been proposed to act as a protein adaptor, co-ordinating the early stages of virion assembly. However, other studies have identified late-acting roles for this protein, making its precise involvement in infectious particle production unclear. Using a robust, bipartite trans-encapsidation system based upon baculovirus expression of HCV structural proteins, we have generated HCV-like particles (HCV-LP) in the absence of NS2 with overt similarity to wild-type virions. HCV-LP could transduce naive cells with trans-encapsidated subgenomic replicon RNAs and shared similar biochemical and biophysical properties with JFH-1 HCV. Both genotype 1b and JFH-1 intracellular HCV-LP were produced in the absence of NS2, whereas restoring NS2 to the JFH-1 system dramatically enhanced secreted infectivity, consistent with a late-acting role. Our system recapitulated authentic HCV particle assembly via trans-complementation of bicistronic, NS2-deleted, chimeric HCV, which is otherwise deficient in particle production. This closely resembled replicon-mediated NS2 trans-complementation, confirming that baculovirus expression of HCV proteins did not unduly affect particle production. Furthermore, this suggests that separation of structural protein expression from replicating HCV RNAs that are destined to be packaged alleviates an early stage requirement for NS2 during particle formation. This highlights our current lack of understanding of how NS2 mediates assembly, yet comparison of full-length and bipartite systems may provide further insight into this process.
PMCID: PMC4202265  PMID: 25024280
15.  Single-stranded positive-sense RNA viruses generated in days using infectious subgenomic amplicons 
The Journal of General Virology  2014;95(Pt 11):2462-2467.
Reverse genetics is a key methodology for producing genetically modified RNA viruses and deciphering cellular and viral biological properties, but methods based on the preparation of plasmid-based complete viral genomes are laborious and unpredictable. Here, both wild-type and genetically modified infectious RNA viruses were generated in days using the newly described ISA (infectious-subgenomic-amplicons) method. This new versatile and simple procedure may enhance our capacity to obtain infectious RNA viruses from PCR-amplified genetic material.
PMCID: PMC4202267  PMID: 25053561
16.  Mutant USA strain of porcine circovirus type 2 (mPCV2) exhibits similar virulence to the classical PCV2a and PCV2b strains in caesarean-derived, colostrum-deprived pigs 
The Journal of General Virology  2014;95(Pt 11):2495-2503.
In 2012, a mutant porcine circovirus type 2 (mPCV2) strain was identified in cases of PCV-associated disease (PCVAD) in the USA. The mPCV2 had an additional amino acid, lysine (K), in the capsid at position 234. The objectives of this study were to compare the pathogenicity of mPCV2, PCV2a and PCV2b in pigs using biologically pure infectious virus stocks derived from respective infectious DNA clones, and to investigate the importance of genotype-specific ORF2 and the presence of lysine at position 234 of the capsid. A total of 47, 2-week-old, caesarean-derived, colostrum-deprived (CDCD) pigs were assigned to one of seven groups. At 3 weeks of age, the pigs were experimentally inoculated with saline, PCV2a, PCV2b, mPCV2, PCV2b-234-K (lysine addition in ORF2), chimeric PCV2b-ORF1/mPCV2-ORF2 or reciprocal chimeric mPCV2-ORF1/PCV2b-ORF2. All pigs were necropsied 21 days post-infection (p.i.). Gross lesions were limited to visible icterus and loss of body condition in a portion of the mPCV2 pigs. The amount of PCV2 DNA was significantly higher in pigs inoculated with mPCV2 compared with PCV2b in sera at 7 days p.i. and faecal swabs at 14 days p.i. Based on lymphoid lesions, a higher prevalence of PCVAD was seen in pigs infected with PCV2s containing the additional 234-K (64.3 %) compared with those infected with a PCV2 with the regular 233 bp ORF2 (40 %). Results indicated that all PCV2 isolates were capable of inducing severe lesions and disease in the CDCD pig model, and there was no significant difference in virulence.
PMCID: PMC4202268  PMID: 25053562
17.  Analysis of purified Wild type and mutant adenovirus particles by SILAC based quantitative proteomics 
The Journal of General Virology  2014;95(Pt 11):2504-2511.
We used SILAC (stable isotope labelling of amino acids in cell culture) and high-throughput quantitative MS mass spectrometry to analyse the protein composition of highly purified WT wild type adenoviruses, mutant adenoviruses lacking an internal protein component (protein V) and recombinant adenoviruses of the type commonly used in gene therapy, including one virus that had been used in a clinical trial. We found that the viral protein abundance and composition were consistent across all types of virus examined except for the virus lacking protein V, which also had reduced amounts of another viral core protein, protein VII. In all the samples analysed we found no evidence of consistent packaging or contamination with cellular proteins. We believe this technique is a powerful method to analyse the protein composition of this important gene therapy vector and genetically engineered or synthetic virus-like particles. The raw data have been deposited at proteomexchange, identifer PXD001120.
PMCID: PMC4202269  PMID: 25096814
18.  Reverse transcriptase backbone can alter the polymerization and RNase activities of non-nucleoside reverse transcriptase mutants K101E+G190S 
The Journal of General Virology  2013;94(Pt 10):2297-2308.
Previous work by our group showed that human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) containing non-nucleoside RT inhibitor (NNRTI) drug resistance mutations has defects in RNase H activity as well as reduced amounts of RT protein in virions. These deficits correlate with replication fitness in the absence of NNRTIs. Viruses with the mutant combination K101E+G190S replicated better in the presence of NNRTIs than in the absence of drug. Stimulation of virus growth by NNRTIs occurred during the early steps of the virus life cycle and was modulated by the RT backbone sequence in which the resistance mutations arose. We wanted to determine what effects RT backbone sequence would have on RT content and polymerization and RNase H activities in the absence of NNRTIs. We compared a NL4-3 RT with K101E+G190S to a patient-isolate RT sequence D10 with K101E+G190S. We show here that, unlike the NL4-3 backbone, the D10 backbone sequence decreased the RNA-dependent DNA polymerization activity of purified recombinant RT compared to WT. In contrast, RTs with the D10 backbone had increased RNase H activity compared to WT and K101E+G190S in the NL4-3 backbone. D10 virions also had increased amounts of RT compared to K101E+G190S in the NL4-3 backbone. We conclude that the backbone sequence of RT can alter the activities of the NNRTI drug-resistant mutant K101E+G190S, and that identification of the amino acids responsible will aid in understanding the mechanism by which NNRTI drug-resistant mutants alter fitness and NNRTIs stimulate HIV-1 virus replication.
PMCID: PMC3785032  PMID: 23804564
19.  Pathogenic influenza B virus in the ferret model establishes lower respiratory tract infection 
The Journal of General Virology  2014;95(Pt 10):2127-2139.
Influenza B viruses have become increasingly more prominent during influenza seasons. Influenza B infection is typically considered a mild disease and receives less attention than influenza A, but has been causing 20 to 50 % of the total influenza incidence in several regions around the world. Although there is increasing evidence of mid to lower respiratory tract diseases such as bronchitis and pneumonia in influenza B patients, little is known about the pathogenesis of recent influenza B viruses. Here we investigated the clinical and pathological profiles of infection with strains representing the two current co-circulating B lineages (B/Yamagata and B/Victoria) in the ferret model. Specifically, we studied two B/Victoria (B/Brisbane/60/2008 and B/Bolivia/1526/2010) and two B/Yamagata (B/Florida/04/2006 and B/Wisconsin/01/2010) strain infections in ferrets and observed strain-specific but not lineage-specific pathogenicity. We found B/Brisbane/60/2008 caused the most severe clinical illness and B/Brisbane/60/2008 and the B/Yamagata strains instigated pathology in the middle to lower respiratory tract. Importantly, B/Brisbane/60/2008 established efficient lower respiratory tract infection with high viral burden. Our phylogenetic analyses demonstrate profound reassortment among recent influenza B viruses, which indicates the genetic make-up of B/Brisbane/60/2008 differs from the other strains. This may explain the pathogenicity difference post-infection in ferrets.
PMCID: PMC4165929  PMID: 24989173
20.  Consensus proposals for classification of the family Hepeviridae 
The Journal of General Virology  2014;95(Pt 10):2223-2232.
The family Hepeviridae consists of positive-stranded RNA viruses that infect a wide range of mammalian species, as well as chickens and trout. A subset of these viruses infects humans and can cause a self-limiting acute hepatitis that may become chronic in immunosuppressed individuals. Current published descriptions of the taxonomical divisions within the family Hepeviridae are contradictory in relation to the assignment of species and genotypes. Through analysis of existing sequence information, we propose a taxonomic scheme in which the family is divided into the genera Orthohepevirus (all mammalian and avian hepatitis E virus (HEV) isolates) and Piscihepevirus (cutthroat trout virus). Species within the genus Orthohepevirus are designated Orthohepevirus A (isolates from human, pig, wild boar, deer, mongoose, rabbit and camel), Orthohepevirus B (isolates from chicken), Orthohepevirus C (isolates from rat, greater bandicoot, Asian musk shrew, ferret and mink) and Orthohepevirus D (isolates from bat). Proposals are also made for the designation of genotypes within the human and rat HEVs. This hierarchical system is congruent with hepevirus phylogeny, and the three classification levels (genus, species and genotype) are consistent with, and reflect discontinuities in the ranges of pairwise distances between amino acid sequences. Adoption of this system would include the avoidance of host names in taxonomic identifiers and provide a logical framework for the assignment of novel variants.
PMCID: PMC4165930  PMID: 24989172
21.  Structural constraints in the packaging of bluetongue virus genomic segments 
The Journal of General Virology  2014;95(Pt 10):2240-2250.
The mechanism used by bluetongue virus (BTV) to ensure the sorting and packaging of its 10 genomic segments is still poorly understood. In this study, we investigated the packaging constraints for two BTV genomic segments from two different serotypes. Segment 4 (S4) of BTV serotype 9 was mutated sequentially and packaging of mutant ssRNAs was investigated by two newly developed RNA packaging assay systems, one in vivo and the other in vitro. Modelling of the mutated ssRNA followed by biochemical data analysis suggested that a conformational motif formed by interaction of the 5′ and 3′ ends of the molecule was necessary and sufficient for packaging. A similar structural signal was also identified in S8 of BTV serotype 1. Furthermore, the same conformational analysis of secondary structures for positive-sense ssRNAs was used to generate a chimeric segment that maintained the putative packaging motif but contained unrelated internal sequences. This chimeric segment was packaged successfully, confirming that the motif identified directs the correct packaging of the segment.
PMCID: PMC4165931  PMID: 24980574
22.  Rapamycin does not inhibit human cytomegalovirus reactivation from dendritic cells in vitro 
The Journal of General Virology  2014;95(Pt 10):2260-2266.
Human cytomegalovirus (HCMV) infection and reactivation are a major cause of morbidity in immune-suppressed patients. Interestingly, epidemiological studies have shown that patients administered the mammalian target of rapamycin (mTOR) inhibitor, sirolimus (rapamycin), exhibit more favourable outcomes, suggestive of activity against HCMV in vivo. Given its relative lack of activity against lytic infection, it is postulated that rapamycin inhibits HCMV reactivation. Here, we showed that rapamycin administered acutely or chronically has little impact on induction of immediate early (IE) gene expression in experimentally latent dendritic cells or cells from naturally latent individuals. Furthermore, we extended these observations to include other inhibitors of mTORC1 and mTORC 2, which similarly have minimal effects on induction of IE gene expression from latency. Taken together, these data suggest that favourable outcomes associated with sirolimus are attributable to indirect effects that influence HCMV reactivation, rather than a direct mechanistic action against HCMV itself.
PMCID: PMC4165932  PMID: 24986086
23.  Host factors determine differential disease progression after infection with nef-deleted simian immunodeficiency virus 
The Journal of General Virology  2014;95(Pt 10):2273-2284.
Infection of macaques with live attenuated simian immunodeficiency virus (SIV) usually results in long-lasting efficient protection against infection with pathogenic immunodeficiency viruses. However, attenuation by deletion of regulatory genes such as nef is not complete, leading to a high viral load and fatal disease in some animals. To characterize immunological parameters and polymorphic host factors, we studied 17 rhesus macaques infected with attenuated SIVmac239ΔNU. Eight animals were able to control viral replication, whereas the remaining animals (non-controllers) displayed variable set-point viral loads. Peak viral load at 2 weeks post-infection (p.i.) correlated significantly with set-point viral load (P<0.0001). CD4+ T-cell frequencies differed significantly soon after infection between controllers and non-controllers. Abnormal B-cell activation previously ascribed to Nef function could already be observed in non-controllers 8 weeks after infection despite the absence of Nef. Two non-controllers developed an AIDS-like disease within 102 weeks p.i. Virus from these animals transmitted to naïve animals replicated at low levels and the recipients did not develop immunodeficiency. This suggested that host factors determined differential viral load and subsequent disease course. Known Mhc class I alleles associated with disease progression in SIV WT infection only marginally influenced the viral load in Δnef-infected animals. Protection from SIVmac251 was associated with homozygosity for MHC class II in conjunction with a TLR7 polymorphism and showed a trend with initial viral replication. We speculated that host factors whose effects were usually masked by Nef were responsible for the different disease courses in individual animals upon infection with nef-deleted viruses.
PMCID: PMC4165933  PMID: 24928910
24.  Evidence for lysine acetylation in the coat protein of a polerovirus 
The Journal of General Virology  2014;95(Pt 10):2321-2327.
Virions of the RPV strain of Cereal yellow dwarf virus-RPV were purified from infected oat tissue and analysed by MS. Two conserved residues, K147 and K181, in the virus coat protein, were confidently identified to contain epsilon-N-acetyl groups. While no functional data are available for K147, K181 lies within an interfacial region critical for virion assembly and stability. The signature immonium ion at m/z 126.0919 demonstrated the presence of N-acetyllysine, and the sequence fragment ions enabled an unambiguous assignment of the epsilon-N-acetyl modification on K181. We hypothesize that selection favours acetylation of K181 in a fraction of coat protein monomers to stabilize the capsid by promoting intermonomer salt bridge formation.
PMCID: PMC4165934  PMID: 24939649
25.  Genomic analysis of coxsackieviruses A1, A19, A22, enteroviruses 113 and 104: viruses representing two clades with distinct tropism within enterovirus C 
The Journal of General Virology  2013;94(Pt 9):1995-2004.
Coxsackieviruses (CV) A1, CV-A19 and CV-A22 have historically comprised a distinct phylogenetic clade within Enterovirus (EV) C. Several novel serotypes that are genetically similar to these three viruses have been recently discovered and characterized. Here, we report the coding sequence analysis of two genotypes of a previously uncharacterized serotype EV-C113 from Bangladesh and demonstrate that it is most similar to CV-A22 and EV-C116 within the capsid region. We sequenced novel genotypes of CV-A1, CV-A19 and CV-A22 from Bangladesh and observed a high rate of recombination within this group. We also report genomic analysis of the rarely reported EV-C104 circulating in the Gambia in 2009. All available EV-C104 sequences displayed a high degree of similarity within the structural genes but formed two clusters within the non-structural genes. One cluster included the recently reported EV-C117, suggesting an ancestral recombination between these two serotypes. Phylogenetic analysis of all available complete genome sequences indicated the existence of two subgroups within this distinct Enterovirus C clade: one has been exclusively recovered from gastrointestinal samples, while the other cluster has been implicated in respiratory disease.
PMCID: PMC3749054  PMID: 23761409

Results 1-25 (427)