Search tips
Search criteria

Results 1-25 (306)

Clipboard (0)

Select a Filter Below

Year of Publication
2.  Binding of polysaccharides to human galectin-3 at a noncanonical site in its carbohydrate recognition domain 
Glycobiology  2015;26(1):88-99.
Galectin-3 (Gal-3) is a multifunctional lectin, unique to galectins by the presence of a long N-terminal tail (NT) off of its carbohydrate recognition domain (CRD). Many previous studies have investigated binding of small carbohydrates to its CRD. Here, we used nuclear magnetic resonance spectroscopy (15N–1H heteronuclear single quantum coherence data) to assess binding of 15N-Gal-3 (and truncated 15N-Gal-3 CRD) to several, relatively large polysaccharides, including eight varieties of galactomannans (GMs), as well as a β(1 → 4)-polymannan and an α-branched mannan. Overall, we found that these polysaccharides with a larger carbohydrate footprint interact primarily with a noncanonical carbohydrate-binding site on the F-face of the Gal-3 CRD β-sandwich, and to a less extent, if at all, with the canonical carbohydrate-binding site on the S-face. While there is no evidence for interaction with the NT itself, it does appear that the NT somehow mediates stronger interactions between the Gal-3 CRD and the GMs. Significant Gal-3 resonance broadening observed during polysaccharide titrations indicates that interactions occur in the intermediate exchange regime, and analysis of these data allows estimation of affinities and stoichiometries that range from 4 × 104 to 12 × 104 M−1 per site and multiple sites per polysaccharide, respectively. We also found that lactose can still bind to the CRD S-face of GM-bound Gal-3, with the binding of one ligand attenuating affinity of the other. These data are compared with previous results on Gal-1, revealing differences and similarities. They also provide research direction to the development of these polysaccharides as galectin-targeting therapeutics in the clinic.
PMCID: PMC4851716  PMID: 26646771
galactose; glycan; lectin; NMR; protein
3.  Identification and biological consequences of the O-GlcNAc modification of the human innate immune receptor, Nod2 
Glycobiology  2015;26(1):13-18.
Nucleotide-binding oligomerization domain 2 (Nod2) is an intracellular receptor that can sense the bacterial peptidoglycan component, muramyl dipeptide. Upon activation, Nod2 induces the production of various inflammatory molecules such as cytokines and chemokines. Genetic linkage analysis identified and revealed three major mutations in Nod2 that are associated with the development of Crohn's disease. The objective of this study is to further characterize this protein by determining whether Nod2 is posttranslationally modified by O-N-acetylglucosamine (O-GlcNAc). O-GlcNAcylation is one type of posttranslational modification in which the O-GlcNAc transferase transfers GlcNAc from UDP-GlcNAc to selected serine and threonine residues of intracellular proteins. We found that wild-type Nod2 and a Nod2 Crohn's-associated variant are O-GlcNAcylated and this modification affects Nod2's ability to signal via the nuclear factor kappa B pathway.
PMCID: PMC4672147  PMID: 26369908
Crohn's disease; NF-κB; Nod2; O-GlcNAcylation; OGT
4.  Novel GM1 ganglioside-like peptide mimics prevent the association of cholera toxin to human intestinal epithelial cells in vitro 
Glycobiology  2015;26(1):63-73.
Cholera is an acute diarrheal disease caused by infection in the gastrointestinal tract by the gram-negative bacterium, Vibrio cholerae, and is a serious public health threat worldwide. There has not been any effective treatment for this infectious disease. Cholera toxin (CT), which is secreted by V. cholerae, can enter host cells by binding to GM1, a monosialoganglioside widely distributed on the plasma membrane surface of various animal epithelial cells. The present study was undertaken to generate peptides that are conformationally similar to the carbohydrate epitope of GM1 for use in the treatment of cholera and related bacterial infection. For this purpose, we used cholera toxin B (CTB) subunit to select CTB-binding peptides that structurally mimic GM1 from a dodecamer phage-display library. Six GM1-replica peptides were selected by biopanning based on CTB recognition. Five of the six peptides showed inhibitory activity for GM1 binding to CTB. To test the potential of employing the peptide mimics for intervening with the bacterial infection, those peptides were examined for their binding capacity, functional inhibitory activity and in vitro effects using a human intestinal epithelial cell line, Caco-2 cells. One of the peptides, P3 (IPQVWRDWFKLP), was most effective in inhibiting cellular uptake of CTB and suppressing CT-stimulated cyclic adenosine monophosphate production in the cells. Our results thus provide convincing evidence that GM1-replica peptides could serve as novel agents to block CTB binding on epithelial cells and prevent the ensuing physiological effects of CT.
PMCID: PMC4672148  PMID: 26405107
bacterial infection; cAMP; cholera toxin; epithelial cell; GM1 ganglioside
5.  Synthesis of Galα(1,3)Galβ(1,4)GlcNAcα-, Galβ(1,4)GlcNAcα- and GlcNAc-containing neoglycoproteins and their immunological evaluation in the context of Chagas disease 
Glycobiology  2015;26(1):39-50.
The protozoan parasite, Trypanosoma cruzi, the etiologic agent of Chagas disease (ChD), has a cell surface covered by immunogenic glycoconjugates. One of the immunodominant glycotopes, the trisaccharide Galα(1,3)Galβ(1,4)GlcNAcα, is expressed on glycosylphosphatidylinositol-anchored mucins of the infective trypomastigote stage of T. cruzi and triggers high levels of protective anti-α-Gal antibodies (Abs) in infected individuals. Here, we have efficiently synthesized the mercaptopropyl glycoside of that glycotope and conjugated it to maleimide-derivatized bovine serum albumin (BSA). Chemiluminescent-enzyme-linked immunosorbent assay revealed that Galα(1,3)Galβ(1,4)GlcNAcα-BSA is recognized by purified anti-α-Gal Abs from chronic ChD patients ∼230-fold more strongly than by anti-α-Gal Abs from sera of healthy individuals (NHS anti-α-Gal). Similarly, the pooled sera of chronic Chagas disease patients (ChHSP) recognized Galα(1,3)Galβ(1,4)GlcNAcα ∼20-fold more strongly than pooled NHS. In contrast, the underlying disaccharide Galβ(1,4)GlcNAcα and the monosaccharide GlcNAcα or GlcNAcβ conjugated to BSA are poorly or not recognized by purified anti-α-Gal Abs or sera from Chagasic patients or healthy individuals. Our results highlight the importance of the terminal Galα moiety for recognition by Ch anti-α-Gal Abs and the lack of Abs against nonself Galβ(1,4)GlcNAcα and GlcNAcα glycotopes. The substantial difference in binding of Ch vs. NHS anti-α-Gal Abs to Galα(1,3)Galβ(1,4)GlcNAcα-BSA suggests that this neoglycoprotein (NGP) might be suitable for experimental vaccination. To this end, the Galα(1,3)Galβ(1,4)GlcNAcα-BSA NGP was then used to immunize α1,3-galactosyltransferase-knockout mice, which produced antibody titers 40-fold higher as compared with pre-immunization titers. Taken together, our results indicate that the synthetic Galα(1,3)Galβ(1,4)GlcNAcα glycotope coupled to a carrier protein could be a potential diagnostic and vaccine candidate for ChD.
PMCID: PMC4672149  PMID: 26384953
biomarkers; carbohydrates; Chagas disease; immunization; neoglycoprotein
6.  Preferred conformations of N-glycan core pentasaccharide in solution and in glycoproteins 
Glycobiology  2015;26(1):19-29.
N-linked glycans are on protein surfaces and have direct and water/ion-mediated interactions with surrounding amino acids. Such contacts could restrict their conformational freedom compared to the same glycans free in solution. In this work, we have examined the conformational freedom of the N-glycan core pentasaccharide moiety in solution using standard molecular dynamics (MD) simulations as well as temperature replica-exchange MD simulations. Both simulations yield the comparable conformational variability of the pentasaccharide in solution, indicating the convergence of both simulations. The glycoprotein crystal structures are analyzed to compare the conformational freedom of the N-glycan on the protein surface with the simulation result. Surprisingly, the pentasaccharide free in solution shows more restricted conformational variability than the N-glycan on the protein surface. The interactions between the carbohydrate and the protein side chain appear to be responsible for the increased conformational diversity of the N-glycan on the protein surface. Finally, the transfer entropy analysis of the simulation trajectory also reveals an unexpected causality relationship between intramolecular hydrogen bonds and the conformational states in that the hydrogen bonds play a role in maintaining the conformational states rather than driving the change in glycosidic torsional states.
PMCID: PMC4672150  PMID: 26405106
crystal structure; information theory; molecular dynamics; simulation
7.  LARGE2-dependent glycosylation confers laminin-binding ability on proteoglycans 
Glycobiology  2016;26(12):1284-1296.
Both LARGE1 (formerly LARGE) and its paralog LARGE2 are bifunctional glycosyltransferases with xylosy- and glucuronyltransferase activities, and are capable of synthesizing polymers composed of a repeating disaccharide [-3Xylα1,3GlcAβ1-]. Post-translational modification of the O-mannosyl glycan of α-dystroglycan (α-DG) with the polysaccharide is essential for it to act as a receptor for ligands in the extracellular matrix (ECM), and both LARGE paralogs contribute to the modification in vivo. LARGE1 and LARGE2 have different tissue distribution profiles and enzymatic properties; however, the functional difference of the homologs remains to be determined, and α-DG is the only known substrate for the modification by LARGE1 or LARGE2. Here we show that LARGE2 can modify proteoglycans (PGs) with the laminin-binding glycan. We found that overexpression of LARGE2, but not LARGE1, mediates the functional modification on the surface of DG−/−, Pomt1−/− and Fktn−/− embryonic stem cells. We identified a heparan sulfate-PG glypican-4 as a substrate for the LARGE2-dependent modification by affinity purification and subsequent mass spectrometric analysis. Furthermore, we showed that LARGE2 could modify several additional PGs with the laminin-binding glycan, most likely within the glycosaminoglycan (GAG)-protein linkage region. Our results indicate that LARGE2 can modify PGs with the GAG-like polysaccharide composed of xylose and glucuronic acid to confer laminin binding. Thus, LARGE2 may play a differential role in stabilizing the basement membrane and modifying its functions by augmenting the interactions between laminin globular domain-containing ECM proteins and PGs.
PMCID: PMC5137251  PMID: 27496765
dystroglycan, glycosaminoglycan, laminin binding, LARGE2, proteoglycan
9.  Cell surface glycan engineering of neural stem cells augments neurotropism and improves recovery in a murine model of multiple sclerosis 
Glycobiology  2015;25(12):1392-1409.
Neural stem cell (NSC)-based therapies offer potential for neural repair in central nervous system (CNS) inflammatory and degenerative disorders. Typically, these conditions present with multifocal CNS lesions making it impractical to inject NSCs locally, thus mandating optimization of vascular delivery of the cells to involved sites. Here, we analyzed NSCs for expression of molecular effectors of cell migration and found that these cells are natively devoid of E-selectin ligands. Using glycosyltransferase-programmed stereosubstitution (GPS), we glycan engineered the cell surface of NSCs (“GPS-NSCs”) with resultant enforced expression of the potent E-selectin ligand HCELL (hematopoietic cell E-/L-selectin ligand) and of an E-selectin-binding glycoform of neural cell adhesion molecule (“NCAM-E”). Following intravenous (i.v.) injection, short-term homing studies demonstrated that, compared with buffer-treated (control) NSCs, GPS-NSCs showed greater neurotropism. Administration of GPS-NSC significantly attenuated the clinical course of experimental autoimmune encephalomyelitis (EAE), with markedly decreased inflammation and improved oligodendroglial and axonal integrity, but without evidence of long-term stem cell engraftment. Notably, this effect of NSC is not a universal property of adult stem cells, as administration of GPS-engineered mouse hematopoietic stem/progenitor cells did not improve EAE clinical course. These findings highlight the utility of cell surface glycan engineering to boost stem cell delivery in neuroinflammatory conditions and indicate that, despite the use of a neural tissue-specific progenitor cell population, neural repair in EAE results from endogenous repair and not from direct, NSC-derived cell replacement.
PMCID: PMC4634313  PMID: 26153105
exofucosylation; glycan engineering; HCELL; multiple sclerosis; neural stem cell
10.  Analysis of site-specific N-glycan remodeling in the endoplasmic reticulum and the Golgi 
Glycobiology  2015;25(12):1335-1349.
The hallmark of N-linked protein glycosylation is the generation of diverse glycan structures in the secretory pathway. Dynamic, non-template-driven processes of N-glycan remodeling in the endoplasmic reticulum and the Golgi provide the cellular setting for structural diversity. We applied newly developed mass spectrometry-based analytics to quantify site-specific N-glycan remodeling of the model protein Pdi1p expressed in insect cells. Molecular dynamics simulation, mutational analysis, kinetic studies of in vitro processing events and glycan flux analysis supported the defining role of the protein in N-glycan processing.
PMCID: PMC4634314  PMID: 26240167
endoplasmic reticulum glycosylation; Golgi; Golgi glycosylation; site-specific glycosylation
11.  Cloning and expression of 3-deoxy-d-manno-oct-2-ulosonic acid α-ketoside hydrolase from oyster hepatopancreas† 
Glycobiology  2015;25(12):1431-1440.
We have previously reported that oyster hepatopancreas contained three unusual α-ketoside hydrolases: (i) a 3-deoxy-d-manno-oct-2-ulosonic acid α-ketoside hydrolase (α-Kdo-ase), (ii) a 3-deoxy-d-glycero-d-galacto-non-2-ulosonic acid α-ketoside hydrolase and (iii) a bifunctional ketoside hydrolase capable of cleaving both the α-ketosides of Kdn and Neu5Ac (Kdn-sialidase). After completing the purification of Kdn-sialidase, we proceeded to clone the gene encoding this enzyme. Unexpectedly, we found that instead of expressing Kdn-sialidase, our cloned gene expressed α-Kdo-ase activity. The full-length gene, consisting of 1176-bp (392 amino acids, Mr 44,604), expressed an active recombinant α-Kdo-ase (R-α-Kdo-ase) in yeast and CHO-S cells, but not in various Escherichia coli strains. The deduced amino acid sequence contains two Asp boxes (S277PDDGKTW and S328TDQGKTW) commonly found in sialidases, but is devoid of the signature FRIP-motif of sialidase. The R-α-Kdo-ase effectively hydrolyzed the Kdo in the core-oligosaccharide of the structurally defined lipopolysaccharide (LPS), Re-LPS (Kdo2-Lipid A) from Salmonella minnesota R595 and E. coli D31m4. However, Rd-LPS from S. minnesota R7 that contained an extra outer core phosphorylated heptose was only slowly hydrolyzed. The complex type LPS from Neisseria meningitides A1 and M992 that contained extra 5–6 sugar units at the outer core were refractory to R-α-Kdo-ase. This R-α-Kdo-ase should become useful for studying the structure and function of Kdo-containing glycans.
PMCID: PMC4634316  PMID: 26362869
α-Kdo-ase; glycosidase; lipid A; recombinant enzyme; sialidase
12.  A Quarter Century of Glycobiology 
Glycobiology  2015;25(12):1321-1322.
PMCID: PMC4668919  PMID: 26543185
13.  A glycomic approach reveals a new mycobacterial polysaccharide 
Glycobiology  2015;25(11):1163-1171.
Mycobacterium tuberculosis lipoarabinomannan (LAM) and biosynthetically related lipoglycans and glycans play an important role in host–pathogen interactions. Therefore, the elucidation of the complete biosynthetic pathways of these important molecules is expected to afford novel therapeutic targets. The characterization of biosynthetic enzymes and transporters involved in the formation and localization of these complex macromolecules in the bacterial cell envelope largely relies on genetic manipulation of mycobacteria and subsequent analyses of lipoglycan structural alterations. However, lipoglycans are present in relatively low amounts. Their purification to homogeneity remains tedious and time-consuming. To overcome these issues and to reduce the biomass and time required for lipoglycan purification, we report here the development of a methodology to efficiently purify lipoglycans by sodium deoxycholate–polyacrylamide gel electrophoresis. This faster purification method can be applied on a small amount of mycobacterial cells biomass (10–50 mg), resulting in tens of micrograms of purified lipoglycans. This amount of purified products was found to be sufficient to undertake structural analyses of lipoglycans and glycans carbohydrate domains by a combination of highly sensitive analytical procedures, involving cryoprobe NMR analysis of intact macromolecules and chemical degradations monitored by gas chromatography and capillary electrophoresis. This glycomic approach was successfully applied to the purification and structural characterization of a newly identified polysaccharide, structurally related to LAM, in the model fast-growing species Mycobacterium smegmatis.
PMCID: PMC4594620  PMID: 26261090
glycomic; Mycobacterium; polysaccharide
14.  Base-modified UDP-sugars reduce cell surface levels of P-selectin glycoprotein 1 (PSGL-1) on IL-1β-stimulated human monocytes 
Glycobiology  2016;26(10):1059-1071.
P-selectin glycoprotein ligand-1 (PSGL-1, CD162) is a cell-surface glycoprotein that is expressed, either constitutively or inducibly, on all myeloid and lymphoid cell lineages. PSGL-1 is implicated in cell–cell interactions between platelets, leukocytes and endothelial cells, and a key mediator of inflammatory cell recruitment and transmigration into tissues. Here, we have investigated the effects of the β-1,4-galactosyltransferase inhibitor 5-(5-formylthien-2-yl) UDP-Gal (5-FT UDP-Gal, compound 1) and two close derivatives on the cell surface levels of PSGL-1 on human peripheral blood mononuclear cells (hPBMCs). PSGL-1 levels were studied both under basal conditions, and upon stimulation of hPBMCs with interleukin-1β (IL-1β). Between 1 and 24 hours after IL-1β stimulation, we observed initial PSGL-1 shedding, followed by an increase in PSGL-1 levels on the cell surface, with a maximal window between IL-1β-induced and basal levels after 72 h. All three inhibitors reduce PSGL-1 levels on IL-1β-stimulated cells in a concentration-dependent manner, but show no such effect in resting cells. Compound 1 also affects the cell surface levels of adhesion molecule CD11b in IL-1β-stimulated hPBMCs, but not of glycoproteins CD14 and CCR2. This activity profile may be linked to the inhibition of global Sialyl Lewis presentation on hPBMCs by compound 1, which we have also observed. Although this mechanistic explanation remains hypothetical at present, our results show, for the first time, that small molecules can discriminate between IL-1β-induced and basal levels of cell surface PSGL-1. These findings open new avenues for intervention with PSGL-1 presentation on the cell surface of primed hPBMCs and may have implications for anti-inflammatory drug development.
PMCID: PMC5072147  PMID: 27233805
glycosyltransferase; inhibitor; interleukin-1β; monocytes; P-selectin glycoprotein-1
15.  Generation and characterization of β1,2-gluco-oligosaccharide probes from Brucella abortus cyclic β-glucan and their recognition by C-type lectins of the immune system 
Glycobiology  2016;26(10):1086-1096.
The β1,2-glucans produced by bacteria are important in invasion, survival and immunomodulation in infected hosts be they mammals or plants. However, there has been a lack of information on proteins which recognize these molecules. This is partly due to the extremely limited availability of the sequence-defined oligosaccharides and derived probes for use in the study of their interactions. Here we have used the cyclic β1,2-glucan (CβG) of the bacterial pathogen Brucella abortus, after removal of succinyl side chains, to prepare linearized oligosaccharides which were used to generate microarrays. We describe optimized conditions for partial depolymerization of the cyclic glucan by acid hydrolysis and conversion of the β1,2-gluco-oligosaccharides, with degrees of polymerization 2–13, to neoglycolipids for the purpose of generating microarrays. By microarray analyses, we show that the C-type lectin receptor DC-SIGNR, like the closely related DC-SIGN we investigated earlier, binds to the β1,2-gluco-oligosaccharides, as does the soluble immune effector serum mannose-binding protein. Exploratory studies with DC-SIGN are suggestive of the recognition also of the intact CβG by this receptor. These findings open the way to unravelling mechanisms of immunomodulation mediated by β1,2-glucans in mammalian systems.
PMCID: PMC5072146  PMID: 27053576
β1,2-glucan; carbohydrate microarray; C-type lectins; glucan recognition; neoglycolipids
16.  The multiple roles of epidermal growth factor repeat O-glycans in animal development 
Glycobiology  2015;25(10):1027-1042.
The epidermal growth factor (EGF)-like repeat is a common, evolutionarily conserved motif found in secreted proteins and the extracellular domain of transmembrane proteins. EGF repeats harbor six cysteine residues which form three disulfide bonds and help generate the three-dimensional structure of the EGF repeat. A subset of EGF repeats harbor consensus sequences for the addition of one or more specific O-glycans, which are initiated by O-glucose, O-fucose or O-N-acetylglucosamine. These glycans are relatively rare compared to mucin-type O-glycans. However, genetic experiments in model organisms and cell-based assays indicate that at least some of the glycosyltransferases involved in the addition of O-glycans to EGF repeats play important roles in animal development. These studies, combined with state-of-the-art biochemical and structural biology experiments have started to provide an in-depth picture of how these glycans regulate the function of the proteins to which they are linked. In this review, we will discuss the biological roles assigned to EGF repeat O-glycans and the corresponding glycosyltransferases. Since Notch receptors are the best studied proteins with biologically-relevant O-glycans on EGF repeats, a significant part of this review is devoted to the role of these glycans in the regulation of the Notch signaling pathway. We also discuss recently identified proteins other than Notch which depend on EGF repeat glycans to function properly. Several glycosyltransferases involved in the addition or elongation of O-glycans on EGF repeats are mutated in human diseases. Therefore, mechanistic understanding of the functional roles of these carbohydrate modifications is of interest from both basic science and translational perspectives.
PMCID: PMC4551148  PMID: 26175457
developmental biology; EGF repeat; Notch signaling; O-glycan; protein folding
17.  Plant protein glycosylation 
Glycobiology  2016;26(9):926-939.
Protein glycosylation is an essential co- and post-translational modification of secretory and membrane proteins in all eukaryotes. The initial steps of N-glycosylation and N-glycan processing are highly conserved between plants, mammals and yeast. In contrast, late N-glycan maturation steps in the Golgi differ significantly in plants giving rise to complex N-glycans with β1,2-linked xylose, core α1,3-linked fucose and Lewis A-type structures. While the essential role of N-glycan modifications on distinct mammalian glycoproteins is already well documented, we have only begun to decipher the biological function of this ubiquitous protein modification in different plant species. In this review, I focus on the biosynthesis and function of different protein N-linked glycans in plants. Special emphasis is given on glycan-mediated quality control processes in the ER and on the biological role of characteristic complex N-glycan structures.
PMCID: PMC5045529  PMID: 26911286
endoplasmic reticulum; glycosyltransferase; Golgi apparatus; N-glycan processing; N-glycosylation
18.  Chemical characterization and immunomodulatory properties of polysaccharides isolated from probiotic Lactobacillus casei LOCK 0919 
Glycobiology  2016;26(9):1014-1024.
The Lactobacillus casei strain, LOCK 0919, is intended for the dietary management of food allergies and atopic dermatitis (LATOPIC® BIOMED). The use of a probiotic to modulate immune responses is an interesting strategy for solving imbalance problems of gut microflora that may lead to various disorders. However, the exact bacterial signaling mechanisms underlying such modulations are still far from being understood. Here, we investigated variations in the chemical compositions and immunomodulatory properties of the polysaccharides (PS), L919/A and L919/B, which are produced by L. casei LOCK 0919. By virtue of their chemical features, such PS can modulate the immune responses to third-party antigens. Our results revealed that L919/A and L919/B could both modulate the immune response to Lactobacillus planatarum WCFS1, but only L919/B could alter the response of THP-1 cells (in terms of tumor necrosis factor alpha production) to L. planatarum WCFS1 and Escherichia coli Nissle 1917. The comprehensive immunochemical characterization is crucial for the understanding of the biological function as well as of the bacteria–host and bacteria–bacteria cross-talk.
PMCID: PMC5045530  PMID: 27102285
immunomodulation; Lactobacillus; NMR spectroscopy; polysaccharide; probiotic
19.  Glycosyltransferases involved in the synthesis of MUC-associated metastasis-promoting selectin ligands 
Glycobiology  2015;25(9):963-975.
The sialyl Lewis a and x (sLea/x) antigens frequently displayed on the surface of tumor cells are involved in metastasis. Their synthesis has been attributed to altered expression of selective glycosyltransferases. Identification of these glycosyltransferases and the glycoproteins that carry these carbohydrate antigens should help advance our understanding of selectin-mediated cancer metastasis. In this study, quantitative real-time polymerase chain reaction analysis coupled with in situ proximity ligation assay and small interference RNA treatment shows involvement of β3galactosyltransferase-V in the synthesis of MUC16-associated sLea in H292 cells. Also, α3fucosyltransferase-V, which is absent in BEAS-2B human immortalized bronchial epithelial cells and A549 lung carcinoma cells, participates in the synthesis of MUC1-associated sLex in CFT1 human immortalized bronchial epithelial cells and H292 lung carcinoma cells. Neither selectin ligand is found on MUC1 in BEAS-2B and A549 cells. Knockdown of either enzyme suppresses migration, and selectin tethering and rolling properties of H292 cells under dynamic flow as determined by wound healing and parallel plate flow chamber assays, respectively. These results provide insights into how the synthesis of mucin-associated selectin ligands and the metastatic properties of cancer cells can be regulated by selective glycosyltransferases that work on mucins. They may help develop novel anticancer drugs.
PMCID: PMC4518684  PMID: 25972125
cell adhesion; glycosylation; glycosyltransferases; lung cancer; metastasis; sialyl Lewis antigens
20.  Globally profiling sialylation status of macrophages upon statin treatment 
Glycobiology  2015;25(9):1007-1015.
Sialic acids (SAs) are widely expressed on immune cells and their levels and linkages named as sialylation status vary upon cellular environment changes related to both physiological and pathological processes. In this study, we performed a global profiling of the sialylation status of macrophages and their release of SAs in the cell culture medium by using flow cytometry, confocal microscopy and liquid chromatography tandem mass spectrometry (LC-MS/MS). Both flow cytometry and confocal microscopy results showed that cell surface α-2,3-linked SAs were predominant in the normal culture condition and changed slightly upon treatment with atorvastatin for 24 h, whereas α-2,6-linked SAs were negligible in the normal culture condition but significantly increased after treatment. Meanwhile, the amount of total cellular SAs increased about three times (from 369 ± 29 to 1080 ± 50 ng/mL) upon treatment as determined by the LC-MS/MS method. On the other hand, there was no significant change for secreted free SAs and conjugated SAs in the medium. These results indicated that the cell surface α-2,6 sialylation status of macrophages changes distinctly upon atorvastatin stimulation, which may reflect on the biological functions of the cells.
PMCID: PMC4607740  PMID: 26033937
confocal microscopy; flow cytometry; LC-MS/MS; macrophage; sialic acid
21.  A congenital disorder of deglycosylation: Biochemical characterization of N-glycanase 1 deficiency in patient fibroblasts 
Glycobiology  2015;25(8):836-844.
N-Glycanase 1, encoded by NGLY1, catalyzes the deglycosylation of misfolded N-linked glycoproteins retrotranslocated into the cytosol. We identified nine cases with mutations in NGLY1. The patients show developmental delay, seizures, peripheral neuropathy, abnormal liver function and alacrima (absence of tears). The mutations in NGLY1 resulted in the absence of N-glycanase 1 protein in patient-derived fibroblasts. Applying a recently established cellular deglycosylation-dependent Venus fluorescence assay, we found that patient fibroblasts had dramatically reduced fluorescence, indicating a pronounced reduction in N-glycanase enzymatic activity. Using this assay, we could find no evidence of other related activities. Our findings reveal that NGLY1 mutations destroy both N-glycanase 1 protein and enzymatic activity.
PMCID: PMC4487302  PMID: 25900930
deglycosylation-dependent venus (ddVenus) fluorescence assay; N-glycanase 1 deficiency; Z-VAD
22.  Expression of stage-specific embryonic antigen-4 (SSEA-4) defines spontaneous loss of epithelial phenotype in human solid tumor cells 
Glycobiology  2015;25(8):902-917.
Stage-specific embryonic antigen-4 (SSEA-4) is a glycosphingolipid, which is overexpressed in some cancers and has been linked to disease progression. However, little is known about the functions of SSEA-4 and the characteristics of SSEA-4 expressing tumor cells. Our studies identified SSEA-4 expression on a subpopulation of cells in many solid tumor cell lines but not in leukemic cell lines. Fluorescence-activated cell sorting-sorted SSEA-4+ prostate cancer cells formed fibroblast-like colonies with limited cell–cell contacts, whereas SSEA-4− cells formed cobblestone-like epithelial colonies. Only colonies derived from SSEA-4+ cells were enriched for pluripotent embryonic stem cell markers. Moreover, major epithelial cell-associated markers Claudin-7, E-cadherin, ESRP1 and GRHL2 were down-regulated in the SSEA-4+ fraction of DU145 and HCT-116 cells. Similar to cell lines, SSEA-4+ primary prostate tumor cells also showed down-regulation of epithelial cell-associated markers. In addition, they showed up-regulation of epithelial-to-mesenchymal transition as well as mesenchymal markers. Furthermore, SSEA-4+ cells escape from adhesive colonies spontaneously and form invadopodia-like migratory structures, in which SSEA-4, cortactin as well as active pPI3K, pAkt and pSrc are enriched and colocalized. Finally, SSEA-4+ cells displayed strong tumorigenic ability and stable knockdown of SSEA-4 synthesis resulted in decreased cellular adhesion to different extracellular matrices. In conclusion, we introduce SSEA-4 as a novel marker to identify heterogeneous, invasive subpopulations of tumor cells. Moreover, increased cell-surface SSEA-4 expression is associated with the loss of cell–cell interactions and the gain of a migratory phenotype, suggesting an important role of SSEA-4 in cancer invasion by influencing cellular adhesion to the extracellular matrix.
PMCID: PMC4565992  PMID: 25978997
adhesion; epithelial-to-mesenchymal transition; invadopodia; invasion; SSEA-4
23.  Selective biochemical labeling of Campylobacter jejuni cell-surface glycoconjugates 
Glycobiology  2015;25(7):756-766.
The display of cell-surface glycolipids and glycoproteins is essential for the motility, adhesion and colonization of pathogenic bacteria such as Campylobacter jejuni. Recently, the cell-surface display of C. jejuni glycoconjugates has been the focus of considerable attention; however, our understanding of the roles that glycosylation plays in bacteria still pales in comparison with our understanding of mammalian glycosylation. One of the reasons for this is that carbohydrate metabolic labeling, a powerful tool for studying mammalian glycans, is difficult to establish in bacterial systems and has a significantly more limited scope. Herein, we report the development of an alternative strategy that can be used to study bacterial cell-surface glycoconjugates. Galactose oxidase (GalO) is used to generate an aldehyde at C-6 of terminal GalNAc residues of C. jejuni glycans. This newly generated aldehyde can be conjugated with aminooxy-functionalized purification tags or fluorophores. The label can be targeted towards specific glycoconjugates using C. jejuni mutant strains with N-glycan or lipo-oligosaccharides (LOS) assembly defects. GalO-catalyzed labeling of cell-surface glycoproteins with biotin, allowed for the purification and identification of known extracellular N-linked glycoproteins as well as a recently identified O-linked glycan modifying PorA. To expand the scope of the GalO reaction, live-cell fluorescent labeling of C. jejuni was used to compare the levels of surface-exposed LOS to the levels of N-glycosylated, cell-surface proteins. While this study focuses on the GalO-catalyzed labeling of C. jejuni, it can in principle be used to evaluate glycosylation patterns and identify glycoproteins of interest in any bacteria.
PMCID: PMC4453864  PMID: 25761366
bacterial glycoconjugates; galactose oxidase; glycoprotein identification; lipo-oligosaccharides; live-cell labeling
24.  Reduced expression of the oligosaccharyltransferase exacerbates protein hypoglycosylation in cells lacking the fully assembled oligosaccharide donor 
Glycobiology  2015;25(7):774-783.
A defect in the assembly of the oligosaccharide donor (Dol-PP-GlcNAc2Man9Glc3) for N-linked glycosylation causes hypoglycosylation of proteins by the oligosaccharyltransferase (OST). Mammalian cells express two OST complexes that have different catalytic subunits (STT3A or STT3B). We monitored glycosylation of proteins in asparagine-linked glycosylation 6 (ALG6) deficient cell lines that assemble Dol-PP-GlcNAc2Man9 as the largest oligosaccharide donor. Based upon pulse labeling experiments, 30–40% of STT3A-dependent glycosylation sites and 20% of STT3B-dependent sites are skipped in ALG6-congenital disorders of glycosylation fibroblasts supporting previous evidence that the STT3B complex has a relaxed preference for the fully assembled oligosaccharide donor. Glycosylation of STT3B-dependent sites was more severely reduced in the ALG6 deficient MI8-5 cell line. Protein immunoblot analysis and RT–PCR revealed that MI8-5 cells express 2-fold lower levels of STT3B than the parental Chinese hamster ovary cells. The combination of reduced expression of STT3B and the lack of the optimal Dol-PP-GlcNAc2Man9Glc3 donor synergize to cause very severe hypoglycosylation of proteins in MI8-5 cells. Thus, differences in OST subunit expression can modify the severity of hypoglycosylation displayed by cells with a primary defect in the dolichol oligosaccharide assembly pathway.
PMCID: PMC4453865  PMID: 25792706
asparagine-linked glycosylation; congenital disorders of glycosylation; lipid-linked oligosaccharide; oligosaccharyltransferase
25.  Sialidases as regulators of bioengineered cellular surfaces 
Glycobiology  2015;25(7):784-791.
Human sialidases (NEUs) catalyze the removal of N-acetyl neuraminic acids from the glycome of the cell and regulate a diverse repertoire of nominal cellular functions, such as cell signaling and adhesion. A greater understanding of their substrate permissivity is of interest in order to discern their physiological functions in disease states and in the design of specific and effective small molecule inhibitors. Towards this, we have synthesized soluble fluorogenic reporters of mammalian sialidase activity bearing unnatural sialic acids commonly incorporated into the cellular glycocalyx via metabolic glycoengineering. We found cell-surface sialidases in Jurkat capable of cleaving unnatural sialic acids with differential activities toward a variety of R groups on neuraminic acid. In addition, we observed modulated structure–activity relationships when cell-surface sialidases were presented glycans with unnatural bulky, hydrophobic or fluorinated moieties incorporated directly via glycoengineering. Our results confirm the importance of cell-surface sialidases in glycoengineering incorporation data. We demonstrate the flexibility of human NEUs toward derivatized sugars and highlight the importance of native glycan presentation to sialidase binding and activity. These results stand to inform not only metabolic glycoengineering efforts but also inhibitor design.
PMCID: PMC4453866  PMID: 25795684
4-methylumbelliferyl; metabolic glycoengineering; neuraminidase; sialic acid; sialidase

Results 1-25 (306)