Search tips
Search criteria

Results 1-25 (106)

Clipboard (0)

Select a Filter Below

Year of Publication
1.  Rapid continuous microwave-assisted synthesis of silver nanoparticles to achieve very high productivity and full yield: from mechanistic study to optimal fabrication strategy 
Systematic studies of silver nanoparticle synthesis in a continuous-flow single-mode microwave reactor using polyol process were performed, revealing that the synthesis is exceptionally effective to give very small metal particles at full reaction yield and very high productivity. Inlet concentration of silver nitrate or silver acetate, applied as metal precursors, varied between 10 and 50 mM, and flow rates ranged from 0.635 to 2.5 dm3/h, to give 3–24 s reaction time. Owing to its much higher reactivity, silver acetate was shown to be far superior substrate for the synthesis of small (10–20 nm) spherical silver nanoparticles within a few seconds. Its restricted solubility in ethylene glycol, applied as the solvent and reducing agent, appeared to be vital for effective separation of the stage of particle growth from its nucleation to enable rapid synthesis of small particles in a highly loaded system. This was not possible to obtain using silver nitrate. All the observations could perfectly be explained by a classical LaMer–Dinegar model of NPs’ formation, but taking into account also nonisothermal character of the continuous-flow process and acetate dissolution in the reaction system. The performed studies indicate an optimal strategy for the high-yield fabrication of metal particles using polyol method.
PMCID: PMC4300398  PMID: 25620882
Silver nanoparticles; Microwave; Polyol process
2.  Investigation of the polyvinyl alcohol stabilization mechanism and adsorption properties on the surface of ternary mixed nanooxide AST 50 (Al2O3–SiO2–TiO2) 
A new adsorbent consisting of fumed, mixed alumina, silica, and titania in various proportions (AST 50) was investigated. The studied material was prepared by chemical vapor deposition method. The diameter of AST 50 primary particles was equal to about 51 nm which denotes that it can be classified as a nanomaterial. In the presented paper, the adsorption properties of polyvinyl alcohol on the ternary oxide were investigated. The polymer macromolecules were characterized by two different molecular weights and degree of hydrolysis. The polymer adsorption reaches the maximum at pH 3 and decreases with the solution pH rise. The reduction of the adsorbed PVA macromolecules is related to the electrostatic repulsion forces occurring in the studied system. The AST 50 point of zero charge (pHpzc) obtained from the potentiometric titration is equal to 4.7. Due to the nonionic character of the analyzed macromolecular compound, the polymer attendance has an insignificant effect on the AST 50 surface charge density. In the case of the adsorbent particles zeta potential, the obtained dependencies are different in the absence and presence of PVA. The shift of the slipping plane and displacement of the counter-ions from Stern layer by the adsorbed polymer chains have the greatest effect on the ζ potential value. The stability measurements indicate that the AST 50 suspensions in the presence of the background electrolyte at pH 3 and 6 are unstable. In turn, in an alkaline medium the mixed oxide suspensions exhibit the highest durability, which is a result of a large number of the negative charges on the AST 50 surface. The addition of PVA 100 significantly improves the suspension stability at pH 3 and 6; at higher pH value, the polymer presence does not influence the system durability. It is related to the steric and electrosteric stabilization of the colloidal particles by the adsorbed polyvinyl alcohol macromolecules.
PMCID: PMC4300396  PMID: 25620881
Mixed fumed oxides; Alumina–silica–titania; Suspensions stability; Polymer adsorption; Zeta potential; Potentiometric titration; Poly(vinyl alcohol)
3.  The removal of uranium onto carbon-supported nanoscale zero-valent iron particles 
In the current work carbon-supported nanoscale zero-valent iron particles (CS nZVI), synthesised by the vacuum heat treatment of ferric citrate trihydrate absorbed onto carbon black, have been tested for the removal of uranium (U) from natural and synthetic waters. Two types of CS nZVI were tested, one vacuum annealed at 600 °C for 4 h and the other vacuum annealed at 700 °C for 4 h, with their U removal behaviour compared to nZVI synthesised via the reduction of ferrous iron using sodium borohydride. The batch systems were analysed over a 28-day reaction period during which the liquid and nanoparticulate solids were periodically analysed to determine chemical evolution of the solutions and particulates. Results demonstrate a well-defined difference between the two types of CS nZVI, with greater U removal exhibited by the nanomaterial synthesised at 700 °C. The mechanism has been attributed to the CS nZVI synthesised at 700 °C exhibiting (i) a greater proportion of surface oxide Fe2+ to Fe3+ (0.34 compared to 0.28); (ii) a greater conversion of ferric citrate trihydrate [2Fe(C6H5O7)·H2O] to Fe0; and (iii) a larger surface area (108.67 compared to 88.61 m2 g−1). Lower maximum U uptake was recorded for both types of CS nZVI in comparison with the borohydride-reduced nZVI. A lower decrease in solution Eh and DO was also recorded, indicating that less chemical reduction of U was achieved by the CS nZVI. Despite this, lower U desorption in the latter stages of the experiment (>7 days) was recorded for the CS nZVI synthesised at 700 °C, indicating that carbon black in the CS nZVI is likely to have contributed towards U sorption and retention. Overall, it can be stated that the borohydride-reduced nZVI were significantly more effective than CS nZVI for U removal over relatively short timescales (e.g. <48 h), however, they were more susceptible to U desorption over extended time periods.
PMCID: PMC4274364  PMID: 25544828
Nanoparticles; Zero-valent iron; Carbon black; Uranium; Remediation
4.  Microfluidic preparation of polymer nanospheres 
In this work, solid polymer nanospheres with their surface tailored for drug adhesion were prepared using a V-shaped microfluidic junction. The biocompatible polymer solutions were infused using two channels of the microfluidic junction which was also simultaneously fed with a volatile liquid, perfluorohexane using the other channel. The mechanism by which the nanospheres are generated is explained using high speed camera imaging. The polymer concentration (5–50 wt%) and flow rates of the feeds (50–300 µl min−1) were important parameters in controlling the nanosphere diameter. The diameter of the polymer nanospheres was found to be in the range of 80–920 nm with a polydispersity index of 11–19 %. The interior structure and surfaces of the nanospheres prepared were studied using advanced microscopy and showed the presence of fine pores and cracks on surface which can be used as drug entrapment locations.
Electronic supplementary material
The online version of this article (doi:10.1007/s11051-014-2626-5) contains supplementary material, which is available to authorized users.
PMCID: PMC4255063  PMID: 25484617
Polymethylsilsesquioxane; Perfluorohexane; Microfluidics; Surface morphology; Nanopheres; Nanocarriers; Nanobiotechnology
5.  The impact of aminated surface ligands and silica shells on the stability, uptake, and toxicity of engineered silver nanoparticles 
Inherent nanomaterial characteristics, composition, surface chemistry, and primary particle size, are known to impact particle stability, uptake, and toxicity. Nanocomposites challenge our ability to predict nanoparticle reactivity in biological systems if they are composed of materials with contrasting relative toxicities. We hypothesized that toxicity would be dominated by the nanoparticle surface (shell vs core), and that modulating the surface ligands would have a direct impact on uptake. We exposed developing zebrafish (Danio rerio) to a series of ~70 nm amine-terminated silver nanoparticles with silica shells (AgSi NPs) to investigate the relative influence of surface amination, composition, and size on toxicity. Like-sized aminated AgSi and Si NPs were more toxic than paired hydroxyl-terminated nanoparticles; however, both AgSi NPs were more toxic than the Si NPs, indicating a significant contribution of the silver core to the toxicity. Incremental increases in surface amination did not linearly increase uptake and toxicity, but did have a marked impact on dispersion stability. Mass-based exposure metrics initially supported the hypothesis that smaller nanoparticles (20 nm) would be more toxic than larger particles (70 nm). However, surface area-based metrics revealed that toxicity was independent of size. Our studies suggest that nanoparticle surfaces play a critical role in the uptake and toxicity of AgSi NPs, while the impact of size may be a function of the exposure metric used. Overall, uptake and toxicity can be dramatically altered by small changes in surface functionalization or exposure media. Only after understanding the magnitude of these changes, can we begin to understand the biologically available dose following nanoparticle exposure.
Electronic supplementary material
The online version of this article (doi:10.1007/s11051-014-2761-z) contains supplementary material, which is available to authorized users.
PMCID: PMC4255064  PMID: 25484618
Nanomaterials; Silica shell; Surface chemistry; Dispersion; Zebrafish; Environmental and health effects
6.  Comparison of nanowire pellicles for plasma membrane enrichment: coating nanowires on cell 
A study is reported on the effect of nanowire density on the ease of pellicle formation and the enrichment of plasma membrane proteins for analysis by mass spectrometry. An optimized synthesis is reported for iron silicate nanowires with a narrow size range of 900 ±400 nm in length and 200 nm diameter. The nanowires were coated with Al2O3 and used to form pellicles around suspended multiple myeloma cells, which acted as a model for cells recovered from tissue samples. Lighter alumina-coated silica nanowires were also synthesized (Kim et al. 2013), which allowed a comparison of the construction of the two pellicles and of the effect of nanowire density on plasma membrane enrichment. Evidence is offered that the dense nanowire pellicle does not crush or distort these mammalian cells. Finally, the pellicles were incorporated into a mass-spectrometry-based proteomic workflow to analyze transmembrane proteins in the plasma membrane. In contrast to a prior comparison of the effect of density with nanoparticles pellicles (Choksawangkarn et al. 2013), nanowire density was not found to significantly affect the enrichment of the plasma membrane. However, nanowires with a favorable aspect for pellicle formation are more easily and reliably produced with iron silicate than with silica. Additionally, the method for pellicle formation was optimized through the use of iron silicate nanowires (ISNW), which is crucial to the improvement of PM protein enrichment and analysis.
PMCID: PMC3899839  PMID: 24465155
Plasma membrane enrichment; nanowire pellicles; nanowire cell coating; silica nanowires; iron silicate nanowires
7.  Titanium-doped cerium oxide nanoparticles protect cells from hydrogen peroxide-induced apoptosis 
To develop new nanoparticle materials possessing anti-oxidative capacity with improved physical characteristics, we have studied titanium-doped cerium oxide (CeTiO2) nanoparticles. CeTiO2 nanoparticles had a mode diameter of 15-20 nm. These nanoparticles demonstrated catalase activity, and did not promote the activation of hemolytic or cytolytic pathways in living cells. Using surface plasmon resonance enhanced microscopy, we find that these nanoparticles associate with cells. Transmission electron microscopy studies demonstrated that these nanoparticles accumulate within the vacuolar compartment of cells. Importantly, CeTiO2 nanoparticles decrease hydrogen peroxide-mediated apoptosis of cells as judged by the reduced cleavage of a caspase 3-sensitive label. CeTiO2 nanoparticles may contribute to deflecting tissue damage in a broad spectrum of oxidant-mediated diseases, such as macular degeneration and Alzheimer's disease.
PMCID: PMC4001933  PMID: 24791147
Catalytic nanoparticles; reactive oxygen metabolites; cell toxicity; apoptosis
8.  Cadmium and Zinc Alloyed Cu-In-S Nanocrystals and Their Optical Properties 
Cadmium (Cd) and zinc (Zn) alloyed copper-indium-sulfide (Cu-In-S or CIS) nanocrystals (NCs) in several nanometers were prepared using thermal decomposition methods, and the effects of Cd and Zn on optical properties, including the tuning of NC photoluminescence (PL) wavelength and quantum yield (QY), were investigated. It was found that incorporation of Cd into CIS enhances the peak QY of NCs whereas zinc alloying diminishes the peak. In contrast with Zn alloying, Cd alloying does not result in a pronounced luminescence blue shift. The further PL decay study suggests that Cd alloying reduces surface or intrinsic defects whereas alloying with Zn increases the overall number of defects.
PMCID: PMC3881318  PMID: 24409089
9.  Morphology- and size-dependent spectroscopic properties of Eu3+-doped Gd2O3 colloidal nanocrystals 
The synthesis, morphological characterization, and optical properties of colloidal, Eu(III) doped Gd2O3 nanoparticles with different sizes and shapes are presented. Utilizing wet chemical techniques and various synthesis routes, we were able to obtain spherical, nanodisk, nanotripod, and nanotriangle-like morphology of Gd2O3:Eu3+ nanoparticles. Various concentrations of Eu3+ ions in the crystal matrix of the nanoparticles were tested in order to establish the levels at which the concentration quenching effect is negligible. Based on the luminescence spectra, luminescence lifetimes and optical parameters, which were calculated using the simplified Judd–Ofelt theory, correlations between the Gd2O3 nanoparticles morphology and Eu3+ ions luminescence were established, and allowed to predict the theoretical maximum quantum efficiency to reach from 61 to 98 %. We have also discussed the impact of the crystal structure of Gd2O3 nanoparticles, as well as coordinating environment of luminescent ions located at the surface, on the emission spectra. With the use of a tunable femtosecond laser system and the Z-scan measurement technique, the values of the effective two-photon absorption cross-section in the wavelength range from 550 to 1,200 nm were also calculated. The nonlinear optical measurements revealed maximum multi-photon absorption in the wavelength range from 600 to 750 nm.
PMCID: PMC4201743  PMID: 25346614
Oxide nanoparticles; Lanthanide luminescence; Judd–Ofelt theory; Z-scan technique; Nonlinear optics; Colloidal stability
10.  T1–T2 Dual-modal MRI contrast agents based on superparamagnetic iron oxide nanoparticles with surface attached gadolinium complexes 
Dual-mode MRI contrast agents consisting of superparamagnetic iron oxide nanoparticle (SPION) cores and gadolinium ions associated with the ionic chitosan protecting layer were synthesized and studied. Gadolinium ions were introduced into the coating layer via direct complex formation on the nanoparticles surface, covalent attachment or electrostatically driven deposition of the preformed Gd complex. The modified SPIONs having hydrodynamic diameters ca. 100 nm form stable, well-defined dispersions in water and have excellent magnetic properties. Physiochemical properties of those new materials were characterized using e.g., FTIR spectroscopy, dynamic light scattering, X-ray fluorescence, TEM, and vibrating sample magnetometry. They behave as superparamagnetics and shorten both T1 and T2 proton relaxation times, thus influencing both r1 and r2 relaxivity values that reach 53.7 and 375.5 mM−1 s−1, respectively, at 15 MHz. The obtained materials can be considered as highly effective contrast agents for low-field MRI, particularly useful at permanent magnet-based scanners.
PMCID: PMC4193999  PMID: 25328426
SPION; Superparamagnetic nanoparticles; Gadolinium; Chitosan; Magnetic resonance imaging; Relaxivity; Composite nanoparticles
11.  Nanocommunication design in graduate-level education and research training programs at Osaka University 
After more than ten years of strategic investment research and development supported by government policies on science and technology, nanotechnology in Japan is making a transition from the knowledge creation stage of exploratory research to the stage of making the outcomes available for the benefit of society as a whole. Osaka University has been proactive in discussions about the relationship between nanotechnology and society as part of graduate and continuing education programs. These programs are intended to fulfill the social accountability obligation of scientists and corporations involved in R&D, and to deepen their understanding of the relationship between science and society. To meet those aims, the program has covered themes relating to overall public engagement relating to nanotechnology governance, such as risk management of nanomaterials, international standardization for nanotechnology, nanomeasurement, intellectual property management in an open innovation environment, and interactive communication with society. Nanotechnology is an emerging field of science and technology. This paper reports and comments on initiatives for public engagement on nanotechnology at Osaka University’s Institute for NanoScience Design, which aims to create new technologies based on nanotechnology that can help realize a sustainable society.
PMCID: PMC4176559  PMID: 25285034
Public engagement; Education and capacity building; Technology governance; R&D strategy; Nanotechnology
12.  Quantification of Al2O3 nanoparticles in human cell lines applying inductively coupled plasma mass spectrometry (neb-ICP-MS, LA-ICP-MS) and flow cytometry-based methods 
In order to quantify and compare the uptake of aluminum oxide nanoparticles of three different sizes into two human cell lines (skin keratinocytes (HaCaT) and lung epithelial cells (A549)), three analytical methods were applied: digestion followed by nebulization inductively coupled plasma mass spectrometry (neb-ICP-MS), direct laser ablation ICP-MS (LA-ICP-MS), and flow cytometry. Light and electron microscopy revealed an accumulation and agglomeration of all particle types within the cell cytoplasm, whereas no particles were detected in the cell nuclei. The internalized Al2O3 particles exerted no toxicity in the two cell lines after 24 h of exposure. The smallest particles with a primary particle size (xBET) of 14 nm (Alu1) showed the lowest sedimentation velocity within the cell culture media, but were calculated to have settled completely after 20 h. Alu2 (xBET = 111 nm) and Alu3 (xBET = 750 nm) were calculated to reach the cell surface after 7 h and 3 min, respectively. The internal concentrations determined with the different methods lay in a comparable range of 2–8 µg Al2O3/cm2 cell layer, indicating the suitability of all methods to quantify the nanoparticle uptake. Nevertheless, particle size limitations of analytical methods using optical devices were demonstrated for LA-ICP-MS and flow cytometry. Furthermore, the consideration and comparison of particle properties as parameters for particle internalization revealed the particle size and the exposure concentration as determining factors for particle uptake.
Electronic supplementary material
The online version of this article (doi:10.1007/s11051-014-2592-y) contains supplementary material, which is available to authorized users.
PMCID: PMC4176630  PMID: 25285033
Inductively coupled plasma mass spectrometry (ICP-MS); Flow cytometry; Size dependency; Cellular internalization; Aluminum oxide
13.  7Be-recoil radiolabelling of industrially manufactured silica nanoparticles 
Radiolabelling of industrially manufactured nanoparticles is useful for nanoparticle dosimetry in biodistribution or cellular uptake studies for hazard and risk assessment. Ideally for such purposes, any chemical processing post production should be avoided as it may change the physico-chemical characteristics of the industrially manufactured species. In many cases, proton irradiation of nanoparticles allows radiolabelling by transmutation of a tiny fraction of their constituent atoms into radionuclides. However, not all types of nanoparticles offer nuclear reactions leading to radionuclides with adequate radiotracer properties. We describe here a process whereby in such cases nanoparticles can be labelled with 7Be, which exhibits a physical half-life of 53.29 days and emits γ-rays of 478 keV energy, and is suitable for most radiotracer studies. 7Be is produced via the proton-induced nuclear reaction 7Li(p,n)7Be in a fine-grained lithium compound with which the nanoparticles are mixed. The high recoil energy of 7Be atoms gives them a range that allows the 7Be-recoils to be transferred from the lithium compound into the nanoparticles by recoil implantation. The nanoparticles can be recovered from the mixture by dissolving the lithium compound and subsequent filtration or centrifugation. The method has been applied to radiolabel industrially manufactured SiO2 nanoparticles. The process can be controlled in such a way that no alterations of the 7Be-labelled nanoparticles are detectable by dynamic light scattering, X-ray diffraction and electron microscopy. Moreover, cyclotrons with maximum proton energies of 17–18 MeV that are available in most medical research centres could be used for this purpose.
PMCID: PMC4176561  PMID: 25285032
Nanoparticles; Nanomaterials; Radiolabelling; Proton irradiation; 7Be; Recoil; Lithium compounds; Cyclotron
14.  Effect of surface charge on the colloidal stability and in vitro uptake of carboxymethyl dextran-coated iron oxide nanoparticles 
Nanoparticle physicochemical properties such as surface charge are considered to play an important role in cellular uptake and particle–cell interactions. In order to systematically evaluate the role of surface charge on the uptake of iron oxide nanoparticles, we prepared carboxymethyl-substituted dextrans with different degrees of substitution, ranging from 38 to 5 groups per chain, and reacted them using carbodiimide chemistry with amine–silane-coated iron oxide nanoparticles with narrow size distributions in the range of 33–45 nm. Surface charge of carboxymethyl-substituted dextran-coated nano-particles ranged from −50 to 5 mV as determined by zeta potential measurements, and was dependent on the number of carboxymethyl groups incorporated in the dextran chains. Nanoparticles were incubated with CaCo-2 human colon cancer cells. Nanoparticle–cell interactions were observed by confocal laser scanning microscopy and uptake was quantified by elemental analysis using inductively coupled plasma mass spectroscopy. Mechanisms of internalization were inferred using pharmacological inhibitors for fluid-phase, clathrin-mediated, and caveola-mediated endocytosis. Results showed increased uptake for nanoparticles with greater negative charge. Internalization patterns suggest that uptake of the most negatively charged particles occurs via non-specific interactions.
PMCID: PMC3901157  PMID: 24470787
Iron oxide; Dextran; Surface charge; Uptake; Endocytosis
15.  Granulometric characterization of airborne particulate release during spray application of nanoparticle-doped coatings 
Airborne particle release during the spray application of coatings was analyzed in the nanometre and micrometre size range. In order to represent realistic conditions of domestic and handcraft use, the spray application was performed using two types of commercial propellant spray cans and a manual gravity spray gun. Four different types of coatings doped with three kinds of metal-oxide tracer nanoparticle additives (TNPA) were analyzed. Depending on the used coating and the kind of spray unit, particulate release numbers between 5 × 108 and 3 × 1010 particles per gram ejection mass were determined in the dried spray aerosols. The nanoparticulate fraction amounted values between 10 and 60 no%. The comparison between nanoparticle-doped coatings with non-doped ones showed no TNPA-attributed differences in both the macroscopic spray process characteristics and the particle release numbers. SEM, TEM and EDX-analyzes showed that the spray aerosols were composed of particles made up solely from matrix material and sheathed pigments, fillers and TNPAs. Isolated ZnO- or Fe2O3-TNPAs could not be observed.
PMCID: PMC4129227  PMID: 25152690
Nanoparticle release; Airborne particle emission; Spray application; Spray can; Spray gun; Nanoparticle-doped coatings; Risk assessment
16.  Structural characterization of Pt–Pd core–shell nanoparticles by Cs-corrected STEM 
Pt–Pd core–shell nanoparticles were synthesized using a modified polyol method. A thermal method under refluxing, carrying on the reaction up to 285 °C, has been performed to reduce metallic salts using ethylene glycol as reducer and poly(N-vinyl-2-pyrrolidone) as protective reagent of the formed bimetallic nanoparticles. According to other works, this type of structure has been studied and utilized to successfully increase the catalytic properties of monometallic nanoparticles Pt or Pd. Core–shell bimetallic nanoparticles were structurally characterized using aberration-corrected scanning transmission electron microscopy (Cs-STEM) equipped with a high-angle annular dark field detector, energy-dispersive X-ray spectrometry (EDS), and electron energy-loss spectroscopy (EELS). The high-resolution elemental line scan and mappings were carried out using a combination of STEM–EDS and STEM–EELS. The obtained results show the growth of the Pd shell on the Pt core with polyhedral morphology. The average size of the bimetallic nanoparticles was 13.5 nm and the average size of the core was 8.5 nm; consequently, the thickness of the shell was around 2.5 nm. The growth of the Pd shell on the Pt core is layer by layer, suggesting a Frank-van der Merwe growth mechanism.
PMCID: PMC4074598  PMID: 24991190
Chemical synthesis; Core-shell; Nanostructure; Pt–Pd; Electron microscopy; Aberration corrected
17.  Detecting the oxidative reactivity of nanoparticles: a new protocol for reducing artifacts 
Understanding the oxidative reactivity of nanoparticles (NPs; <100 nm) could substantially contribute to explaining their toxicity. We attempted to refine the use of 2′7-dichlorodihydrofluorescein (DCFH) to characterize NP generation of reactive oxygen species (ROS). Several fluorescent probes have been applied to testing oxidative reactivity, but despite DCFH being one of the most popular for the detection of ROS, when it has been applied to NPs there have been an unexplainably wide variability in results. Without a uniform methodology, validating even robust results is impossible. This study, therefore, identified sources of conflicting results and investigated ways of reducing occurrence of artificial results. Existing techniques were tested and combined (using their most desirable features) to form a more reliable method for the measurement of NP reactivity in aqueous dispersions. We also investigated suitable sample ranges necessary to determine generation of ROS. Specifically, ultrafiltration and time-resolved scan absorbance spectra were used to study possible optical interference when using high sample concentrations. Robust results were achieved at a 5 µM DCFH working solution with 0.5 unit/mL horseradish peroxidase (HRP) dissolved in ethanol. Sonication in DCFH-HRP working solution provided more stable data with a relatively clean background. Optimal particle concentration depends on the type of NP and in general was in the µg/mL range. Major reasons for previously reported conflicting results due to interference were different experimental approaches and NP sample concentrations. The protocol presented here could form the basis of a standardized method for applying DCFH to detect generation of ROS by NPs.
Electronic supplementary material
The online version of this article (doi:10.1007/s11051-014-2493-0) contains supplementary material, which is available to authorized users.
PMCID: PMC4092240  PMID: 25076842
Reactivity; Reactive oxygen species (ROS); Nanoparticles (NPs); Fluorescence; 2′7-dichlorodihydrofluorescein (DCFH); Nanotoxicity; Health and environmental effects
18.  Critical experimental parameters related to the cytotoxicity of zinc oxide nanoparticles 
The increasing use of zinc oxide nanoparticles (ZnO-NPs) has raised concerns about their potential hazards to human and environmental health. In this study, the characterization and cytotoxicity of two ZnO-NPs products (Z-COTE and Z-COTE HP1) were investigated. The zinc content of Z-COTE and Z-COTE HP1 was 82.5 ± 7.3 and 80.1 ± 3.5 %, respectively. Both ZnO–NP samples contained sub-cytotoxic levels of iron and copper, and silicon was detected from the surface coating of Z-COTE HP1. All samples were highly agglomerated, and the primary particles appeared as variable polyhedral structures. There was no significant difference in size distribution or average diameter of Z-COTE (53 ± 23 nm) and Z-COTE HP1 (54 ± 26 nm). A dose-dependent cytotoxicity was observed 24 h after exposure to ZnO-NPs, and monocytes were more sensitive than lung epithelial cells or lymphoblasts in both human and mouse cells. There was a significant difference in cytotoxicity between nano- and fine-forms, but only at the threshold cytotoxic dose with cellular metabolism assays. Compared to uncoated ZnO-NPs, the surface coating with triethoxycaprylylsilane marginally attenuated cellular oxidative stress and protected cellular metabolic activity. These results demonstrate the importance of model cell type, dose selection, and cytotoxicity assessment methodology to accurately evaluate the potential toxicity of various nanoparticles in vitro.
PMCID: PMC4053596  PMID: 24944520
Zinc oxide nanoparticles; Characterization; Cytotoxicity; Intracellular reactive oxygen species; Toxicity; Health and environmental effects; OECD program
19.  Environmental exposure assessment framework for nanoparticles in solid waste 
Information related to the potential environmental exposure of engineered nanomaterials (ENMs) in the solid waste management phase is extremely scarce. In this paper, we define nanowaste as separately collected or collectable waste materials which are or contain ENMs, and we present a five-step framework for the systematic assessment of ENM exposure during nanowaste management. The framework includes deriving EOL nanoproducts and evaluating the physicochemical properties of the nanostructure, matrix properties and nanowaste treatment processes as well as transformation processes and environment releases, eventually leading to a final assessment of potential ENM exposure. The proposed framework was applied to three selected nanoproducts: nanosilver polyester textile, nanoTiO2 sunscreen lotion and carbon nanotube tennis racquets. We found that the potential global environmental exposure of ENMs associated with these three products was an estimated 0.5–143 Mg/year, which can also be characterised qualitatively as medium, medium, low, respectively. Specific challenges remain and should be subject to further research: (1) analytical techniques for the characterisation of nanowaste and its transformation during waste treatment processes, (2) mechanisms for the release of ENMs, (3) the quantification of nanowaste amounts at the regional scale, (4) a definition of acceptable limit values for exposure to ENMs from nanowaste and (5) the reporting of nanowaste generation data.
Electronic supplementary material
The online version of this article (doi:10.1007/s11051-014-2394-2) contains supplementary material, which is available to authorized users.
PMCID: PMC4053593  PMID: 24944519
Nanowaste; Nanomaterial; Environmental exposure; Solid waste; Quantification; Health effects
20.  Dark field nanoparticle tracking analysis for size characterization of plasmonic and non-plasmonic particles 
Dark field microscopy is a widely unknown method to measure the particle size distribution of diffusing nanoparticles by particle tracking. Here we demonstrate that by using the surface plasmonic resonance of Au nanoparticles, size differences of ca. 20 nm can be identified within the particle size distribution. For that purpose, we developed a software tool which helps to analyze color videos of diffusing nanoparticles retrieved from CCD or CMOS cameras. Polystyrene beads with a diameter of 100 and 200 nm were used to compare the results to those obtained with a well-established laser-based particle tracking system. The methodology will be discussed in the light of recent developments in the emerging field of optical nanoparticle tracking.
Electronic supplementary material
The online version of this article (doi:10.1007/s11051-014-2419-x) contains supplementary material, which is available to authorized users.
PMCID: PMC4021069  PMID: 24839395
Nanoparticle tracking analysis; Dark field microscopy ; Instrumentation development; Surface plasmon resonance; Particle characterization; ImageJ
21.  The novel albumin–chitosan core–shell nanoparticles for gene delivery: preparation, optimization and cell uptake investigation 
Natural polymers and proteins such as chitosan (CS) and albumin (Alb) have recently attracted much attention both in drug delivery and gene delivery. The underlying rationale is their unique properties such as biodegradability, biocompatibility and controlled release. This study aimed to prepare novel albumin–chitosan–DNA (Alb-CS-DNA) core–shell nanoparticles as a plasmid delivery system and find the best conditions for their preparation. Phase separation method and ionic interaction were used for preparation of Alb nanoparticles and Alb-CS-DNA core–shell nanoparticles, respectively. The effects of three important independent variables (1) CS/Alb mass ratio, (2) the ratios of moles of the amine groups of cationic polymers to those of the phosphate groups of DNA (N/P ratio), and (3) Alb concentration, on the nanoparticle size and loading efficiency of the plasmid were investigated and optimized through Box–Behnken design of response surface methodology (RSM). The optimum conditions were found to be CS/Alb mass ratio = 3, N/P ratio = 8.24 and Alb concentration = 0.1 mg/mL. The most critical factors for the size of nanoparticles and loading efficiency were Alb concentration and N/P ratio. The optimized nanoparticles had an average size of 176 ± 3.4 nm and loading efficiency of 80 ± 3.9 %. Cytotoxicity experiments demonstrated that the prepared nanoparticles were not toxic. The high cellular uptake of nanoparticles (~85 %) was shown by flow cytometry and fluorescent microscopy.
PMCID: PMC3868460  PMID: 24363607
Albumin; Chitosan; Nanoparticle; Gene delivery; Optimization
22.  Gravity-induced swirl of nanoparticles in microfluidics 
Parallel flows of two fluids in microfluidic devices are used for miniaturized chemistry, physics, biology and bioengineering studies, and the streams are often considered to remain parallel. However, as the two fluids do not always have the same density, interface reorientation induced by density stratification is unavoidable. In this paper, flow characteristics of an aqueous polystyrene nanofluid and a sucrose-densified aqueous solution flowing parallel in microchannels are examined. Nanoparticles 100 nm in diameter are used in the study. The motion of the nanoparticles is simulated using the Lagrangian description and directly observed by a confocal microscope. Matched results are obtained from computational and empirical analysis. Although solution density homogenizes rapidly resulting from a fast diffusion of sucrose in water, the nanofluid is observed to rotate for an extended period. Angular displacement of the nanofluid depends on the ratio of gravitational force to viscous force, Re/Fr2, where Re is the Reynolds number and Fr is the Froude number. In the developing region at the steady state, the angular displacement is related to y/Dh, the ratio between distance from the inlet and the hydraulic diameter of the microfluidic channel. The development of nanofluid flow feature also depends on h/w, the ratio of microfluidic channel’s height to width. The quantitative description of the angular displacement of nanofluid will aid rational designs of microfluidic devices utilizing multistream, multiphase flows.
PMCID: PMC3927913  PMID: 24563612
Microfluidics; Density stratification; Nanoparticles; Angular displacement; Miscible fluids
23.  Acoustic wave in a suspension of magnetic nanoparticle with sodium oleate coating 
The ultrasonic propagation in the water-based magnetic fluid with doubled layered surfactant shell was studied. The measurements were carried out both in the presence as well as in the absence of the external magnetic field. The thickness of the surfactant shell was evaluated by comparing the mean size of magnetic grain extracted from magnetization curve with the mean hydrodynamic diameter obtained from differential centrifugal sedimentation method. The thickness of surfactant shell was used to estimate volume fraction of the particle aggregates consisted of magnetite grain and surfactant layer. From the ultrasonic velocity measurements in the absence of the applied magnetic field, the adiabatic compressibility of the particle aggregates was determined. In the external magnetic field, the magnetic fluid studied in this article becomes acoustically anisotropic, i.e., velocity and attenuation of the ultrasonic wave depend on the angle between the wave vector and the direction of the magnetic field. The results of the ultrasonic measurements in the external magnetic field were compared with the hydrodynamic theory of Ovchinnikov and Sokolov (velocity) and with the internal chain dynamics model of Shliomis, Mond and Morozov (attenuation).
PMCID: PMC3955142  PMID: 24672282
Nanoparticles; Magnetic fluid; Velocity and absorption of ultrasound; Hydrodynamic size
24.  Time resolved and temperature dependence of the radiative properties of thiol-capped CdS nanoparticles films 
In this work, we present the temperature-dependence and time-resolved photoluminescence (PL) of CdS nanoparticles capped independently with three different ligands thiophenol, thioglycerol, and l-cysteine over a broad temperature range from 10 to 300 K. The respective nanoparticles sizes in the three systems studied in this work are 1.5, 4, and 2 nm as determined from X-ray diffraction (XRD). From the analysis of AFM images, it was found that the lateral particle sizes of capped CdS nanoparticles are greater than those deduced from XRD or optical absorption measurements. The aim of this study is the investigation of the impact of the organic ligands on the radiative recombination dynamics in organically capped CdS nanoparticles. From the PL study and based on the temperature-dependence and time-resolved emission spectroscopy, we conclude that the emission of CdS QDs film originates from recombination of the delocalized carriers in the internal core states with a small contribution of the localized carriers at the interface. The PL decay reveals a biexponential behavior for the entire three samples at all temperatures. One of the two exponential components decays rapidly with a time τ1 in the range 0.5–0.8 ns, whereas the other decays much more slowly, with a time τ2 in the range 1–3 ns. The weak activation energy (32–37 meV) deduced from the temperature dependence of the PL intensity suggests the involvement of shallow traps. The analysis of the experimental results reveals a relatively narrow size distribution, an efficient surface passivation, and a satisfactory thermal stability of CdS nanocrystals.
PMCID: PMC3925497  PMID: 24563613
Organic ligands; CdS nanoparticles; Time-correlated single photon counting; Radiative recombination; Temperature; Surface states; Nanostructure; Optics
25.  Non-thermal plasma-driven synthesis of Eu3+:Y2O3 nanosized phosphors 
The synthesis of nanosized phosphors by using the non-thermal plasma-driven method is presented. The method allows to control the average grain size of nanocrystals. The synthesis of Eu3+-doped Y2O3 nanocrystalline phosphors at water solution of nitrates is described. The average sizes of nanocrystals were controlled by sintering temperature. Their structure, morphology, and luminescent properties were investigated.
PMCID: PMC3890610  PMID: 24453571
Nanocrystallites; Plasma; Rare earths (RE); Luminescence

Results 1-25 (106)