PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (117)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
1.  A polymer encapsulation approach to prepare zwitterion-like, biocompatible quantum dots with wide pH and ionic stability 
A surface modification approach adopting polymer encapsulation was developed to prepare zwitterion-like quantum dots (ZWL-QDs). The fundamental physical, chemical, and biological properties of the ZWL-QDs were characterized. It is found that the ZWL-QDs almost preserve the quantum yield (QY) of native hydrophobic QDs in organic solvents, and also are compact in size (7 ~ 10 nm hydrodynamic diameter) and stable over wide pHs or in high salinity solutions. Further cellular study shows that the ZWL-QDs with a concentration less than 100 nM have a minimal cytotoxicity and thus are biocompatible. Characterizing and understanding these essential properties of the ZWL-QDs are an important step before employing them for various applications.
doi:10.1007/s11051-014-2555-3
PMCID: PMC4346346  PMID: 25750584
Nanoparticle surface modification; Polymer encapsulation; CuInS2/ZnS quantum dots; Zwitterionic like; Colloidal stability
2.  Integrated probabilistic risk assessment for nanoparticles: the case of nanosilica in food 
Insight into risks of nanotechnology and the use of nanoparticles is an essential condition for the social acceptance and safe use of nanotechnology. One of the problems with which the risk assessment of nanoparticles is faced is the lack of data, resulting in uncertainty in the risk assessment. We attempt to quantify some of this uncertainty by expanding a previous deterministic study on nanosilica (5–200 nm) in food into a fully integrated probabilistic risk assessment. We use the integrated probabilistic risk assessment method in which statistical distributions and bootstrap methods are used to quantify uncertainty and variability in the risk assessment. Due to the large amount of uncertainty present, this probabilistic method, which separates variability from uncertainty, contributed to a better understandable risk assessment. We found that quantifying the uncertainties did not increase the perceived risk relative to the outcome of the deterministic study. We pinpointed particular aspects of the hazard characterization that contributed most to the total uncertainty in the risk assessment, suggesting that further research would benefit most from obtaining more reliable data on those aspects.
Electronic supplementary material
The online version of this article (doi:10.1007/s11051-015-2911-y) contains supplementary material, which is available to authorized users.
doi:10.1007/s11051-015-2911-y
PMCID: PMC4457916  PMID: 26074726
Dose metric; E551; Margin of exposure; Uncertainty; Variability; Nanotechnology; Governance
3.  Comparative hazard analysis and toxicological modeling of diverse nanomaterials using the embryonic zebrafish (EZ) metric of toxicity 
The integration of rapid assays, large datasets, informatics, and modeling can overcome current barriers in understanding nanomaterial structure–toxicity relationships by providing a weight-of-the-evidence mechanism to generate hazard rankings for nanomaterials. Here, we present the use of a rapid, low-cost assay to perform screening-level toxicity evaluations of nanomaterials in vivo. Calculated EZ Metric scores, a combined measure of morbidity and mortality in developing embryonic zebrafish, were established at realistic exposure levels and used to develop a hazard ranking of diverse nanomaterial toxicity. Hazard ranking and clustering analysis of 68 diverse nanomaterials revealed distinct patterns of toxicity related to both the core composition and outermost surface chemistry of nanomaterials. The resulting clusters guided the development of a surface chemistry-based model of gold nanoparticle toxicity. Our findings suggest that risk assessments based on the size and core composition of nanomaterials alone may be wholly inappropriate, especially when considering complex engineered nanomaterials. Research should continue to focus on methodologies for determining nanomaterial hazard based on multiple sub-lethal responses following realistic, low-dose exposures, thus increasing the availability of quantitative measures of nanomaterial hazard to support the development of nanoparticle structure–activity relationships.
Electronic supplementary material
The online version of this article (doi:10.1007/s11051-015-3051-0) contains supplementary material, which is available to authorized users.
doi:10.1007/s11051-015-3051-0
PMCID: PMC4454819  PMID: 26069453
Nanoparticle; Zebrafish; Toxicity; Surface chemistry; Informatics
4.  Pulmonary toxicity of well-dispersed titanium dioxide nanoparticles following intratracheal instillation 
In order to investigate the pulmonary toxicity of titanium dioxide (TiO2) nanoparticles, we performed an intratracheal instillation study with rats of well-dispersed TiO2 nanoparticles and examined the pulmonary inflammation and histopathological changes in the lung. Wistar Hannover rats were intratracheally administered 0.2 mg (0.66 mg/kg) and 1.0 mg (3.3 mg/kg) of well-dispersed TiO2 nanoparticles (P90; diameter of agglomerates: 25 nm), then the pulmonary inflammation responses were examined from 3 days to 6 months after the instillation, and the pathological features were examined up to 24 months. Transient inflammation and the upregulation of chemokines in the broncho-alveolar lavage fluid were observed for 1 month. No respiratory tumors or severe fibrosis were observed during the recovery time. These data suggest that transient inflammation induced by TiO2 may not lead to chronic, irreversible legions in the lung, and that TiO2 nanoparticles may not have a high potential for lung disorder.
doi:10.1007/s11051-015-3054-x
PMCID: PMC4451463  PMID: 26069452
Titanium dioxide; Nanoparticle; Intratracheal instillation; Pulmonary inflammation; Chemokine; Environmental and health effects
5.  Bioavailability and biodistribution of differently charged polystyrene nanoparticles upon oral exposure in rats 
The likelihood of oral exposure to nanoparticles (NPs) is increasing, and it is necessary to evaluate the oral bioavailability of NPs. In vitro approaches could help reducing animal studies, but validation against in vivo studies is essential. Previously, we assessed the translocation of 50 nm polystyrene NPs of different charges (neutral, positive and negative) using a Caco-2/HT29-MTX in vitro intestinal translocation model. The NPs translocated in a surface charge-dependent manner. The present study aimed to validate this in vitro intestinal model by an in vivo study. For this, rats were orally exposed to a single dose of these polystyrene NPs and the uptake in organs was determined. A negatively charged NP was taken up more than other NPs, with the highest amounts in kidney (37.4 µg/g tissue), heart (52.8 µg/g tissue), stomach wall (98.3 µg/g tissue) and small intestinal wall (94.4 µg/g tissue). This partly confirms our in vitro findings, where the same NPs translocated to the highest extent. The estimated bioavailability of different types of NPs ranged from 0.2 to 1.7 % in vivo, which was much lower than in vitro (1.6–12.3 %). Therefore, the integrated in vitro model cannot be used for a direct prediction of the bioavailability of orally administered NPs. However, the model can be used for prioritizing NPs before further in vivo testing for risk assessment.
doi:10.1007/s11051-015-3029-y
PMCID: PMC4440892  PMID: 26028989
Polystyrene nanoparticles; Surface properties; Biodistribution; Bioavailability; In vivo; Oral exposure
6.  Empowering citizens in international governance of nanotechnologies 
The international dialogue on responsible governance of nanotechnologies engages a wide range of actors with conflicting as well as common interests. It is also characterised by a lack of evidence-based data on uncertain risks of in particular engineered nanomaterials. The present paper aims at deepening understanding of the collective decision making context at international level using the grounded theory approach as proposed by Glaser and Strauss in “The Discovery of Grounded Theory” (1967). This starts by discussing relevant concepts from different fields including sociological and political studies of international relations as well as political philosophy and ethics. This analysis of current trends in international law making is taken as starting point for exploring the role that a software decision support tool could play in multi-stakeholder global governance of nanotechnologies. These theoretical ideas are then compared with the current design of the SUN Decision Support System (SUNDS) under development in the European project on Sustainable Nanotechnologies (SUN, www.sun-fp7.eu). Through constant comparison, the ideas are also compared with requirements of different stakeholders as expressed during a user workshop. This allows for highlighting discussion points for further consideration.
doi:10.1007/s11051-015-3019-0
PMCID: PMC4427706  PMID: 25983616
Nanotechnology; International governance; Responsible research and innovation; Sustainability
7.  Fate of cerium dioxide nanoparticles in endothelial cells: exocytosis 
Although cytotoxicity and endocytosis of nanoparticles have been the subject of numerous studies, investigations regarding exocytosis as an important mechanism to reduce intracellular nanoparticle accumulation are rather rare and there is a distinct lack of knowledge. The current study investigated the behavior of human microvascular endothelial cells to exocytose cerium dioxide (CeO2) nanoparticles (18.8 nm) by utilization of specific inhibitors [brefeldin A; nocodazole; methyl-β-cyclodextrin (MβcD)] and different analytical methods (flow cytometry, transmission electron microscopy, inductively coupled plasma mass spectrometry). Overall, it was found that endothelial cells were able to release CeO2 nanoparticles via exocytosis after the migration of nanoparticle containing endosomes toward the plasma membrane. The exocytosis process occurred mainly by fusion of vesicular membranes with plasma membrane resulting in the discharge of vesicular content to extracellular environment. Nevertheless, it seems to be likely that nanoparticles present in the cytosol could leave the cells in a direct manner. MβcD treatment led to the strongest inhibition of the nanoparticle exocytosis indicating a significant role of the plasma membrane cholesterol content in the exocytosis process. Brefeldin A (inhibitor of Golgi-to-cell-surface-transport) caused a higher inhibitory effect on exocytosis than nocodazole (inhibitor of microtubules). Thus, the transfer from distal Golgi compartments to the cell surface influenced the exocytosis process of the CeO2 nanoparticles more than the microtubule-associated transport. In conclusion, endothelial cells, which came in contact with nanoparticles, e.g., after intravenously applied nano-based drugs, can regulate their intracellular nanoparticle amount, which is necessary to avoid adverse nanoparticle effects on cells.
doi:10.1007/s11051-015-3007-4
PMCID: PMC4419152  PMID: 25972759
Cerium dioxide; Endothelial cells; Exocytosis; Exocytosis inhibitor; Nanoparticle; Health effects
8.  Size- and morphology-dependent optical properties of ZnS:Al one-dimensional structures 
Typical morphology substrates can improve the efficiency of surface-enhanced Raman scattering; the need for SERS substrates of controlled morphology requires an extensive study. In this paper, one-dimensional ZnS:Al nanostructures with the width of approximately 300 nm and the length of tens um, and micro-scale structures with the width of several um and the length of tens um were synthesized via thermal evaporation on Au-coated silicon substrates and were used to study their size effects on Raman scattering and photoluminescent spectra. The photoluminescence spectra reveal the strongest green emission at a 5 at% Al source, which originates from the Al-dopant emission. The Raman spectra reveal that the size and morphology of the ZnS:Al nanowires greatly influences the Raman scattering, whereas the Al-dopant concentration has a lesser effect on the Raman scattering. The observed Raman scattering intensity of the saw-like ZnS:Al nanowires with the width of tens nm was eight times larger than that of the bulk sample. The enhanced Raman scattering can be regarded as multiple scattering and weak exciton—phonon coupling. The branched one-dimensional nanostructure can be used as an ideal substrate to enhance Raman scattering.
doi:10.1007/s11051-015-3000-y
PMCID: PMC4412203  PMID: 25960688
Al-doped ZnS; Morphology; Surface-enhanced Raman scattering; PL spectra
9.  The influence of stabilizers on the production of gold nanoparticles by direct current atmospheric pressure glow microdischarge generated in contact with liquid flowing cathode 
Gold nanoparticles (Au NPs) were prepared by direct current atmospheric pressure glow microdischarge (dc-μAPGD) generated between a miniature argon flow microjet and a flowing liquid cathode. The applied discharge system was operated in a continuous flow liquid mode. The influence of various stabilizers added to the solution of the liquid cathode, i.e., gelatin (GEL), polyvinylpyrrolidone (PVP), or polyvinyl alcohol (PVA), as well as the concentration of the Au precursor (chloroauric acid, HAuCl4) in the solution on the production growth of Au NPs was investigated. Changes in the intensity of the localized surface plasmon resonance (LSPR) band in UV/Vis absorption spectra of solutions treated by dc-μAPGD and their color were observed. The position and the intensity of the LSPR band indicated that relatively small nanoparticles were formed in solutions containing GEL as a capping agent. In these conditions, the maximum of the absorption LSPR band was at 531, 534, and 535 nm, respectively, for 50, 100, and 200 mg L−1 of Au. Additionally, scanning electron microscopy (SEM) and dynamic light scattering (DLS) were used to analyze the structure and the morphology of obtained Au NPs. The shape of Au NPs was spherical and uniform. Their mean size was ca. 27, 73, and 92 nm, while the polydispersity index was 0.296, 0.348, and 0.456 for Au present in the solution of the flowing liquid cathode at a concentration of 50, 100, and 200 mg L−1, respectively. The production rate of synthesized Au NPs depended on the precursor concentration with mean values of 2.9, 3.5, and 5.7 mg h−1, respectively.
doi:10.1007/s11051-015-2992-7
PMCID: PMC4412201  PMID: 25960686
Gold nanoparticles; Atmospheric pressure glow discharge; UV/Vis absorption spectroscopy; Localized surface plasmon resonance
10.  Effects of disciplinary cultures of researchers and research trainees on the acceptability of nanocarriers for drug delivery in different contexts of use: a mixed-methods study 
The acceptability of nanomedical applications, which have the potential to generate ethical and societal impacts, is a significant factor in the deployment of nanomedicine. A lack of fit between nanomedical applications and society’s values may result from a partial consideration of such impacts. New approaches for technological evaluation focused on impact perception, acceptance, and acceptability are needed to go beyond traditional technology assessment approaches used with nanotechnology, which focus mainly on toxicological and safety criteria. Using a new evaluative approach based on perceived impacts of nanotechnology, the objective of this study was to assess perceptions among researchers and research trainees familiar with emergent technologies and from different disciplinary background the scope of acceptability judgments made towards the use of nanocarriers. This mixed-methods study was based on scenarios presenting two types of drug-delivery nanocarriers (carbon, synthetic DNA) in two contexts of use (lung cancer treatment, seasonal flu treatment). Researchers and research trainees in the natural sciences and engineering, and the social sciences and the humanities were invited by email to take part in this project. An online questionnaire followed by semi-directed interviews allowed characterization of disciplinary divergences regarding to impact perception, acceptance, and acceptability of the scenarios. The results suggest that impact perception is influenced by disciplinary culture. Also, trends can be seen between respondents’ profiles and variables of acceptance and acceptability, and certain components of the acceptability judgement are specific to each disciplinary culture. The acknowledgment and consideration of these disciplinary divergences could allow, among others, for opening up interdisciplinary dialogue on matters related to the acceptability of nanomedical applications and their developments.
doi:10.1007/s11051-015-2998-1
PMCID: PMC4412204  PMID: 25960687
Acceptability; Acceptance; Impact perception; Nanomedicine; Researchers’ perceptions; Survey; ELSI
11.  Experimental determination of the steady-state charging probabilities and particle size conservation in non-radioactive and radioactive bipolar aerosol chargers in the size range of 5–40 nm 
Three bipolar aerosol chargers, an AC-corona (Electrical Ionizer 1090, MSP Corp.), a soft X-ray (Advanced Aerosol Neutralizer 3087, TSI Inc.), and an α-radiation-based 241Am charger (tapcon & analysesysteme), were investigated on their charging performance of airborne nanoparticles. The charging probabilities for negatively and positively charged particles and the particle size conservation were measured in the diameter range of 5–40 nm using sucrose nanoparticles. Chargers were operated under various flow conditions in the range of 0.6–5.0 liters per minute. For particular experimental conditions, some deviations from the chosen theoretical model were found for all chargers. For very small particle sizes, the AC-corona charger showed particle losses at low flow rates and did not reach steady-state charge equilibrium at high flow rates. However, for all chargers, operating conditions were identified where the bipolar charge equilibrium was achieved. Practically, excellent particle size conservation was found for all three chargers.
Electronic supplementary material
The online version of this article (doi:10.1007/s11051-015-2981-x) contains supplementary material, which is available to authorized users.
doi:10.1007/s11051-015-2981-x
PMCID: PMC4385563  PMID: 25866470
Aerosol; Nanoparticles; Bipolar diffusion charging; Soft X-ray; AC-corona discharge; Radioactive charger
12.  Rapid continuous microwave-assisted synthesis of silver nanoparticles to achieve very high productivity and full yield: from mechanistic study to optimal fabrication strategy 
Systematic studies of silver nanoparticle synthesis in a continuous-flow single-mode microwave reactor using polyol process were performed, revealing that the synthesis is exceptionally effective to give very small metal particles at full reaction yield and very high productivity. Inlet concentration of silver nitrate or silver acetate, applied as metal precursors, varied between 10 and 50 mM, and flow rates ranged from 0.635 to 2.5 dm3/h, to give 3–24 s reaction time. Owing to its much higher reactivity, silver acetate was shown to be far superior substrate for the synthesis of small (10–20 nm) spherical silver nanoparticles within a few seconds. Its restricted solubility in ethylene glycol, applied as the solvent and reducing agent, appeared to be vital for effective separation of the stage of particle growth from its nucleation to enable rapid synthesis of small particles in a highly loaded system. This was not possible to obtain using silver nitrate. All the observations could perfectly be explained by a classical LaMer–Dinegar model of NPs’ formation, but taking into account also nonisothermal character of the continuous-flow process and acetate dissolution in the reaction system. The performed studies indicate an optimal strategy for the high-yield fabrication of metal particles using polyol method.
doi:10.1007/s11051-014-2843-y
PMCID: PMC4300398  PMID: 25620882
Silver nanoparticles; Microwave; Polyol process
13.  Investigation of the polyvinyl alcohol stabilization mechanism and adsorption properties on the surface of ternary mixed nanooxide AST 50 (Al2O3–SiO2–TiO2) 
A new adsorbent consisting of fumed, mixed alumina, silica, and titania in various proportions (AST 50) was investigated. The studied material was prepared by chemical vapor deposition method. The diameter of AST 50 primary particles was equal to about 51 nm which denotes that it can be classified as a nanomaterial. In the presented paper, the adsorption properties of polyvinyl alcohol on the ternary oxide were investigated. The polymer macromolecules were characterized by two different molecular weights and degree of hydrolysis. The polymer adsorption reaches the maximum at pH 3 and decreases with the solution pH rise. The reduction of the adsorbed PVA macromolecules is related to the electrostatic repulsion forces occurring in the studied system. The AST 50 point of zero charge (pHpzc) obtained from the potentiometric titration is equal to 4.7. Due to the nonionic character of the analyzed macromolecular compound, the polymer attendance has an insignificant effect on the AST 50 surface charge density. In the case of the adsorbent particles zeta potential, the obtained dependencies are different in the absence and presence of PVA. The shift of the slipping plane and displacement of the counter-ions from Stern layer by the adsorbed polymer chains have the greatest effect on the ζ potential value. The stability measurements indicate that the AST 50 suspensions in the presence of the background electrolyte at pH 3 and 6 are unstable. In turn, in an alkaline medium the mixed oxide suspensions exhibit the highest durability, which is a result of a large number of the negative charges on the AST 50 surface. The addition of PVA 100 significantly improves the suspension stability at pH 3 and 6; at higher pH value, the polymer presence does not influence the system durability. It is related to the steric and electrosteric stabilization of the colloidal particles by the adsorbed polyvinyl alcohol macromolecules.
doi:10.1007/s11051-014-2831-2
PMCID: PMC4300396  PMID: 25620881
Mixed fumed oxides; Alumina–silica–titania; Suspensions stability; Polymer adsorption; Zeta potential; Potentiometric titration; Poly(vinyl alcohol)
14.  The removal of uranium onto carbon-supported nanoscale zero-valent iron particles 
In the current work carbon-supported nanoscale zero-valent iron particles (CS nZVI), synthesised by the vacuum heat treatment of ferric citrate trihydrate absorbed onto carbon black, have been tested for the removal of uranium (U) from natural and synthetic waters. Two types of CS nZVI were tested, one vacuum annealed at 600 °C for 4 h and the other vacuum annealed at 700 °C for 4 h, with their U removal behaviour compared to nZVI synthesised via the reduction of ferrous iron using sodium borohydride. The batch systems were analysed over a 28-day reaction period during which the liquid and nanoparticulate solids were periodically analysed to determine chemical evolution of the solutions and particulates. Results demonstrate a well-defined difference between the two types of CS nZVI, with greater U removal exhibited by the nanomaterial synthesised at 700 °C. The mechanism has been attributed to the CS nZVI synthesised at 700 °C exhibiting (i) a greater proportion of surface oxide Fe2+ to Fe3+ (0.34 compared to 0.28); (ii) a greater conversion of ferric citrate trihydrate [2Fe(C6H5O7)·H2O] to Fe0; and (iii) a larger surface area (108.67 compared to 88.61 m2 g−1). Lower maximum U uptake was recorded for both types of CS nZVI in comparison with the borohydride-reduced nZVI. A lower decrease in solution Eh and DO was also recorded, indicating that less chemical reduction of U was achieved by the CS nZVI. Despite this, lower U desorption in the latter stages of the experiment (>7 days) was recorded for the CS nZVI synthesised at 700 °C, indicating that carbon black in the CS nZVI is likely to have contributed towards U sorption and retention. Overall, it can be stated that the borohydride-reduced nZVI were significantly more effective than CS nZVI for U removal over relatively short timescales (e.g. <48 h), however, they were more susceptible to U desorption over extended time periods.
doi:10.1007/s11051-014-2813-4
PMCID: PMC4274364  PMID: 25544828
Nanoparticles; Zero-valent iron; Carbon black; Uranium; Remediation
15.  Microfluidic preparation of polymer nanospheres 
In this work, solid polymer nanospheres with their surface tailored for drug adhesion were prepared using a V-shaped microfluidic junction. The biocompatible polymer solutions were infused using two channels of the microfluidic junction which was also simultaneously fed with a volatile liquid, perfluorohexane using the other channel. The mechanism by which the nanospheres are generated is explained using high speed camera imaging. The polymer concentration (5–50 wt%) and flow rates of the feeds (50–300 µl min−1) were important parameters in controlling the nanosphere diameter. The diameter of the polymer nanospheres was found to be in the range of 80–920 nm with a polydispersity index of 11–19 %. The interior structure and surfaces of the nanospheres prepared were studied using advanced microscopy and showed the presence of fine pores and cracks on surface which can be used as drug entrapment locations.
Electronic supplementary material
The online version of this article (doi:10.1007/s11051-014-2626-5) contains supplementary material, which is available to authorized users.
doi:10.1007/s11051-014-2626-5
PMCID: PMC4255063  PMID: 25484617
Polymethylsilsesquioxane; Perfluorohexane; Microfluidics; Surface morphology; Nanopheres; Nanocarriers; Nanobiotechnology
16.  The impact of aminated surface ligands and silica shells on the stability, uptake, and toxicity of engineered silver nanoparticles 
Inherent nanomaterial characteristics, composition, surface chemistry, and primary particle size, are known to impact particle stability, uptake, and toxicity. Nanocomposites challenge our ability to predict nanoparticle reactivity in biological systems if they are composed of materials with contrasting relative toxicities. We hypothesized that toxicity would be dominated by the nanoparticle surface (shell vs core), and that modulating the surface ligands would have a direct impact on uptake. We exposed developing zebrafish (Danio rerio) to a series of ~70 nm amine-terminated silver nanoparticles with silica shells (AgSi NPs) to investigate the relative influence of surface amination, composition, and size on toxicity. Like-sized aminated AgSi and Si NPs were more toxic than paired hydroxyl-terminated nanoparticles; however, both AgSi NPs were more toxic than the Si NPs, indicating a significant contribution of the silver core to the toxicity. Incremental increases in surface amination did not linearly increase uptake and toxicity, but did have a marked impact on dispersion stability. Mass-based exposure metrics initially supported the hypothesis that smaller nanoparticles (20 nm) would be more toxic than larger particles (70 nm). However, surface area-based metrics revealed that toxicity was independent of size. Our studies suggest that nanoparticle surfaces play a critical role in the uptake and toxicity of AgSi NPs, while the impact of size may be a function of the exposure metric used. Overall, uptake and toxicity can be dramatically altered by small changes in surface functionalization or exposure media. Only after understanding the magnitude of these changes, can we begin to understand the biologically available dose following nanoparticle exposure.
Electronic supplementary material
The online version of this article (doi:10.1007/s11051-014-2761-z) contains supplementary material, which is available to authorized users.
doi:10.1007/s11051-014-2761-z
PMCID: PMC4255064  PMID: 25484618
Nanomaterials; Silica shell; Surface chemistry; Dispersion; Zebrafish; Environmental and health effects
17.  Comparison of nanowire pellicles for plasma membrane enrichment: coating nanowires on cell 
A study is reported on the effect of nanowire density on the ease of pellicle formation and the enrichment of plasma membrane proteins for analysis by mass spectrometry. An optimized synthesis is reported for iron silicate nanowires with a narrow size range of 900 ±400 nm in length and 200 nm diameter. The nanowires were coated with Al2O3 and used to form pellicles around suspended multiple myeloma cells, which acted as a model for cells recovered from tissue samples. Lighter alumina-coated silica nanowires were also synthesized (Kim et al. 2013), which allowed a comparison of the construction of the two pellicles and of the effect of nanowire density on plasma membrane enrichment. Evidence is offered that the dense nanowire pellicle does not crush or distort these mammalian cells. Finally, the pellicles were incorporated into a mass-spectrometry-based proteomic workflow to analyze transmembrane proteins in the plasma membrane. In contrast to a prior comparison of the effect of density with nanoparticles pellicles (Choksawangkarn et al. 2013), nanowire density was not found to significantly affect the enrichment of the plasma membrane. However, nanowires with a favorable aspect for pellicle formation are more easily and reliably produced with iron silicate than with silica. Additionally, the method for pellicle formation was optimized through the use of iron silicate nanowires (ISNW), which is crucial to the improvement of PM protein enrichment and analysis.
doi:10.1007/s11051-013-2133-0
PMCID: PMC3899839  PMID: 24465155
Plasma membrane enrichment; nanowire pellicles; nanowire cell coating; silica nanowires; iron silicate nanowires
18.  Titanium-doped cerium oxide nanoparticles protect cells from hydrogen peroxide-induced apoptosis 
To develop new nanoparticle materials possessing anti-oxidative capacity with improved physical characteristics, we have studied titanium-doped cerium oxide (CeTiO2) nanoparticles. CeTiO2 nanoparticles had a mode diameter of 15-20 nm. These nanoparticles demonstrated catalase activity, and did not promote the activation of hemolytic or cytolytic pathways in living cells. Using surface plasmon resonance enhanced microscopy, we find that these nanoparticles associate with cells. Transmission electron microscopy studies demonstrated that these nanoparticles accumulate within the vacuolar compartment of cells. Importantly, CeTiO2 nanoparticles decrease hydrogen peroxide-mediated apoptosis of cells as judged by the reduced cleavage of a caspase 3-sensitive label. CeTiO2 nanoparticles may contribute to deflecting tissue damage in a broad spectrum of oxidant-mediated diseases, such as macular degeneration and Alzheimer's disease.
doi:10.1007/s11051-013-2126-z
PMCID: PMC4001933  PMID: 24791147
Catalytic nanoparticles; reactive oxygen metabolites; cell toxicity; apoptosis
19.  Cadmium and Zinc Alloyed Cu-In-S Nanocrystals and Their Optical Properties 
Cadmium (Cd) and zinc (Zn) alloyed copper-indium-sulfide (Cu-In-S or CIS) nanocrystals (NCs) in several nanometers were prepared using thermal decomposition methods, and the effects of Cd and Zn on optical properties, including the tuning of NC photoluminescence (PL) wavelength and quantum yield (QY), were investigated. It was found that incorporation of Cd into CIS enhances the peak QY of NCs whereas zinc alloying diminishes the peak. In contrast with Zn alloying, Cd alloying does not result in a pronounced luminescence blue shift. The further PL decay study suggests that Cd alloying reduces surface or intrinsic defects whereas alloying with Zn increases the overall number of defects.
doi:10.1007/s11051-013-2056-9
PMCID: PMC3881318  PMID: 24409089
20.  Morphology- and size-dependent spectroscopic properties of Eu3+-doped Gd2O3 colloidal nanocrystals 
The synthesis, morphological characterization, and optical properties of colloidal, Eu(III) doped Gd2O3 nanoparticles with different sizes and shapes are presented. Utilizing wet chemical techniques and various synthesis routes, we were able to obtain spherical, nanodisk, nanotripod, and nanotriangle-like morphology of Gd2O3:Eu3+ nanoparticles. Various concentrations of Eu3+ ions in the crystal matrix of the nanoparticles were tested in order to establish the levels at which the concentration quenching effect is negligible. Based on the luminescence spectra, luminescence lifetimes and optical parameters, which were calculated using the simplified Judd–Ofelt theory, correlations between the Gd2O3 nanoparticles morphology and Eu3+ ions luminescence were established, and allowed to predict the theoretical maximum quantum efficiency to reach from 61 to 98 %. We have also discussed the impact of the crystal structure of Gd2O3 nanoparticles, as well as coordinating environment of luminescent ions located at the surface, on the emission spectra. With the use of a tunable femtosecond laser system and the Z-scan measurement technique, the values of the effective two-photon absorption cross-section in the wavelength range from 550 to 1,200 nm were also calculated. The nonlinear optical measurements revealed maximum multi-photon absorption in the wavelength range from 600 to 750 nm.
doi:10.1007/s11051-014-2690-x
PMCID: PMC4201743  PMID: 25346614
Oxide nanoparticles; Lanthanide luminescence; Judd–Ofelt theory; Z-scan technique; Nonlinear optics; Colloidal stability
21.  T1–T2 Dual-modal MRI contrast agents based on superparamagnetic iron oxide nanoparticles with surface attached gadolinium complexes 
Dual-mode MRI contrast agents consisting of superparamagnetic iron oxide nanoparticle (SPION) cores and gadolinium ions associated with the ionic chitosan protecting layer were synthesized and studied. Gadolinium ions were introduced into the coating layer via direct complex formation on the nanoparticles surface, covalent attachment or electrostatically driven deposition of the preformed Gd complex. The modified SPIONs having hydrodynamic diameters ca. 100 nm form stable, well-defined dispersions in water and have excellent magnetic properties. Physiochemical properties of those new materials were characterized using e.g., FTIR spectroscopy, dynamic light scattering, X-ray fluorescence, TEM, and vibrating sample magnetometry. They behave as superparamagnetics and shorten both T1 and T2 proton relaxation times, thus influencing both r1 and r2 relaxivity values that reach 53.7 and 375.5 mM−1 s−1, respectively, at 15 MHz. The obtained materials can be considered as highly effective contrast agents for low-field MRI, particularly useful at permanent magnet-based scanners.
doi:10.1007/s11051-014-2678-6
PMCID: PMC4193999  PMID: 25328426
SPION; Superparamagnetic nanoparticles; Gadolinium; Chitosan; Magnetic resonance imaging; Relaxivity; Composite nanoparticles
22.  Nanocommunication design in graduate-level education and research training programs at Osaka University 
After more than ten years of strategic investment research and development supported by government policies on science and technology, nanotechnology in Japan is making a transition from the knowledge creation stage of exploratory research to the stage of making the outcomes available for the benefit of society as a whole. Osaka University has been proactive in discussions about the relationship between nanotechnology and society as part of graduate and continuing education programs. These programs are intended to fulfill the social accountability obligation of scientists and corporations involved in R&D, and to deepen their understanding of the relationship between science and society. To meet those aims, the program has covered themes relating to overall public engagement relating to nanotechnology governance, such as risk management of nanomaterials, international standardization for nanotechnology, nanomeasurement, intellectual property management in an open innovation environment, and interactive communication with society. Nanotechnology is an emerging field of science and technology. This paper reports and comments on initiatives for public engagement on nanotechnology at Osaka University’s Institute for NanoScience Design, which aims to create new technologies based on nanotechnology that can help realize a sustainable society.
doi:10.1007/s11051-014-2595-8
PMCID: PMC4176559  PMID: 25285034
Public engagement; Education and capacity building; Technology governance; R&D strategy; Nanotechnology
23.  Quantification of Al2O3 nanoparticles in human cell lines applying inductively coupled plasma mass spectrometry (neb-ICP-MS, LA-ICP-MS) and flow cytometry-based methods 
In order to quantify and compare the uptake of aluminum oxide nanoparticles of three different sizes into two human cell lines (skin keratinocytes (HaCaT) and lung epithelial cells (A549)), three analytical methods were applied: digestion followed by nebulization inductively coupled plasma mass spectrometry (neb-ICP-MS), direct laser ablation ICP-MS (LA-ICP-MS), and flow cytometry. Light and electron microscopy revealed an accumulation and agglomeration of all particle types within the cell cytoplasm, whereas no particles were detected in the cell nuclei. The internalized Al2O3 particles exerted no toxicity in the two cell lines after 24 h of exposure. The smallest particles with a primary particle size (xBET) of 14 nm (Alu1) showed the lowest sedimentation velocity within the cell culture media, but were calculated to have settled completely after 20 h. Alu2 (xBET = 111 nm) and Alu3 (xBET = 750 nm) were calculated to reach the cell surface after 7 h and 3 min, respectively. The internal concentrations determined with the different methods lay in a comparable range of 2–8 µg Al2O3/cm2 cell layer, indicating the suitability of all methods to quantify the nanoparticle uptake. Nevertheless, particle size limitations of analytical methods using optical devices were demonstrated for LA-ICP-MS and flow cytometry. Furthermore, the consideration and comparison of particle properties as parameters for particle internalization revealed the particle size and the exposure concentration as determining factors for particle uptake.
Electronic supplementary material
The online version of this article (doi:10.1007/s11051-014-2592-y) contains supplementary material, which is available to authorized users.
doi:10.1007/s11051-014-2592-y
PMCID: PMC4176630  PMID: 25285033
Inductively coupled plasma mass spectrometry (ICP-MS); Flow cytometry; Size dependency; Cellular internalization; Aluminum oxide
24.  7Be-recoil radiolabelling of industrially manufactured silica nanoparticles 
Radiolabelling of industrially manufactured nanoparticles is useful for nanoparticle dosimetry in biodistribution or cellular uptake studies for hazard and risk assessment. Ideally for such purposes, any chemical processing post production should be avoided as it may change the physico-chemical characteristics of the industrially manufactured species. In many cases, proton irradiation of nanoparticles allows radiolabelling by transmutation of a tiny fraction of their constituent atoms into radionuclides. However, not all types of nanoparticles offer nuclear reactions leading to radionuclides with adequate radiotracer properties. We describe here a process whereby in such cases nanoparticles can be labelled with 7Be, which exhibits a physical half-life of 53.29 days and emits γ-rays of 478 keV energy, and is suitable for most radiotracer studies. 7Be is produced via the proton-induced nuclear reaction 7Li(p,n)7Be in a fine-grained lithium compound with which the nanoparticles are mixed. The high recoil energy of 7Be atoms gives them a range that allows the 7Be-recoils to be transferred from the lithium compound into the nanoparticles by recoil implantation. The nanoparticles can be recovered from the mixture by dissolving the lithium compound and subsequent filtration or centrifugation. The method has been applied to radiolabel industrially manufactured SiO2 nanoparticles. The process can be controlled in such a way that no alterations of the 7Be-labelled nanoparticles are detectable by dynamic light scattering, X-ray diffraction and electron microscopy. Moreover, cyclotrons with maximum proton energies of 17–18 MeV that are available in most medical research centres could be used for this purpose.
doi:10.1007/s11051-014-2574-0
PMCID: PMC4176561  PMID: 25285032
Nanoparticles; Nanomaterials; Radiolabelling; Proton irradiation; 7Be; Recoil; Lithium compounds; Cyclotron
25.  Effect of surface charge on the colloidal stability and in vitro uptake of carboxymethyl dextran-coated iron oxide nanoparticles 
Nanoparticle physicochemical properties such as surface charge are considered to play an important role in cellular uptake and particle–cell interactions. In order to systematically evaluate the role of surface charge on the uptake of iron oxide nanoparticles, we prepared carboxymethyl-substituted dextrans with different degrees of substitution, ranging from 38 to 5 groups per chain, and reacted them using carbodiimide chemistry with amine–silane-coated iron oxide nanoparticles with narrow size distributions in the range of 33–45 nm. Surface charge of carboxymethyl-substituted dextran-coated nano-particles ranged from −50 to 5 mV as determined by zeta potential measurements, and was dependent on the number of carboxymethyl groups incorporated in the dextran chains. Nanoparticles were incubated with CaCo-2 human colon cancer cells. Nanoparticle–cell interactions were observed by confocal laser scanning microscopy and uptake was quantified by elemental analysis using inductively coupled plasma mass spectroscopy. Mechanisms of internalization were inferred using pharmacological inhibitors for fluid-phase, clathrin-mediated, and caveola-mediated endocytosis. Results showed increased uptake for nanoparticles with greater negative charge. Internalization patterns suggest that uptake of the most negatively charged particles occurs via non-specific interactions.
doi:10.1007/s11051-013-1874-0
PMCID: PMC3901157  PMID: 24470787
Iron oxide; Dextran; Surface charge; Uptake; Endocytosis

Results 1-25 (117)