Search tips
Search criteria

Results 1-25 (107)

Clipboard (0)

Select a Filter Below

Year of Publication
1.  Inflammatory etiopathogenesis of systemic lupus erythematosus: an update 
The immune system struggles every day between responding to foreign antigens and tolerating self-antigens to delicately maintain tissue homeostasis. If self-tolerance is broken, the development of autoimmunity can be the consequence, as it is in the case of the chronic inflammatory autoimmune disease systemic lupus erythematosus (SLE). SLE is considered to be a multifactorial disease comprising various processes and cell types that act abnormally and in a harmful way. Oxidative stress, infections, or, in general, tissue injury are accompanied by massive cellular demise. Several processes such as apoptosis, necrosis, or NETosis (formation of Neutrophil Extracellular Traps [NETs]) may occur alone or in combination. If clearance of dead cells is insufficient, cellular debris may accumulate and trigger inflammation and leakage of cytoplasmic and nuclear autoantigens like ribonucleoproteins, DNA, or histones. Inadequate removal of cellular remnants in the germinal centers of secondary lymphoid organs may result in the presentation of autoantigens by follicular dendritic cells to autoreactive B cells that had been generated by chance during the process of somatic hypermutation (loss of peripheral tolerance). The improper exposure of nuclear autoantigens in this delicate location is consequently prone to break self-tolerance to nuclear autoantigens. Indeed, the germline variants of autoantibodies often do not show autoreactivity. The subsequent production of autoantibodies plays a critical role in the development of the complex immunological disorder fostering SLE. Immune complexes composed of cell-derived autoantigens and autoantibodies are formed and get deposited in various tissues, such as the kidney, leading to severe organ damage. Alternatively, they may also be formed in situ by binding to planted antigens of circulating autoantibodies. Here, we review current knowledge about the etiopathogenesis of SLE including the involvement of different types of cell death, serving as the potential source of autoantigens, and impaired clearance of cell remnants, causing accumulation of cellular debris.
PMCID: PMC4548750  PMID: 26316795
apoptosis; NETosis; cell death; clearance deficiency; autoimmunity; systemic lupus erythematosus
2.  An ex vivo RT-qPCR-based assay for human peripheral leukocyte responsiveness to glucocorticoids in surgically induced inflammation 
An assay to determine glucocorticoid (GC) responsiveness in humans could be used to monitor GC non-responsiveness in states of GC insufficiency and could provide a tool to adapt GC treatment to individual patients. We propose an ex vivo assay to test GC responsiveness in peripheral leukocytes. The assay was evaluated in a human experimental model of surgery-induced inflammation.
Patients and methods
Changes in expression of the GC-regulated genes GILZ, IL1R2, FKBP5, and HLA-DR and glucocorticoid receptor alpha (GRα) were determined by reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) in peripheral leukocytes from surgical patients and healthy blood donors (total n=60) in response to low (1 nM) and high (1 µM) dexamethasone (DEX). The final selection of a suitable endogenous control gene was based on the studies of stability during DEX treatment and inflammation. Correlations between pre- and postoperative GC-induced gene expression, the postoperative systemic inflammatory and metabolic response (CRP, IL-6, white blood cell count, cytokines, resistin, free fatty acids, glucose, insulin, and adiponectin), and the clinical outcome were analyzed. The length of stay in the intensive care unit (ICU-LOS), the length of stay in the hospital, and postoperative complications were used to measure clinical outcome.
When the blood donors were compared to the patients, there were no significant differences in the regulation of the genes in response to DEX, except for GRα. Preoperative, but not postoperative, gene regulation of GILZ and GRα was negatively correlated to ICU-LOS (P<0.05 and P<0.01, respectively). Preoperative GILZ and FKBP5 gene regulation was negatively correlated to postoperative systemic TNFα and MIP-1α levels.
We suggest that this assay could be used to determine GC responsiveness. An alteration in preoperative GC responsiveness may be related to a patient’s ability to recover from surgically induced inflammatory stress.
PMCID: PMC4547639  PMID: 26316794
glucocorticoid responsiveness; gene regulation; clinical outcome; GILZ; GRα; cytokines
3.  Differential inflammatory response to Helicobacter pylori infection: etiology and clinical outcomes 
The bacterial pathogen Helicobacter pylori commonly colonizes the human gastric mucosa during early childhood and persists throughout life. The organism has evolved multiple mechanisms for evading clearance by the immune system and, despite inducing inflammation in the stomach, the majority of infections are asymptomatic. H. pylori is the leading cause of peptic ulcer disease and gastric cancer. However, disease outcomes are related to the pattern and severity of chronic inflammation in the gastric mucosa, which in turn is influenced by both bacterial and host factors. Despite over 2 decades of intensive research, there remains an incomplete understanding of the circumstances leading to disease development, due to the fascinating complexity of the host–pathogen interactions. There is accumulating data concerning the virulence factors associated with increased risk of disease, and the majority of these have pro-inflammatory activities. Despite this, only a small proportion of those infected with virulent strains develop disease. Several H. pylori virulence factors have multiple effects on different cell types, including the induction of pro- and anti-inflammatory, immune stimulatory, and immune modulatory responses. The expression of multiple virulence factors is also often linked, making it difficult to assess the meaning of their effects in isolation. Overall, H. pylori is thought to usually modulate inflammation and limit acute damage to the mucosa, enabling the bacteria to persist. If this delicate balance is disturbed, disease may then develop.
PMCID: PMC4540215  PMID: 26316793
Helicobacter pylori; inflammation; mucosal immunity; peptic ulcer disease; gastric cancer
4.  Effects of exendin-4, a glucagon like peptide-1 receptor agonist, on neutrophil count and inflammatory cytokines in a rat model of endotoxemia 
Sepsis remains a major cause of morbidity and mortality. A variety of strategies targeting modulation of the pro-inflammatory response associated with early sepsis have been reported without clinical success. GLP-1 enhances glucose-stimulated insulin secretion. In addition, it was shown to have anti-inflammatory effects. We hypothesized that treatment with exendin-4, a GLP-1 receptor agonist, would attenuate inflammation and improve glucose control in a lipopolysaccharide (LPS) rat model of inflammation.
Two-month-old male Wistar rats were randomly assigned to one of the following four groups: 1) treatment: intraperitoneal (IP) injection of LPS 10 mg/kg followed by exendin-4, 30 μg/kg, 10 minutes later; 2) control-1: IP injection of LPS 10 mg/kg, followed by normal saline (NS); 3) control-2: IP NS injection followed by exendin-4; 4) sham: IP injection of NS followed by another NS injection. Glucose concentration, total white blood count with absolute neutrophil count, and pro- and anti-inflammatory cytokine concentrations were measured at 0, 3, 6, and 10 hours following LPS injection.
At 3 hours, rats injected with LPS developed neutropenia, elevated pro- and anti-inflammatory cytokines, and mild hypoglycemia. Treatment with exendin-4 significantly modulated neutropenia, and decreased pro-inflammatory cytokine concentrations (IL-1α, IL-1β, IL-6, TNFα, and IFNγ). However, exendin-4 had no effect on IL-10 concentrations. LPS injection led to mild hypoglycemia, that was not observed in rats treated with exendin-4. Sham animals exhibited no significant change from baseline in all parameters.
In this LPS model of acute early phase inflammation, treatment with exendin-4 decreased pro-inflammatory cytokine concentrations without changing IL-10 blood levels and improved neutropenia. Following LPS injection, rats developed a tendency toward hypoglycemia that improved with exendin-4. Overall our data suggest that exogenous exendin-4 mediates anti-inflammatory effects early in this rat model of endotoxin-induced inflammation.
PMCID: PMC4521677  PMID: 26244029
glucagon like peptide-1; exendin-4; sepsis; endotoxemia; inflammation; neutrophils
5.  Implications of compromised zinc status on bone loss associated with chronic inflammation in C57BL/6 mice 
Compromised zinc status and chronic inflammation are independent factors that can contribute to bone loss. However, zinc’s role in regulating lymphoid and myeloid cell populations, combined with the interplay between the immune and skeletal systems raises the question as to the extent to which a low-grade inflammatory challenge in the context of marginal zinc deficiency would exacerbate bone loss. To address this question, young adult C57BL/6 male mice (n=32) were used in a 2×2 factorial design with dietary zinc (adequate or 35 ppm vs inadequate or −Zn =5 ppm) and lipopolysaccharide (LPS, 0 or 0.1 mg/kg body weight). Mice were fed their respective diets for 10 weeks. On the 6th week, mice had a slow release pellet implanted to induce a low-grade inflammation for the final 4 weeks of the study. −Zn induced a decrease in total white cell counts and peripheral lymphocytes, whereas LPS increased blood monocytes. LPS significantly reduced spine bone mineral density and trabecular bone volume and number of the vertebral body compared with both zinc adequate and inadequate without LPS groups. Likewise, the most pronounced effects on bone strength occurred with LPS, however, −Zn also had negative effects on the bone von Mises stresses. LPS induced an increase in TNF-α and this response was further increased with −Zn. Although the marginal zinc deficiency altered immune function, bone loss was not exacerbated with low-grade chronic inflammation in marginally zinc-deficient young adult mice. These findings demonstrate that in young adult animals an immune challenge modestly increases the inflammatory response and worsens bone biomechanics in the context of a marginal zinc deficiency, but not to the extent that more severe adverse outcomes are observed on bone structural parameters.
PMCID: PMC4508086  PMID: 26203271
chronic inflammation; zinc deficiency; osteoporosis
6.  Regulation of indoleamine 2,3-dioxygenase in primary human saphenous vein endothelial cells 
Indoleamine 2,3-dioxygenase (IDO) is an enzyme associated with the regulation of immune responses. Cytokines such as IFNγ induce its expression in endothelial cells originating from immune-privileged sites. In this study, we investigate regulators of IDO in primary endothelial cells from a non-immune-privileged site and determine whether IDO expression affects immune cell behavior.
IDO expression was determined using real-time quantitative polymerase chain reaction and immunoblotting. IDO activity was estimated using an IDO enzyme assay. Primary cells were transfected using microporation, and T-cell migration was determined using a cell transmigration assay.
IDO is expressed in human saphenous vein endothelial cells after stimulation with IFNγ but not after treatment with TNFα, IL-1β, IL-2, IL-4, IL-6, or IL-10. VEGFβ and heparin negatively regulate IFNγ-driven increases in IDO. Overexpression of IDO in endothelial cells does not affect transmigration of T-cells.
IDO is expressed in human saphenous vein endothelial cells after stimulation with IFNγ. Heparin and angiogenesis stimulators such as VEGFβ negatively regulate its expression.
PMCID: PMC4446016  PMID: 26056484
IFNγ; VEGFβ; endothelium; inflammation; HSVEC
7.  Association of inflammatory markers and poor outcome in diabetic patients presenting with ST segment elevation myocardial infarction 
Carbohydrate metabolism disorders (CMD) significantly impact the development and progression of all forms of ischemic heart disease, and inflammation is regarded as a general pathogenetic link between CMD and ischemic heart disease.
A total of 601 patients with ST segment elevation myocardial infarction (MI) (STEMI), admitted within 24 hours from the onset of symptoms during 1 year, were included in this registry study. The blood levels of inflammation markers were measured at days 10–14 with further follow up at 1 year.
The analysis of acute-phase percutaneous coronary intervention impact on the 1-year outcomes showed that endovascular revascularization significantly improved the 1-year prognosis of STEMI patients both with and without CMD. The analysis of inflammation markers showed significantly higher levels of interleukin (IL)-6 and sCD40L in MI patients with diabetes mellitus, and impaired glucose tolerance. Additionally, the patients with impaired glucose tolerance had significantly higher IL-12 levels. In the diabetic MI patients, the odds ratio of a poor 1-year outcome was high for patients with a high Killip classification of acute heart failure upon admission.
Persistent inflammation in STEMI patients with CMD undergoing percutaneous coronary intervention might be responsible for vascular complications within 1 year after MI. Comorbid diabetes mellitus or impaired glucose tolerance can amplify the significance of the inflammatory response for the development of adverse 1-year outcomes.
PMCID: PMC4446019  PMID: 26056485
carbohydrate metabolism disorders; inflammation percutaneous coronary intervention
8.  The effects of grounding (earthing) on inflammation, the immune response, wound healing, and prevention and treatment of chronic inflammatory and autoimmune diseases 
Multi-disciplinary research has revealed that electrically conductive contact of the human body with the surface of the Earth (grounding or earthing) produces intriguing effects on physiology and health. Such effects relate to inflammation, immune responses, wound healing, and prevention and treatment of chronic inflammatory and autoimmune diseases. The purpose of this report is two-fold: to 1) inform researchers about what appears to be a new perspective to the study of inflammation, and 2) alert researchers that the length of time and degree (resistance to ground) of grounding of experimental animals is an important but usually overlooked factor that can influence outcomes of studies of inflammation, wound healing, and tumorigenesis. Specifically, grounding an organism produces measurable differences in the concentrations of white blood cells, cytokines, and other molecules involved in the inflammatory response. We present several hypotheses to explain observed effects, based on current research results and our understanding of the electronic aspects of cell and tissue physiology, cell biology, biophysics, and biochemistry. An experimental injury to muscles, known as delayed onset muscle soreness, has been used to monitor the immune response under grounded versus ungrounded conditions. Grounding reduces pain and alters the numbers of circulating neutrophils and lymphocytes, and also affects various circulating chemical factors related to inflammation.
PMCID: PMC4378297  PMID: 25848315
chronic inflammation; immune system; wound repair; white blood cells; macrophages; autoimmune disorders
9.  Respiratory metapneumoviral infection without co-infection in association with acute and chronic lung allograft dysfunction 
Metapneumoviral respiratory infection is a community-acquired respiratory viral (CARV) infection. Lung transplantation recipients exposed to CARV are at risk for development of allograft rejection. The cellular and molecular pathways initiated by viral infection leading to allograft dysfunction are not completely understood. The aim of this study was to identify human metapneumoviral (hMPV) cases in association with allograft rejection.
A literature search was conducted to identify cases of both hMPV and allograft rejection within 6 months of the initial infection. This resulted in 1,007 lung transplantation recipients, with a total of 2,883 samples identified. Of these, 57 demonstrated isolated hMPV without co-infection with other agents.
The results of the study indicate that 35% of acute hMPV infections without co-infection, at the time of detection by molecular diagnostic platforms, were associated with acute cellular rejection within 3 months. There were 9.4% of the cases subsequently associated with chronic allograft dysfunction/bronchiolitis obliterans syndrome, which was collectively termed chronic rejection for purposes of analysis. In conclusion, the prompt identification of isolated hMPV from lung transplantation patients is an important treatable risk factor for subsequent allograft dysfunction. The cellular and molecular pathogenesis of viral-induced allograft rejection remains a topic of future study.
PMCID: PMC4373596  PMID: 25848314
viral infection; bronchiolitis obliterans; acute cellular rejection; allograft; lung; metapneumovirus
10.  Role of high-mobility group box 1 in patients with acute obstructive suppurative cholangitis-induced sepsis 
High-mobility group box 1 (HMGB1) is a proinflammatory cytokine that plays an active role during the pathogenesis of inflammatory processes. The primary aim of this study was to detect whether HMGB1 is involved in the pathogenesis of acute obstructive suppurative cholangitis (AOSC).
We collected peripheral blood samples from 23 patients with AOSC and 23 healthy volunteers who served as normal controls. All participants were tested for HMGB1 mRNA level, HMGB1 protein, tumor necrosis factor alpha (TNF-alpha), and interleukin 10 (IL-10). HMGB1 mRNA levels were tested using real-time polymerase chain reaction. HMGB1 protein expression was measured using Western blot. TNF-alpha and IL-10 were tested using enzyme-linked immunosorbent assay.
The expression of HMGB1 mRNA and HMGB1 protein was higher in the AOSC group than in the normal controls (P<0.01), and the levels gradually decreased to normal after treatment of the disease (P<0.01). The content of TNF-alpha and IL-10 in peripheral blood of patients with AOSC was significantly higher than that of normal controls (P<0.01) but decreased to normal levels after the necessary treatment (P<0.01).
The levels of HMGB1 mRNA and HMGB1 protein were elevated in patients with AOSC, which may play an important role in the inflammation of the bile duct and appears to be associated with the development of sepsis. This suggests the importance of monitoring HMGB1 levels in the management of AOSC-induced sepsis.
PMCID: PMC4362899  PMID: 25792849
AOSC; HMGB1; interleukin 10; TNF-alpha; sepsis; inflammation
11.  Effect of pulsed electromagnetic field treatment on programmed resolution of inflammation pathway markers in human cells in culture 
Inflammation is a complex process involving distinct but overlapping biochemical and molecular events that are highly regulated. Pulsed electromagnetic field (PEMF) therapy is increasingly used to treat pain and edema associated with inflammation following surgery involving soft tissue. However, the molecular and cellular effects of PEMF therapy on pathways involved in the resolution of inflammation are poorly understood. Using cell culture lines relevant to trauma-induced inflammation of the skin (human dermal fibroblasts, human epidermal keratinocytes, and human mononuclear cells), we investigated the effect of PEMF on gene expression involved in the acute and resolution phases of inflammation. We found that PEMF treatment was followed by changes in the relative amount of messenger (m)RNAs encoding enzymes involved in heme catabolism and removal of reactive oxygen species, including an increase in heme oxygenase 1 and superoxide dismutase 3 mRNAs, in all cell types examined 2 hours after PEMF treatment. A relative increase in mRNAs encoding enzymes involved in lipid mediator biosynthesis was also observed, including an increase in arachidonate 12- and 15-lipoxygenase mRNAs in dermal fibroblasts and epidermal keratinocytes, respectively. The relative amount of both of these lipoxygenase mRNAs was elevated in mononuclear cells following PEMF treatment relative to nontreated cells. PEMF treatment was also followed by changes in the mRNA levels of several cytokines. A decrease in the relative amount of interleukin 1 beta mRNA was observed in mononuclear cells, similar to that previously reported for epidermal keratinocytes and dermal fibroblasts. Based on our results, we propose a model in which PEMF therapy may promote chronic inflammation resolution by mediating gene expression changes important for inhibiting and resolving inflammation.
PMCID: PMC4346366  PMID: 25759595
acute inflammation; resolution phase; heme oxygenase; reactive oxygen species; eicosanoids; resolvins; cytokines; lipid mediators
12.  Eggshell membrane hydrolyzates activate NF-κB in vitro: possible implications for in vivo efficacy 
Eggshell membrane (ESM) has been shown to contain naturally occurring bioactive components, and biological activities such as reducing proinflammatory cytokines, liver fibrosis, and joint pain in osteoarthritis sufferers have also been reported for ESM matrix as a whole. Nuclear factor kappa-light-chain-enhancer of activated B-cells (NF-κB) is a signaling protein found in the cytoplasm of nearly all human and animal cell types and is a primary regulator of immune function. The studies reported herein were designed to investigate the possible role that NF-κB activity might play in the reported biological activities of ESM.
Three ESM hydrolyzates produced via fermentation, enzymatic, or chemical hydrolysis were evaluated in vitro in either human peripheral blood mononuclear cell or THP-1 (human leukemic monocyte) cell cultures for NF-κB activity following 4-hour exposure. The hydrolyzates were compared with untreated control cells or cells incubated with lipopolysaccharide or ascorbic acid. The source of ESM activity was also evaluated.
NF-κB levels were increased above levels found in untreated cells at all three dilutions (1:100, 1:1,000, and 1:10,000) for the fermentation hydrolyzate of ESM (ESM-FH) (P=0.021, P=0.020, P=0.009, respectively) in peripheral blood mononuclear cells. The enzymatic hydrolyzate of ESM (ESM-EH) also produced statistically significant levels of activated NF-κB at the 1:100 and 1:1,000 dilutions (P=0.004, P=0.006, respectively) but fell just shy of significance at the 1:10,000 dilution (P=0.073). Similarly, ESM-FH (P=0.021, P=0.002) and ESM-EH (P=0.007, P=0.007) activated NF-κB in THP-1 cells at 1:1,000 and 1:10,000 dilutions, respectively. The chemical hydrolyzate of ESM (ESM-CH) showed statistically significant levels of activation at the 1:1,000 dilution (P=0.005) but failed to differ from untreated cells at the 1:10,000 dilution (P=0.193) in THP-1 cells.
Results from our studies provide evidence that ESM hydrolyzates significantly activate NF-κB, and the source of this activity was investigated to confirm that it is inherent to ESM and not derived from bacterial contamination. Based on our findings, we propose a plausible hypothesis as to how increased NF-κB activity might translate into the in vivo efficacy that has been observed with ESM via an “oral tolerance” mechanism.
PMCID: PMC4332312  PMID: 25709492
eggshell membrane; NF-κB; lipopolysaccharide; polymyxin B; lipoprotein lipase; hydrolyzate
13.  Killing of Staphylococcus aureus in murine macrophages by chloroquine used alone and in combination with ciprofloxacin or azithromycin 
This study aimed to determine any alteration in the killing of Staphylococcus aureus in murine peritoneal macrophages when chloroquine (CQ) is used alone compared with when it is used in combination with ciprofloxacin (CIP) or azithromycin (AZM). The study also aimed to find out the implication of reactive oxygen species (ROS) production and cytokine release in the intracellular killing of S. aureus in macrophages. We present here data obtained with a model of S. aureus-infected mouse peritoneal macrophages in which the intracellular growth of the bacteria and the influence of antibiotics was monitored for 30, 60, and 90 minutes in the presence or absence of CQ along with the production of ROS and alteration in levels of antioxidant enzymes and cytokines. It was observed that S. aureus-triggered cytokine response was regulated when macrophages were co-cultured with CQ and AZM as compared with CQ stimulation only. It can be suggested that action of AZM in mediating bacterial killing is enhanced by the presence of CQ, indicating enhanced uptake of AZM during early infection that may be essential for bacteria killing by AZM. Reduction of oxidative stress burden on the S. aureus-infected macrophages may pave the way for better killing of internalized S. aureus by CQ plus ciprofloxacin (CIP) or CQ plus AZM. Based on these observations, one may speculate that in an inflammatory milieu, CQ loaded with AZM elicits a stronger proinflammatory response by increasing the intracellular uptake of AZM or CIP, thus enabling the immune system to mount a more robust and prolonged response against intracellular pathogens.
PMCID: PMC4309780  PMID: 25653549
azithromycin; ciprofloxacin; intracellular survival
14.  Targeting the NLRP3 inflammasome in chronic inflammatory diseases: current perspectives 
The inflammasome is a molecular platform formed by activation of an innate immune pattern recognition receptor seed, such as NLRP3. Once activated, NLRP3 recruits the adapter ASC (apoptosis-related speck-like protein containing a caspase recruitment domain), which in turn recruits procaspase-1. Procaspase-1 autocatalyzes its cleavage and activation, resulting in maturation of the precursor forms of interleukin (IL)-1β and IL-18 into active proinflammatory cytokines and initiation of pyroptotic cell death. The NLRP3 inflammasome has been implicated in the pathogenesis of a wide variety of diseases, including genetically inherited autoinflammatory conditions as well as chronic diseases in which NLRP3 is abnormally activated. The NLRP3 inflammasome has been linked to diseases such as Alzheimer’s disease, atherosclerosis, metabolic syndrome, and age-related macular degeneration. In this review, we describe the NLRP3 inflammasome complex and its activation in disease, and detail the current therapies that modulate either the NLRP3 inflammasome complex itself or the two cytokines it is responsible for activating, ie, IL-1β and IL-18.
PMCID: PMC4303395  PMID: 25653548
NLRP3; interleukin-1; interleukin-18; caspase-1; therapeutics; inflammasome
15.  An extract of the medicinal plant Artemisia annua modulates production of inflammatory markers in activated neutrophils 
To investigate the ability of a commercial extract from the medicinal plant Artemisia annua to modulate production of the cytokine, tumor necrosis factor-alpha (TNF-α), and the cyclooxygenase (COX) inflammatory marker, prostaglandin E2 (PGE2) in activated neutrophils.
Neutrophils were harvested from rat whole blood and cultured in the presence of plant extract or control samples. Neutrophils, except unactivated control cells, were activated with 10 μg/mL lipopolysaccharide (LPS). The cells were cultured with a range of different concentrations of the A. annua extracts (400–1 μg/mL) and artemisinin (200 and 100 μg/mL) and the supernatants were then tested by enzyme-linked immunosorbent assay (ELISA) for the concentrations of TNF-α and PGE2. Each sample was assayed in triplicate. Positive controls with an inhibitor were assayed in triplicate: chloroquine 2.58 and 5.16 μg/mL for TNF-α, and ibuprofen 400 μg/mL for PGE2. An unsupplemented group was also assessed in triplicate as a baseline control.
Neutrophils were stimulated to an inflammatory state by the addition of LPS. A. annua extract significantly inhibited TNF-α production by activated neutrophils in a dose-dependent manner. There was complete inhibition by the A. annua extract at 200, 100, and 50 μg/mL (all P≤0.0003). At A. annua extract concentrations of 25, 10, and 5 μg/mL, TNF-α production was inhibited by 89% (P<0.0001), 54% (P=0.0002), and 38% (P=0.0014), respectively. A. annua 1 μg/mL did not significantly inhibit TNF-α production (8.8%; P>0.05). Concentrations of 400, 200, and 100 μg/mL A. annua extract significantly inhibited PGE2 production by 87% (P=0.0128), 91% (P=0.0017), and 93% (P=0.0114), respectively.
An extract of A. annua was shown to be a potent inhibitor of TNF-α and a strong inhibitor of PGE2 production in activated neutrophils at the concentrations tested. Further studies are warranted with this promising plant extract.
PMCID: PMC4298291  PMID: 25609991
in vitro; TNF-α; COX-2; PGE2; artemisinin; Arthrem
16.  Effects of Wharton’s jelly-derived mesenchymal stem cells on neonatal neutrophils 
Mesenchymal stem cells (MSCs) have been proposed as autologous therapy for inflammatory diseases in neonates. MSCs from umbilical cord Wharton’s jelly (WJ-MSCs) are accessible, with high proliferative capacity. The effects of WJ-MSCs on neutrophil activity in neonates are not known. We compared the effects of WJ-MSCs on apoptosis and the expression of inflammatory, oxidant, and antioxidant mediators in adult and neonatal neutrophils.
WJ-MSCs were isolated, and their purity and function were confirmed by flow cytometry. Neutrophils were isolated from cord and adult blood by density centrifugation. The effects of neutrophil/WJ-MSC co-culture on apoptosis and gene and protein expression were measured.
WJ-MSCs suppressed neutrophil apoptosis in a dose-dependent manner. WJ-MSCs decreased gene expression of NADPH oxidase-1 in both adult and neonatal neutrophils, but decreased heme oxygenase-1 and vascular endothelial growth factor and increased catalase and cyclooxygenase-2 in the presence of lipopolysaccharide only in adult cells. Similarly, generation of interleukin-8 was suppressed in adult but not neonatal neutrophils. Thus, WJ-MSCs dampened oxidative, vascular, and inflammatory activity by adult neutrophils, but neonatal neutrophils were less responsive. Conversely, Toll-like receptor-4, and cyclooxygenase-2 were upregulated in WJ-MSCs only in the presence of adult neutrophils, suggesting an inflammatory MSC phenotype that is not induced by neonatal neutrophils.
Whereas WJ-MSCs altered gene expression in adult neutrophils in ways suggesting anti-inflammatory and antioxidant effects, these responses were attenuated in neonatal cells. In contrast, inflammatory gene expression in WJ-MSCs was increased in the presence of adult but not neonatal neutrophils. These effects should be considered in clinical trial design before WJ-MSC-based therapy is used in infants.
PMCID: PMC4317142  PMID: 25678809
inflammation; umbilical cord; apoptosis; neutrophil; mesenchymal stem cells
17.  Differential NF-κB and MAPK activation underlies fluoride- and TPA-mediated CXCL8 (IL-8) induction in lung epithelial cells 
Different toxic agents have a varying potential to induce the production of the proinflammatory chemokine, CXCL8 (interleukin [IL]-8), in lung cells. A critical question is which mechanisms determine the magnitude and persistence of the CXCL8 responses to different stimuli. To approach this, we compared the potential of the phorbol ester, 12-O-tetradecanoylphorbol-13-acetate (TPA), and sodium fluoride (NaF) to induce CXCL8 responses in A549 cells, with emphasis on the importance of nuclear factor kappa B (NF-κB)- and mitogen-activated protein kinase (MAPK) signaling. Notably, TPA induced a greater release of CXCL8 than did NaF. Furthermore, TPA induced a strong, rapid, but transient upregulation of CXCL8 messenger (m)RNA, whereas NaF induced a weaker, more delayed, but persistent upregulation. With respect to signaling, TPA led to an early, strong, and relatively transient extracellular signal-regulated kinase (ERK)1/2 phosphorylation, and a less marked and even more transient phosphorylation of c-jun-N-terminal kinases (JNK1/2) and p38. In contrast, NaF elicited a lower, but relatively sustained increase in phosphorylation of ERK1/2, and a marked phosphorylation of p38 and JNK1/2, with the JNK1/2 response as most transient. Only ERK1/2 inhibition affected the TPA response, whereas inhibition of all the three MAPK cascades reduced NaF-induced CXCL8 release. TPA also induced an early, marked phosphorylation/translocation of p65 (NF-κB), whereas NaF induced slower, less pronounced effects on p65. The CXCL8 responses by TPA and NaF were reduced by p65-siRNA. In conclusion, all MAPK cascades were involved in NaF-induced CXCL8 release, whereas only ERK1/2 activation was involved in response to TPA. Furthermore, NF-κB activation appeared to be indispensable for CXCL8 induction. The early response, magnitude, and persistency of MAPK and NF-κB signaling seemed to be critical determinants for the potential to induce CXCL8. These findings underscore that a strong, rapid, and relatively transient activation of ERK1/2 in combination with NF-kB may be sufficient for a strong induction of CXCL8, which may exceed the effects of a more moderate ERK1/2 activation in combination with activation of p38, JNK1/2, and NF-κB.
PMCID: PMC4270361  PMID: 25540590
TPA; sodium fluoride; CXCL8; MAPK; NF-κB; A549 cells
18.  Inhibiting TNF-α signaling does not attenuate induction of endotoxin tolerance 
Tumor necrosis factor-alpha (TNF-α) is a central mediator of inflammatory responses elicited by Toll-like receptor agonists, such as the Gram-negative bacterial outer membrane antigen lipopolysaccharide (LPS). TNF-α is responsible for altering vascular permeability and activating infiltrating inflammatory cells, such as monocytes and neutrophils. Interestingly, TNF-α has also demonstrated the ability to induce tolerance to subsequent challenges with TNF-α or LPS in monocyte and macrophage cell populations. Tolerance is characterized by the inability to mount a typical inflammatory response during subsequent challenges following the initial exposure to an inflammatory mediator such as LPS. The ability of TNF-α to induce a tolerant-like state with regard to LPS is most likely a regulatory mechanism to prevent excessive inflammation. We hypothesized that the induction of tolerance or the degree of tolerance is dependent upon the production of TNF-α during the primary response to LPS. To investigate TNF-α-dependent tolerance, human monocytic THP-1 cells were treated with TNF-α-neutralizing antibodies or antagonistic TNF-α receptor antibodies before primary LPS stimulation and then monitored for the production of TNF-α during the primary and challenge stimulation. During the primary stimulation, anti-TNF-α treatment effectively attenuated the production of TNF-α and interleukin-1β; however, this reduced production did not impact the induction of endotoxin tolerance. These results demonstrate that interfering with TNF-α signaling attenuates production of inflammatory cytokines without affecting the induction of tolerance.
PMCID: PMC4259568  PMID: 25506235
endotoxin tolerance; lipopolysaccharide; tumor necrosis factor-alpha; anti-tumor necrosis factor-alpha; THP-1 cells
19.  β-glycosphingolipids ameliorated non-alcoholic steatohepatitis in the Psammomys obesus model 
Liver steatosis is a common characteristic of obesity and type 2 diabetes, and fatty liver disease is increasingly recognized as a major health burden. Accumulating evidence suggests that β-glycosphingolipids play an important role in insulin sensitivity and thus could affect hepatic steatosis. To determine the effect associated with β-glycosphingolipid-mediated amelioration of liver injury, seven groups of Psammomys obesus on a high-energy diet were studied. Animals were treated with daily injections of β-glucosylceramide, β-lactosylceramide, or a combination of both. β-glycosphingolipids ameliorated the hepatic injury manifested by decreased liver enzymes, liver weight, and hepatic fat, and improved liver histology. Administration of both β-glucosylceramide and β-lactosylceramide also decreased interferon (IFN)-γ serum levels. These effects were associated with improved serum cholesterol and triglyceride levels. These data suggest that β-glycosphingolipids ameliorate liver injury in an animal model of nonalcoholic steatohepatitis.
PMCID: PMC4200037  PMID: 25336983
NAFLD; glycolipids; STAT; NASH; insulin resistance; diabetes
20.  Systemic administration of 6-OHDA to rhesus monkeys upregulates HLA-DR expression in brain microvasculature 
We recently developed a nonhuman primate model of cardiac dysautonomia by systemic dosing of the catecholaminergic neurotoxin 6-hydroxydopamine (6-OHDA). The aim of this study was to assess whether systemic 6-OHDA affects the central nervous system of nonhuman primates, in particular the dopaminergic nigrostriatal system.
Brain sections from adult rhesus monkeys that received systemic 6-OHDA (50 mg/kg intravenously; n=5) and were necropsied 3 months later, as well as normal controls (n=5) were used in this study. Tissue was cut frozen at 40 μm on a sliding microtome, processed for immunohistochemistry, and blindly evaluated.
Neither the optical density of tyrosine hydroxylase immunoreactivity (TH-ir; a dopaminergic neuronal marker) in the caudate and putamen nucleus nor the TH-ir cell number and volume in the substantia nigra showed significant differences between groups. Yet within groups, statistical analysis revealed significant individual differences in the 6-OHDA-treated group, with two animals showing a lower cell count and volume. Optical density quantification of α-synuclein-ir in the substantia nigra did not show differences between groups. As α-synuclein intracellular distribution was noted to vary between animals, it was further evaluated with a semiquantitative scale. A greater intensity and presence of α-synuclein-positive nigral cell bodies was associated with larger TH-positive nigral cell volumes. Increased human leukocyte antigen (HLA-DR; a microglial marker) expression was observed in 6-OHDA-treated animals compared with controls. HLA-DR-ir was primarily localized in endothelial cells and perivascular spaces throughout cortical and subcortical structures. Semiquantitative evaluation using a rating scale revealed higher HLA-DR-ir in blood vessels of 6-OHDA-treated animals than controls, specifically in animals with the lowest number of dopaminergic nigral neurons.
Our results demonstrate that systemic 6-OHDA administration to rhesus monkeys can affect the dopaminergic nigrostriatal system and upregulate inflammatory markers in the cerebrovasculature that persist 3 months post neurotoxin challenge. The variability of the subject response suggests differences in individual sensitivity to 6-OHDA.
PMCID: PMC4173661  PMID: 25258551
6-hydroxydopamine; blood–brain barrier; nonhuman primates; neuroinflammation; parkinsonism
21.  NFκB activation in cutaneous lesions of leprosy is associated with development of multibacillary infection 
Nuclear factor kappa B (NFκB) transcription factors play a central role in controlling the expression of genes involved in inflammatory reactions, proliferation, and survival of human cells. However, the in situ evaluation of NFκB activity in leprosy has not been completed previously. The aim of this study was to determine whether NFκB activity correlates with susceptibility or resistance to Mycobacterium leprae infection in biopsies from skin lesions of 38 patients with the clinical and laboratory diagnosis of leprosy.
The NFκB activation profile was evaluated in biopsies from skin lesions of 38 patients with the clinical and laboratory diagnosis of leprosy. NFκB activation was evaluated and quantified by Southwestern histochemistry, and its activation index (range, 0–4) was calculated according to the percentage of nuclear positivity by the histochemistry. Activation index >1 was considered representative of activation of NFκB.
Fifteen patients (39.5%) demonstrated activated NFκB. Multibacillary leprosy was associated with activated NFκB (54.5%, P=0.028). Borderline leprosy was most strongly associated with NFκB activation (80%), with an odds ratio of 32.7 (P=0.016). These clinical forms are characterized by increased susceptibility to M. leprae and by immunological instability. Activation of NFκB was absent in the granulomas in tuberculoid leprosy, which represents an effective inflammatory reaction pattern against M. leprae.
These results indicate that NFκB activation could favor susceptibility and immunological instability to M. leprae infection, potentially by the stimulation of phagocytosis and the regulation of apoptotic mechanisms of infected cells, leading to the proliferation of this intracellular bacillus. Further studies are needed to evaluate if inhibition of NFκB activation in multibacillary leprosy could favor resistance and an effective granulomatous immune response.
PMCID: PMC4173660  PMID: 25258550
transcription factors; nuclear factor kappa B; immunomodulation; Mycobacterium leprae; leprosy resistance; leprosy susceptibility
22.  Generation and characterization of tabalumab, a human monoclonal antibody that neutralizes both soluble and membrane-bound B-cell activating factor 
B-cell activating factor (BAFF) is a B-cell survival factor with a key role in B-cell homeostasis and tolerance. Dysregulated BAFF expression may contribute to autoimmune diseases or B-cell malignancies via effects on abnormal B-lymphocyte activation, proliferation, survival, and immunoglobulin secretion. Monoclonal antibodies were generated against human BAFF, characterized for species specificity and affinity, and screened for the ability to neutralize both membrane-bound and soluble BAFF. In addition, studies were undertaken to determine the relative potency of membrane-bound and soluble BAFF. Tabalumab has a high affinity for human, cynomolgus monkey, and rabbit BAFF. No binding to mouse BAFF was detected. Tabalumab was able to neutralize soluble human, cynomolgus monkey, or rabbit BAFF with equal potency. Our data demonstrate that membrane-bound BAFF can be a more potent stimulus for B-cells than soluble BAFF, and tabalumab also neutralized membrane-bound BAFF. Tabalumab prevented BAFF from binding to BAFF receptors and demonstrated pharmacodynamic effects in human BAFF transgenic mice. Tabalumab is a high-affinity human antibody with neutralizing activity against membrane-bound and soluble BAFF. Given our findings that membrane-bound BAFF can have greater in vitro potency than soluble BAFF, neutralization of both forms of BAFF is likely to be important for optimal therapeutic effect.
PMCID: PMC4173659  PMID: 25258549
autoimmunity; B-cell malignancies; B-cell survival factor; BAFF
23.  Effect of plant extracts on H2O2-induced inflammatory gene expression in macrophages 
Arctium lappa (AL), Camellia sinensis (CS), Echinacea angustifolia, Eleutherococcus senticosus, Panax ginseng (PG), and Vaccinium myrtillus (VM) are plants traditionally used in many herbal formulations for the treatment of various conditions. Although they are well known and already studied for their anti-inflammatory properties, their effects on H2O2-stimulated macrophages are a novel area of study.
Materials and methods
Cell viability was tested after treatment with increasing doses of H2O2 and/or plant extracts at different times of incubation to identify the optimal experimental conditions. The messenger (m)RNA expression of TNFα, COX2, IL1β, NFκB1, NFκB2, NOS2, NFE2L2, and PPARγ was analyzed in macrophages under H2O2 stimulation. The same genes were also quantified after plant extract treatment on cells pre-stimulated with H2O2.
A noncytotoxic dose (200 μM) of H2O2 induced active mRNA expression of COX2, IL1β, NFE2L2, NFκB1, NFκB2, NOS2, and TNFα, while PPARγ was depressed. The expression of all genes tested was significantly (P<0.001) regulated by plant extracts after pre-stimulation with H2O2. COX2 was downregulated by AL, PG, and VM. All extracts depressed IL1β expression, but upregulated NFE2L2. NFκB1, NFκB2, and TNFα were downregulated by AL, CS, PG, and VM. NOS2 was inhibited by CS, PG, and VM. PPARγ was decreased only after treatment with E. angustifolia and E. senticosus.
The results of the present study indicate that the stimulation of H2O2 on RAW267.4 cells induced the transcription of proinflammatory mediators, showing that this could be an applicable system by which to activate macrophages. Plant extracts from AL, CS, PG, and VM possess in vitro anti-inflammatory activity on H2O2-stimulated macrophages by modulating key inflammation mediators. Further in vitro and in vivo investigation into molecular mechanisms modulated by herbal extracts should be undertaken to shed light on the development of novel modulating therapeutic strategies.
PMCID: PMC4106015  PMID: 25075197
inflammation; qRT-PCR; RAW264.7 cells; nutraceuticals
24.  Inflammatory bowel disease: clinical aspects and treatments 
Inflammatory bowel disease (IBD) is defined as a chronic intestinal inflammation that results from host-microbial interactions in a genetically susceptible individual. IBDs are a group of autoimmune diseases that are characterized by inflammation of both the small and large intestine, in which elements of the digestive system are attacked by the body’s own immune system. This inflammatory condition encompasses two major forms, known as Crohn’s disease and ulcerative colitis. Patients affected by these diseases experience abdominal symptoms, including diarrhea, abdominal pain, bloody stools, and vomiting. Moreover, defects in intestinal epithelial barrier function have been observed in a number of patients affected by IBD. In this review, we first describe the types and symptoms of IBD and investigate the role that the epithelial barrier plays in the pathophysiology of IBD as well as the major cytokines involved. We then discuss steps used to diagnose this disease and the treatment options available, and finally provide an overview of the recent research that aims to develop new therapies for such chronic disorders.
PMCID: PMC4106026  PMID: 25075198
inflammatory bowel disease; Crohn’s disease; ulcerative colitis; cytokines
25.  Epigallocatechin-3-gallate suppresses proinflammatory cytokines and chemokines induced by Toll-like receptor 9 agonists in prostate cancer cells 
Chronic inflammation of the prostate contributes to the increased risk of prostate cancer. Microbial pathogens in the prostate cause inflammation that leads to prostatitis and proliferative inflammatory atrophy frequently associated with the development of prostate cancer. Bacterial lipopolysaccharides and DNA mediate immune responses by engaging Toll-like receptor (TLR) 4 and 9, respectively. Synthetic oligodeoxynucleotides containing CpG motifs (CpG-ODN) mimic bacterial DNA and signal through TLR9 to initiate innate immune responses. Here, we show that stimulation of DU145, PC3, or LnCap prostate cancer cells by the TLR9 agonists, CpG-ODN, induces mRNA expression of IL-6, IL-8, CXCL1, IP-10, CCL5, and TGFβ. In addition, activity of matrix metalloproteinase (MMP)-9 and -2 and cell migration increased on CpG-ODN treatment. Induction of cytokines and chemokines was mediated by NF-κB activation and translocation to the nucleus. Treatment with epigallocatechin-3-gallate (EGCG), the major constituent of green tea, prior to CpG-ODN stimulation, inhibits cytokine and chemokine gene induction, activity of MMP-9 and -2, and cell migration. EGCG treatment sequesters the p65 subunit of transcription factor NF-κB in the cytoplasm and inhibits transcriptional activity of the NF-κB-driven promoter in response to CpG-ODN. Our results suggest that the ability of the TLR9 agonists, CpG-ODN, to induce cytokines, chemokines, and MMP activity, as well as suppression by EGCG are independent of the androgen receptor and p53 status of the cells. EGCG may provide protective effects against inflammation in the prostate and benefit prostate cancer treatment.
PMCID: PMC4070858  PMID: 24971028
CpG-ODN; EGCG; inflammation; NF-κB

Results 1-25 (107)