PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1856)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
4.  Overexpression of the calpain-specific inhibitor calpastatin reduces human alpha-Synuclein processing, aggregation and synaptic impairment in [A30P]αSyn transgenic mice 
Human Molecular Genetics  2014;23(15):3975-3989.
Lewy bodies, a pathological hallmark of Parkinson's disease (PD), contain aggregated alpha-synuclein (αSyn), which is found in several modified forms and can be discovered phosphorylated, ubiquitinated and truncated. Aggregation-prone truncated species of αSyn caused by aberrant cleavage of this fibrillogenic protein are hypothesized to participate in its sequestration into inclusions subsequently leading to synaptic dysfunction and neuronal death. Here, we investigated the role of calpain cleavage of αSyn in vivo by generating two opposing mouse models. We crossed into human [A30P]αSyn transgenic (i) mice deficient for calpastatin, a calpain-specific inhibitor, thus enhancing calpain activity (SynCAST(−)) and (ii) mice overexpressing human calpastatin leading to reduced calpain activity (SynCAST(+)). As anticipated, a reduced calpain activity led to a decreased number of αSyn-positive aggregates, whereas loss of calpastatin led to increased truncation of αSyn in SynCAST(−). Furthermore, overexpression of calpastatin decreased astrogliosis and the calpain-dependent degradation of synaptic proteins, potentially ameliorating the observed neuropathology in [A30P]αSyn and SynCAST(+) mice. Overall, our data further support a crucial role of calpains, particularly of calpain 1, in the pathogenesis of PD and in disease-associated aggregation of αSyn, indicating a therapeutic potential of calpain inhibition in PD.
doi:10.1093/hmg/ddu112
PMCID: PMC4110482  PMID: 24619358
5.  iRHOM2-dependent regulation of ADAM17 in cutaneous disease and epidermal barrier function 
Human Molecular Genetics  2014;23(15):4064-4076.
iRHOM2 is a highly conserved, catalytically inactive member of the Rhomboid family, which has recently been shown to regulate the maturation of the multi-substrate ectodomain sheddase enzyme ADAM17 (TACE) in macrophages. Dominant iRHOM2 mutations are the cause of the inherited cutaneous and oesophageal cancer-susceptibility syndrome tylosis with oesophageal cancer (TOC), suggesting a role for this protein in epithelial cells. Here, using tissues derived from TOC patients, we demonstrate that TOC-associated mutations in iRHOM2 cause an increase in the maturation and activity of ADAM17 in epidermal keratinocytes, resulting in significantly upregulated shedding of ADAM17 substrates, including EGF-family growth factors and pro-inflammatory cytokines. This activity is accompanied by increased EGFR activity, increased desmosome processing and the presence of immature epidermal desmosomes, upregulated epidermal transglutaminase activity and heightened resistance to Staphylococcal infection in TOC keratinocytes. Many of these features are consistent with the presence of a constitutive wound-healing-like phenotype in TOC epidermis, which may shed light on a novel pathway in skin repair, regeneration and inflammation.
doi:10.1093/hmg/ddu120
PMCID: PMC4110483  PMID: 24643277
6.  Multiple pathogenic proteins implicated in neuronopathic Gaucher disease mice 
Human Molecular Genetics  2014;23(15):3943-3957.
Gaucher disease, a prevalent lysosomal storage disease (LSD), is caused by insufficient activity of acid β-glucosidase (GCase) and the resultant glucosylceramide (GC)/glucosylsphingosine (GS) accumulation in visceral organs (Type 1) and the central nervous system (Types 2 and 3). Recent clinical and genetic studies implicate a pathogenic link between Gaucher and neurodegenerative diseases. The aggregation and inclusion bodies of α-synuclein with ubiquitin are present in the brains of Gaucher disease patients and mouse models. Indirect evidence of β-amyloid pathology promoting α-synuclein fibrillation supports these pathogenic proteins as a common feature in neurodegenerative diseases. Here, multiple proteins are implicated in the pathogenesis of chronic neuronopathic Gaucher disease (nGD). Immunohistochemical and biochemical analyses showed significant amounts of β-amyloid and amyloid precursor protein (APP) aggregates in the cortex, hippocampus, stratum and substantia nigra of the nGD mice. APP aggregates were in neuronal cells and colocalized with α-synuclein signals. A majority of APP co-localized with the mitochondrial markers TOM40 and Cox IV; a small portion co-localized with the autophagy proteins, P62/LC3, and the lysosomal marker, LAMP1. In cultured wild-type brain cortical neural cells, the GCase-irreversible inhibitor, conduritol B epoxide (CBE), reproduced the APP/α-synuclein aggregation and the accumulation of GC/GS. Ultrastructural studies showed numerous larger-sized and electron-dense mitochondria in nGD cerebral cortical neural cells. Significant reductions of mitochondrial adenosine triphosphate production and oxygen consumption (28–40%) were detected in nGD brains and in CBE-treated neural cells. These studies implicate defective GCase function and GC/GS accumulation as risk factors for mitochondrial dysfunction and the multi-proteinopathies (α-synuclein-, APP- and Aβ-aggregates) in nGD.
doi:10.1093/hmg/ddu105
PMCID: PMC4082362  PMID: 24599400
7.  Combined protein- and nucleic acid-level effects of rs1143679 (R77H), a lupus-predisposing variant within ITGAM 
Human Molecular Genetics  2014;23(15):4161-4176.
Integrin alpha M (ITGAM; CD11b) is a component of the macrophage-1 antigen complex, which mediates leukocyte adhesion, migration and phagocytosis as part of the immune system. We previously identified a missense polymorphism, rs1143679 (R77H), strongly associated with systemic lupus erythematosus (SLE). However, the molecular mechanisms of this variant are incompletely understood. A meta-analysis of published and novel data on 28 439 individuals with European, African, Hispanic and Asian ancestries reinforces genetic association between rs1143679 and SLE [Pmeta = 3.60 × 10−90, odds ratio (OR) = 1.76]. Since rs1143679 is in the most active region of chromatin regulation and transcription factor binding in ITGAM, we quantitated ITGAM RNA and surface protein levels in monocytes from patients with each rs1143679 genotype. We observed that transcript levels significantly decreased for the risk allele (‘A’) relative to the non-risk allele (‘G’), in a dose-dependent fashion: (‘AA’ < ‘AG’ < ‘GG’). CD11b protein levels in patients' monocytes were directly correlated with RNA levels. Strikingly, heterozygous individuals express much lower (average 10- to 15-fold reduction) amounts of the ‘A’ transcript than ‘G’ transcript. We found that the non-risk sequence surrounding rs1143679 exhibits transcriptional enhancer activity in vivo and binds to Ku70/80, NFKB1 and EBF1 in vitro, functions that are significantly reduced with the risk allele. Mutant CD11b protein shows significantly reduced binding to fibrinogen and vitronectin, relative to non-risk, both in purified protein and in cellular models. This two-pronged contribution (nucleic acid- and protein-level) of the rs1143679 risk allele to decreasing ITGAM activity provides insight into the molecular mechanisms of its potent association with SLE.
doi:10.1093/hmg/ddu106
PMCID: PMC4082363  PMID: 24608226
8.  Genetic suppression of β2-adrenergic receptors ameliorates tau pathology in a mouse model of tauopathies 
Human Molecular Genetics  2014;23(15):4024-4034.
Accumulation of the microtubule-binding protein tau is a key event in several neurodegenerative disorders referred to as tauopathies, which include Alzheimer's disease, frontotemporal lobar degeneration, Pick's disease, progressive supranuclear palsy and corticobasal degeneration. Thus, understanding the molecular pathways leading to tau accumulation will have a major impact across multiple neurodegenerative disorders. To elucidate the pathways involved in tau pathology, we removed the gene encoding the beta-2 adrenergic receptors (β2ARs) from a mouse model overexpressing mutant human tau. Notably, the number of β2ARs is increased in brains of AD patients and epidemiological studies show that the use of beta-blockers decreases the incidence of AD. The mechanisms underlying these observations, however, are not clear. We show that the tau transgenic mice lacking the β2AR gene had a reduced mortality rate compared with the parental tau transgenic mice. Removing the gene encoding the β2ARs from the tau transgenic mice also significantly improved motor deficits. Neuropathologically, the improvement in lifespan and motor function was associated with a reduction in brain tau immunoreactivity and phosphorylation. Mechanistically, we provide compelling evidence that the β2AR-mediated changes in tau were linked to a reduction in the activity of GSK3β and CDK5, two of the major tau kinases. These studies provide a mechanistic link between β2ARs and tau and suggest the molecular basis linking the use of beta-blockers to a reduced incidence of AD. Furthermore, these data suggest that a detailed pharmacological modulation of β2ARs could be exploited to develop better therapeutic strategies for AD and other tauopathies.
doi:10.1093/hmg/ddu116
PMCID: PMC4082366  PMID: 24626633
9.  The swaying mouse as a model of osteogenesis imperfecta caused by WNT1 mutations 
Human Molecular Genetics  2014;23(15):4035-4042.
Osteogenesis imperfecta (OI) is a heritable disorder of connective tissue characterized by bone fragility and low bone mass. Recently, our group and others reported that WNT1 recessive mutations cause OI, whereas WNT1 heterozygous mutations cause early onset osteoporosis. These findings support the hypothesis that WNT1 is an important WNT ligand regulating bone formation and bone homeostasis. While these studies provided strong human genetic and in vitro functional data, an in vivo animal model to study the mechanism of WNT1 function in bone is lacking. Here, we show that Swaying (Wnt1sw/sw) mice previously reported to carry a spontaneous mutation in Wnt1 share major features of OI including propensity to fractures and severe osteopenia. In addition, biomechanical and biochemical analyses showed that Wnt1sw/sw mice exhibit reduced bone strength with altered levels of mineral and collagen in the bone matrix that is also distinct from the type I collagen-related form of OI. Further histomorphometric analyses and gene expression studies demonstrate that the bone phenotype is associated with defects in osteoblast activity and function. Our study thus provides in vivo evidence that WNT1 mutations contribute to bone fragility in OI patients and demonstrates that the Wnt1sw/sw mouse is a murine model of OI caused by WNT1 mutations.
doi:10.1093/hmg/ddu117
PMCID: PMC4082367  PMID: 24634143
10.  IgA measurements in over 12 000 Swedish twins reveal sex differential heritability and regulatory locus near CD30L 
Human Molecular Genetics  2014;23(15):4177-4184.
In a broad attempt to improve the understanding of the genetic regulation of serum IgA levels, the heritability was estimated in over 12 000 Swedish twins, and a genome-wide association study was conducted in a subsample of 9617. Using the classical twin model the heritability was found to be significantly larger among females (61%) compared with males (21%), while contribution from shared environment (20%) was only seen for males. By modeling the genetic relationship matrix with IgA levels, we estimate that a substantial proportion (31%) of variance in IgA levels can ultimately be explained by the investigated SNPs. The genome-wide association study revealed significant association to two loci: (i) rs6928791 located on chromosome 6, 22 kb upstream of the gene SAM and SH3 domain containing 1 (SASH1) and (ii) rs13300483 on chromosome 9, situated 12 kb downstream the CD30 ligand (CD30L) encoding gene. The association to rs13300483 was replicated in two additional independent Swedish materials. The heritability of IgA levels is moderate and can partly be attributable to common variation in the CD30L locus.
doi:10.1093/hmg/ddu135
PMCID: PMC4082371  PMID: 24676358
11.  The palmitoyl acyltransferase HIP14 shares a high proportion of interactors with huntingtin: implications for a role in the pathogenesis of Huntington's disease 
Human Molecular Genetics  2014;23(15):4142-4160.
HIP14 is the most highly conserved of 23 human palmitoyl acyltransferases (PATs) that catalyze the post-translational addition of palmitate to proteins, including huntingtin (HTT). HIP14 is dysfunctional in the presence of mutant HTT (mHTT), the causative gene for Huntington disease (HD), and we hypothesize that reduced palmitoylation of HTT and other HIP14 substrates contributes to the pathogenesis of the disease. Here we describe the yeast two-hybrid (Y2H) interactors of HIP14 in the first comprehensive study of interactors of a mammalian PAT. Unexpectedly, we discovered a highly significant overlap between HIP14 interactors and 370 published interactors of HTT, 4-fold greater than for control proteins (P = 8 × 10−5). Nearly half of the 36 shared interactors are already implicated in HD, supporting a direct link between HIP14 and the disease. The HIP14 Y2H interaction set is significantly enriched for palmitoylated proteins that are candidate substrates. We confirmed that three of them, GPM6A, and the Sprouty domain-containing proteins SPRED1 and SPRED3, are indeed palmitoylated by HIP14; the first enzyme known to palmitoylate these proteins. These novel substrates functions might be affected by reduced palmitoylation in HD. We also show that the vesicular cargo adapter optineurin, an established HTT-binding protein, co-immunoprecipitates with HIP14 but is not palmitoylated. mHTT leads to mislocalization of optineurin and aberrant cargo trafficking. Therefore, it is possible that optineurin regulates trafficking of HIP14 to its substrates. Taken together, our data raise the possibility that defective palmitoylation by HIP14 might be an important mechanism that contributes to the pathogenesis of HD.
doi:10.1093/hmg/ddu137
PMCID: PMC4082372  PMID: 24705354
12.  Aberrant cell cycle reentry in human and experimental inclusion body myositis and polymyositis 
Human Molecular Genetics  2014;23(14):3681-3694.
Inclusion body myositis (IBM), a degenerative and inflammatory disorder of skeletal muscle, and Alzheimer's disease share protein derangements and attrition of postmitotic cells. Overexpression of cyclins and proliferating cell nuclear antigen (PCNA) and evidence for DNA replication is reported in Alzheimer's disease brain, possibly contributing to neuronal death. It is unknown whether aberrant cell cycle reentry also occurs in IBM. We examined cell cycle markers in IBM compared with normal control, polymyositis (PM) and non-inflammatory dystrophy sample sets. Next, we tested for evidence of reentry and DNA synthesis in C2C12 myotubes induced to express β-amyloid (Aβ42). We observed increased levels of Ki-67, PCNA and cyclins E/D1 in IBM compared with normals and non-inflammatory conditions. Interestingly, PM samples displayed similar increases. Satellite cell markers did not correlate with Ki-67-affected myofiber nuclei. DNA synthesis and cell cycle markers were induced in Aβ-bearing myotubes. Cell cycle marker and cyclin protein expressions were also induced in an experimental allergic myositis-like model of PM in mice. Levels of p21 (Cip1/WAF1), a cyclin-dependent kinase inhibitor, were decreased in affected myotubes. However, overexpression of p21 did not rescue cells from Aβ-induced toxicity. This is the first report of cell cycle reentry in human myositis. The absence of rescue and evidence for reentry in separate models of myodegeneration and inflammation suggest that new DNA synthesis may be a reactive response to either or both stressors.
doi:10.1093/hmg/ddu077
PMCID: PMC4065145  PMID: 24556217
13.  CtIP mediates replication fork recovery in a FANCD2-regulated manner 
Human Molecular Genetics  2014;23(14):3695-3705.
Fanconi anemia (FA) is a chromosome instability syndrome characterized by increased cancer predisposition. Within the FA pathway, an upstream FA core complex mediates monoubiquitination and recruitment of the central FANCD2 protein to sites of stalled replication forks. Once recruited, FANCD2 fulfills a dual role towards replication fork recovery: (i) it cooperates with BRCA2 and RAD51 to protect forks from nucleolytic degradation and (ii) it recruits the BLM helicase to promote replication fork restart while suppressing new origin firing. Intriguingly, FANCD2 and its interaction partners are also involved in homologous recombination (HR) repair of DNA double-strand breaks, hinting that FANCD2 utilizes HR proteins to mediate replication fork recovery. One such candidate is CtIP (CtBP-interacting protein), a key HR repair factor that functions in complex with BRCA1 and MRE11, but has not been investigated as putative player in the replication stress response. Here, we identify CtIP as a novel interaction partner of FANCD2. CtIP binds and stabilizes FANCD2 in a DNA damage- and FA core complex-independent manner, suggesting that FANCD2 monoubiquitination is dispensable for its interaction with CtIP. Following cellular treatment with a replication inhibitor, aphidicolin, FANCD2 recruits CtIP to transiently stalled, as well as collapsed, replication forks on chromatin. At stalled forks, CtIP cooperates with FANCD2 to promote fork restart and the suppression of new origin firing. Both functions are dependent on BRCA1 that controls the step-wise recruitment of MRE11, FANCD2 and finally CtIP to stalled replication forks, followed by their concerted actions to promote fork recovery.
doi:10.1093/hmg/ddu078
PMCID: PMC4065146  PMID: 24556218
14.  Enhanced Ca2+ influx from STIM1–Orai1 induces muscle pathology in mouse models of muscular dystrophy 
Human Molecular Genetics  2014;23(14):3706-3715.
Muscular dystrophy is a progressive muscle wasting disease that is thought to be initiated by unregulated Ca2+ influx into myofibers leading to their death. Store-operated Ca2+ entry (SOCE) through sarcolemmal Ca2+ selective Orai1 channels in complex with STIM1 in the sarcoplasmic reticulum is one such potential disease mechanism for pathologic Ca2+ entry. Here, we generated a mouse model of STIM1 overexpression in skeletal muscle to determine whether this type of Ca2+ entry could induce muscular dystrophy. Myofibers from muscle-specific STIM1 transgenic mice showed a significant increase in SOCE in skeletal muscle, modeling an observed increase in the same current in dystrophic myofibers. Histological and biochemical analysis of STIM1 transgenic mice showed fulminant muscle disease characterized by myofiber necrosis, swollen mitochondria, infiltration of inflammatory cells, enhanced interstitial fibrosis and elevated serum creatine kinase levels. This dystrophic-like disease in STIM1 transgenic mice was abrogated by crossing in a transgene expressing a dominant-negative Orai1 (dnOrai1) mutant. The dnOrai1 transgene also significantly reduced the severity of muscular dystrophy in both mdx (dystrophin mutant mice) and δ-sarcoglycan-deficient (Sgcd−/−) mouse models of disease. Hence, Ca2+ influx across an unstable sarcolemma due to increased activity of a STIM1–Orai1 complex is a disease determinant in muscular dystrophy, and hence, SOCE represents a potential therapeutic target.
doi:10.1093/hmg/ddu079
PMCID: PMC4065147  PMID: 24556214
15.  Methylene blue upregulates Nrf2/ARE genes and prevents tau-related neurotoxicity 
Human Molecular Genetics  2014;23(14):3716-3732.
Methylene blue (MB, methylthioninium chloride) is a phenothiazine that crosses the blood brain barrier and acts as a redox cycler. Among its beneficial properties are its abilities to act as an antioxidant, to reduce tau protein aggregation and to improve energy metabolism. These actions are of particular interest for the treatment of neurodegenerative diseases with tau protein aggregates known as tauopathies. The present study examined the effects of MB in the P301S mouse model of tauopathy. Both 4 mg/kg MB (low dose) and 40 mg/kg MB (high dose) were administered in the diet ad libitum from 1 to 10 months of age. We assessed behavior, tau pathology, oxidative damage, inflammation and numbers of mitochondria. MB improved the behavioral abnormalities and reduced tau pathology, inflammation and oxidative damage in the P301S mice. These beneficial effects were associated with increased expression of genes regulated by NF-E2-related factor 2 (Nrf2)/antioxidant response element (ARE), which play an important role in antioxidant defenses, preventing protein aggregation, and reducing inflammation. The activation of Nrf2/ARE genes is neuroprotective in other transgenic mouse models of neurodegenerative diseases and it appears to be an important mediator of the neuroprotective effects of MB in P301S mice. Moreover, we used Nrf2 knock out fibroblasts to show that the upregulation of Nrf2/ARE genes by MB is Nrf2 dependent and not due to secondary effects of the compound. These findings provide further evidence that MB has important neuroprotective effects that may be beneficial in the treatment of human neurodegenerative diseases with tau pathology.
doi:10.1093/hmg/ddu080
PMCID: PMC4065148  PMID: 24556215
16.  The histone deacetylase HDAC3 is essential for Purkinje cell function, potentially complicating the use of HDAC inhibitors in SCA1 
Human Molecular Genetics  2014;23(14):3733-3745.
Spinocerebellar ataxia type 1 (SCA1) is an incurable neurodegenerative disease caused by a pathogenic glutamine repeat expansion in the protein ataxin-1 (ATXN1). One likely mechanism mediating pathogenesis is excessive transcriptional repression induced by the expanded ATXN-1. Because ATXN1 binds HDAC3, a Class I histone deacetylase (HDAC) that we have found to be required for ATXN1-induced transcriptional repression, we tested whether genetically depleting HDAC3 improves the phenotype of the SCA1 knock-in mouse (SCA1154Q/2Q), the most physiologically relevant model of SCA1. Given that HDAC3 null mice are embryonic lethal, we used for our analyses a combination of HDAC3 haploinsufficient and Purkinje cell (PC)-specific HDAC3 null mice. Although deleting a single allele of HDAC3 in the context of SCA1 was insufficient to improve cerebellar and cognitive deficits of the disease, a complete loss of PC HDAC3 was highly deleterious both behaviorally, with mice showing early onset ataxia, and pathologically, with progressive histologic evidence of degeneration. Inhibition of HDAC3 may yet have a role in SCA1 therapy, but our study provides cautionary evidence that this approach could produce untoward effects. Indeed, the neurotoxic consequences of HDAC3 depletion could prove relevant, wherever pharmacologic inhibition of HDAC3 is being contemplated, in disorders ranging from cancer to neurodegeneration.
doi:10.1093/hmg/ddu081
PMCID: PMC4065149  PMID: 24594842
17.  Estimating the heritability of colorectal cancer 
Human Molecular Genetics  2014;23(14):3898-3905.
A sizable fraction of colorectal cancer (CRC) is expected to be explained by heritable factors, with heritability estimates ranging from 12 to 35% twin and family studies. Genome-wide association studies (GWAS) have successfully identified a number of common single-nucleotide polymorphisms (SNPs) associated with CRC risk. Although it has been shown that these CRC susceptibility SNPs only explain a small proportion of the genetic risk, it is not clear how much of the heritability these SNPs explain and how much is left to be detected by other, yet to be identified, common SNPs. Therefore, we estimated the heritability of CRC under different scenarios using Genome-Wide Complex Trait Analysis in the Genetics and Epidemiology of Colorectal Cancer Consortium including 8025 cases and 10 814 controls. We estimated that the heritability explained by known common CRC SNPs identified in GWAS was 0.65% (95% CI:0.3–1%; P = 1.11 × 10−16), whereas the heritability explained by all common SNPs was at least 7.42% (95% CI: 4.71–10.12%; P = 8.13 × 10−8), suggesting that many common variants associated with CRC risk remain to be detected. Comparing the heritability explained by the common variants with that from twin and family studies, a fraction of the heritability may be explained by other genetic variants, such as rare variants. In addition, our analysis showed that the gene × smoking interaction explained a significant proportion of the CRC variance (P = 1.26 × 10−2). In summary, our results suggest that known CRC SNPs only explain a small proportion of the heritability and more common SNPs have yet to be identified.
doi:10.1093/hmg/ddu087
PMCID: PMC4065150  PMID: 24562164
18.  Rbm20-deficient cardiogenesis reveals early disruption of RNA processing and sarcomere remodeling establishing a developmental etiology for dilated cardiomyopathy 
Human Molecular Genetics  2014;23(14):3779-3791.
Dilated cardiomyopathy (DCM) due to mutations in RBM20, a gene encoding an RNA-binding protein, is associated with high familial penetrance, risk of progressive heart failure and sudden death. Although genetic investigations and physiological models have established the linkage of RBM20 with early-onset DCM, the underlying basis of cellular and molecular dysfunction is undetermined. Modeling human genetics using a high-throughput pluripotent stem cell platform was herein designed to pinpoint the initial transcriptome dysfunction and mechanistic corruption in disease pathogenesis. Tnnt2-pGreenZeo pluripotent stem cells were engineered to knockdown Rbm20 (shRbm20) to determine the cardiac-pathogenic phenotype during cardiac differentiation. Intracellular Ca2+ transients revealed Rbm20-dependent alteration in Ca2+ handling, coinciding with known pathological splice variants of Titin and Camk2d genes by Day 24 of cardiogenesis. Ultrastructural analysis demonstrated elongated and thinner sarcomeres in the absence of Rbm20 that is consistent with human cardiac biopsy samples. Furthermore, Rbm20-depleted transcriptional profiling at Day 12 identified Rbm20-dependent dysregulation with 76% of differentially expressed genes linked to known cardiac pathology ranging from primordial Nkx2.5 to mature cardiac Tnnt2 as the initial molecular aberrations. Notably, downstream consequences of Rbm20-depletion at Day 24 of differentiation demonstrated significant dysregulation of extracellular matrix components such as the anomalous overexpression of the Vtn gene. By using the pluripotent stem cell platform to model human cardiac disease according to a stage-specific cardiogenic roadmap, we established a new paradigm of familial DCM pathogenesis as a developmental disorder that is patterned during early cardiogenesis and propagated with cellular mechanisms of pathological cardiac remodeling.
doi:10.1093/hmg/ddu091
PMCID: PMC4065152  PMID: 24584570
19.  Histone deacetylase 3 modulates Tbx5 activity to regulate early cardiogenesis 
Human Molecular Genetics  2014;23(14):3801-3809.
Congenital heart defects often result from improper differentiation of cardiac progenitor cells. Although transcription factors involved in cardiac progenitor cell differentiation have been described, the associated chromatin modifiers in this process remain largely unknown. Here we show that mouse embryos lacking the chromatin-modifying enzyme histone deacetylase 3 (Hdac3) in cardiac progenitor cells exhibit precocious cardiomyocyte differentiation, severe cardiac developmental defects, upregulation of Tbx5 target genes and embryonic lethality. Hdac3 physically interacts with Tbx5 and modulates its acetylation to repress Tbx5-dependent activation of cardiomyocyte lineage-specific genes. These findings reveal that Hdac3 plays a critical role in cardiac progenitor cells to regulate early cardiogenesis.
doi:10.1093/hmg/ddu093
PMCID: PMC4065153  PMID: 24565863
20.  The ALS gene FUS regulates synaptic transmission at the Drosophila neuromuscular junction 
Human Molecular Genetics  2014;23(14):3810-3822.
Mutations in the RNA binding protein Fused in sarcoma (FUS) are estimated to account for 5–10% of all inherited cases of amyotrophic lateral sclerosis (ALS), but the function of FUS in motor neurons is poorly understood. Here, we investigate the early functional consequences of overexpressing wild-type or ALS-associated mutant FUS proteins in Drosophila motor neurons, and compare them to phenotypes arising from loss of the Drosophila homolog of FUS, Cabeza (Caz). We find that lethality and locomotor phenotypes correlate with levels of FUS transgene expression, indicating that toxicity in developing motor neurons is largely independent of ALS-linked mutations. At the neuromuscular junction (NMJ), overexpression of either wild-type or mutant FUS results in decreased number of presynaptic active zones and altered postsynaptic glutamate receptor subunit composition, coinciding with a reduction in synaptic transmission as a result of both reduced quantal size and quantal content. Interestingly, expression of human FUS downregulates endogenous Caz levels, demonstrating that FUS autoregulation occurs in motor neurons in vivo. However, loss of Caz from motor neurons increases synaptic transmission as a result of increased quantal size, suggesting that the loss of Caz in animals expressing FUS does not contribute to motor deficits. These data demonstrate that FUS/Caz regulates NMJ development and plays an evolutionarily conserved role in modulating the strength of synaptic transmission in motor neurons.
doi:10.1093/hmg/ddu094
PMCID: PMC4065154  PMID: 24569165
21.  Respiratory failure, cleft palate and epilepsy in the mouse model of human Xq22.1 deletion syndrome 
Human Molecular Genetics  2014;23(14):3823-3829.
Chromosomal segmental deletion is a frequent cause of human diseases. A familial 1.1 Mb deletion of human chromosome Xq22.1 associates with epilepsy, cleft palate and developmental defects in heterozygous female patients. Here, we describe a mouse mutant with a targeted deletion of the syntenic segment of the mouse X chromosome that phenocopies the human syndrome. Male mice with a deletion of a 1.1 Mb Nxf2–Nxf3 X-chromosomal segment exhibit respiratory failure, neonatal lethality and cleft palate. In female mice, heterozygosity for the deletion manifests cleft palate, early postnatal lethality, postnatal growth delay and spontaneous seizures in surviving animals, apparently due to X-chromosome inactivation. Furthermore, loss of a 0.35 Mb subregion containing Armcx5, Gprasp1, Gprasp2 and Bhlhb9 is sufficient to cause the Xq22.1 syndrome phenotype. Our results support that the 1.1 Mb deletion of human Xq22.1 is the genetic cause of the associated syndrome.
doi:10.1093/hmg/ddu095
PMCID: PMC4065155  PMID: 24569167
22.  Neuronal Tsc1/2 complex controls autophagy through AMPK-dependent regulation of ULK1 
Human Molecular Genetics  2014;23(14):3865-3874.
Tuberous sclerosis complex (TSC) is a disorder arising from mutation in the TSC1 or TSC2 gene, characterized by the development of hamartomas in various organs and neurological manifestations including epilepsy, intellectual disability and autism. TSC1/2 protein complex negatively regulates the mammalian target of rapamycin complex 1 (mTORC1) a master regulator of protein synthesis, cell growth and autophagy. Autophagy is a cellular quality-control process that sequesters cytosolic material in double membrane vesicles called autophagosomes and degrades it in autolysosomes. Previous studies in dividing cells have shown that mTORC1 blocks autophagy through inhibition of Unc-51-like-kinase1/2 (ULK1/2). Despite the fact that autophagy plays critical roles in neuronal homeostasis, little is known on the regulation of autophagy in neurons. Here we show that unlike in non-neuronal cells, Tsc2-deficient neurons have increased autolysosome accumulation and autophagic flux despite mTORC1-dependent inhibition of ULK1. Our data demonstrate that loss of Tsc2 results in autophagic activity via AMPK-dependent activation of ULK1. Thus, in Tsc2-knockdown neurons AMPK activation is the dominant regulator of autophagy. Notably, increased AMPK activity and autophagy activation are also found in the brains of Tsc1-conditional mouse models and in cortical tubers resected from TSC patients. Together, our findings indicate that neuronal Tsc1/2 complex activity is required for the coordinated regulation of autophagy by AMPK. By uncovering the autophagy dysfunction associated with Tsc2 loss in neurons, our work sheds light on a previously uncharacterized cellular mechanism that contributes to altered neuronal homeostasis in TSC disease.
doi:10.1093/hmg/ddu101
PMCID: PMC4065158  PMID: 24599401
23.  Statistical insights into major human muscular diseases 
Human Molecular Genetics  2014;23(14):3772-3778.
Muscular diseases lead to muscle fiber degeneration, impairment of mobility, and in some cases premature death. Many of these muscular diseases are largely idiopathic. The goal of this study was to identify biomarkers based on their functional role and possible mechanisms of pathogenesis, specific to individual muscular disease. We analyzed the muscle transcriptome from five major muscular diseases: acute quadriplegic myopathy (AQM), amyotrophic lateral sclerosis (ALS), mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes (MELAS), dermatomyositis (DM) and polymyositis (PM) using pairwise statistical comparison to identify uniquely regulated genes in each muscular disease. The genome-wide information encoded in the transcriptome provided biomarkers and functional insights into dysregulation in each muscular disease. The analysis showed that the dysregulation of genes in forward membrane pathway, responsible for transmitting action potential from neural excitation, is unique to AQM, while the dysregulation of myofibril genes, determinant of the mechanical properties of muscle, is unique to ALS, dysregulation of ER protein processing, responsible for correct protein folding, is unique to DM, and upregulation of immune response genes is unique to PM. We have identified biomarkers specific to each muscular disease which can be used for diagnostic purposes.
doi:10.1093/hmg/ddu090
PMCID: PMC4415066  PMID: 24569163
24.  Exome sequencing identifies de novo gain of function missense mutation in KCND2 in identical twins with autism and seizures that slows potassium channel inactivation 
Human Molecular Genetics  2014;23(13):3481-3489.
Numerous studies and case reports show comorbidity of autism and epilepsy, suggesting some common molecular underpinnings of the two phenotypes. However, the relationship between the two, on the molecular level, remains unclear. Here, whole exome sequencing was performed on a family with identical twins affected with autism and severe, intractable seizures. A de novo variant was identified in the KCND2 gene, which encodes the Kv4.2 potassium channel. Kv4.2 is a major pore-forming subunit in somatodendritic subthreshold A-type potassium current (ISA) channels. The de novo mutation p.Val404Met is novel and occurs at a highly conserved residue within the C-terminal end of the transmembrane helix S6 region of the ion permeation pathway. Functional analysis revealed the likely pathogenicity of the variant in that the p.Val404Met mutant construct showed significantly slowed inactivation, either by itself or after equimolar coexpression with the wild-type Kv4.2 channel construct consistent with a dominant effect. Further, the effect of the mutation on closed-state inactivation was evident in the presence of auxiliary subunits that associate with Kv4 subunits to form ISA channels in vivo. Discovery of a functionally relevant novel de novo variant, coupled with physiological evidence that the mutant protein disrupts potassium current inactivation, strongly supports KCND2 as the causal gene for epilepsy in this family. Interaction of KCND2 with other genes implicated in autism and the role of KCND2 in synaptic plasticity provide suggestive evidence of an etiological role in autism.
doi:10.1093/hmg/ddu056
PMCID: PMC4049306  PMID: 24501278
25.  The familial Alzheimer's disease APPV717I mutation alters APP processing and Tau expression in iPSC-derived neurons 
Human Molecular Genetics  2014;23(13):3523-3536.
Alzheimer's disease (AD) is a complex neurodegenerative disorder characterized by extracellular plaques containing amyloid β (Aβ)-protein and intracellular tangles containing hyperphosphorylated Tau protein. Here, we describe the generation of inducible pluripotent stem cell lines from patients harboring the London familial AD (fAD) amyloid precursor protein (APP) mutation (V717I). We examine AD-relevant phenotypes following directed differentiation to forebrain neuronal fates vulnerable in AD. We observe that over differentiation time to mature neuronal fates, APP expression and levels of Aβ increase dramatically. In both immature and mature neuronal fates, the APPV717I mutation affects both β- and γ-secretase cleavage of APP. Although the mutation lies near the γ-secretase cleavage site in the transmembrane domain of APP, we find that β-secretase cleavage of APP is elevated leading to generation of increased levels of both APPsβ and Aβ. Furthermore, we find that this mutation alters the initial cleavage site of γ-secretase, resulting in an increased generation of both Aβ42 and Aβ38. In addition to altered APP processing, an increase in levels of total and phosphorylated Tau is observed in neurons with the APPV717I mutation. We show that treatment with Aβ-specific antibodies early in culture reverses the phenotype of increased total Tau levels, implicating altered Aβ production in fAD neurons in this phenotype. These studies use human neurons to reveal previously unrecognized effects of the most common fAD APP mutation and provide a model system for testing therapeutic strategies in the cell types most relevant to disease processes.
doi:10.1093/hmg/ddu064
PMCID: PMC4049307  PMID: 24524897

Results 1-25 (1856)