PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (21594)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
more »
11.  Editorial Board 
doi:10.1128/MCB.masthead.34-1
PMCID: PMC3911271
12.  Crumbs3 Is Essential for Proper Epithelial Development and Viability 
Molecular and Cellular Biology  2014;34(1):43-56.
First identified in Drosophila, the Crumbs (Crb) proteins are important in epithelial polarity, apical membrane formation, and tight junction (TJ) assembly. The conserved Crb intracellular region includes a FERM (band 4.1/ezrin/radixin/moesin) binding domain (FBD) whose mammalian binding partners are not well understood and a PDZ binding motif that interacts with mammalian Pals1 (protein associated with lin seven) (also known as MPP5). Pals1 binds Patj (Pals1-associated tight-junction protein), a multi-PDZ-domain protein that associates with many tight junction proteins. The Crb complex also binds the conserved Par3/Par6/atypical protein kinase C (aPKC) polarity cassette that restricts migration of basolateral proteins through phosphorylation. Here, we describe a Crb3 knockout mouse that demonstrates extensive defects in epithelial morphogenesis. The mice die shortly after birth, with cystic kidneys and proteinaceous debris throughout the lungs. The intestines display villus fusion, apical membrane blebs, and disrupted microvilli. These intestinal defects phenocopy those of Ezrin knockout mice, and we demonstrate an interaction between Crumbs3 and ezrin. Taken together, our data indicate that Crumbs3 is crucial for epithelial morphogenesis and plays a role in linking the apical membrane to the underlying ezrin-containing cytoskeleton.
doi:10.1128/MCB.00999-13
PMCID: PMC3911272  PMID: 24164893
13.  Microtubule Dynamic Instability Controls Podosome Patterning in Osteoclasts through EB1, Cortactin, and Src 
Molecular and Cellular Biology  2014;34(1):16-29.
In osteoclasts (OCs) podosomes are organized in a belt, a feature critical for bone resorption. Although microtubules (MTs) promote the formation and stability of the belt, the MT and/or podosome molecules that mediate the interaction of the two systems are not identified. Because the growing “plus” ends of MTs point toward the podosome belt, plus-end tracking proteins (+TIPs) might regulate podosome patterning. Among the +TIPs, EB1 increased as OCs matured and was enriched in the podosome belt, and EB1-positive MTs targeted podosomes. Suppression of MT dynamic instability, displacement of EB1 from MT ends, or EB1 depletion resulted in the loss of the podosome belt. We identified cortactin as an Src-dependent interacting partner of EB1. Cortactin-deficient OCs presented a defective MT targeting to, and patterning of, podosomes and reduced bone resorption. Suppression of MT dynamic instability or EB1 depletion increased cortactin phosphorylation, decreasing its acetylation and affecting its interaction with EB1. Thus, dynamic MTs and podosomes interact to control bone resorption.
doi:10.1128/MCB.00578-13
PMCID: PMC3911273  PMID: 24144981
15.  A Role for USP7 in DNA Replication 
Molecular and Cellular Biology  2014;34(1):132-145.
The minichromosome maintenance (MCM) complex, which plays multiple important roles in DNA replication, is loaded onto chromatin following mitosis, remains on chromatin until the completion of DNA synthesis, and then is unloaded by a poorly defined mechanism that involves the MCM binding protein (MCM-BP). Here we show that MCM-BP directly interacts with the ubiquitin-specific protease USP7, that this interaction occurs predominantly on chromatin, and that MCM-BP can tether USP7 to MCM proteins. Detailed biochemical and structure analyses of the USP7–MCM-BP interaction showed that the 155PSTS158 MCM-BP sequence mediates critical interactions with the TRAF domain binding pocket of USP7. Analysis of the effects of USP7 knockout on DNA replication revealed that lack of USP7 results in slowed progression through late S phase without globally affecting the fork rate or origin usage. Lack of USP7 also resulted in increased levels of MCM proteins on chromatin, and investigation of the cause of this increase revealed a defect in the dissociation of MCM proteins from chromatin in mid- to late S phase. This role of USP7 mirrors the previously described role for MCM-BP in MCM complex unloading and suggests that USP7 works with MCM-BP to unload MCM complexes from chromatin at the end of S phase.
doi:10.1128/MCB.00639-13
PMCID: PMC3911275  PMID: 24190967
16.  Cdk1 Regulates the Temporal Recruitment of Telomerase and Cdc13-Stn1-Ten1 Complex for Telomere Replication 
Molecular and Cellular Biology  2014;34(1):57-70.
In budding yeast (Saccharomyces cerevisiae), the cell cycle-dependent telomere elongation by telomerase is controlled by the cyclin-dependent kinase 1 (Cdk1). The telomere length homeostasis is balanced between telomerase-unextendable and telomerase-extendable states that both require Cdc13. The recruitment of telomerase complex by Cdc13 promotes telomere elongation, while the formation of Cdc13-Stn1-Ten1 (CST) complex at the telomere blocks telomere elongation by telomerase. However, the cellular signaling that regulates the timing of the telomerase-extendable and telomerase-unextendable states is largely unknown. Phosphorylation of Cdc13 by Cdk1 promotes the interaction between Cdc13 and Est1 and hence telomere elongation. Here, we show that Cdk1 also phosphorylates Stn1 at threonine 223 and serine 250 both in vitro and in vivo, and these phosphorylation events are essential for the stability of the CST complexes at the telomeres. By controlling the timing of Cdc13 and Stn1 phosphorylations during cell cycle progression, Cdk1 regulates the temporal recruitment of telomerase complexes and CST complexes to the telomeres to facilitate telomere maintenance.
doi:10.1128/MCB.01235-13
PMCID: PMC3911276  PMID: 24164896
17.  Temporal Production of the Signaling Lipid Phosphatidic Acid by Phospholipase D2 Determines the Output of Extracellular Signal-Regulated Kinase Signaling in Cancer Cells 
Molecular and Cellular Biology  2014;34(1):84-95.
The Ras-extracellular signal-regulated kinase (ERK) cascade is an important signaling module in cells. One regulator of the Ras-ERK cascade is phosphatidic acid (PA) generated by phospholipase D (PLD) and diacylglycerol kinase (DGK). Using a newly developed PA biosensor, PASS (phosphatidic acid biosensor with superior sensitivity), we found that PA was generated sequentially by PLD and DGK in epidermal growth factor (EGF)-stimulated HCC1806 breast cancer cells. Inhibition of PLD2, one of the two PLD members, was sufficient to eliminate most of the PA production, whereas inhibition of DGK decreased PA production only at the later stages of EGF stimulation, suggesting that PLD2 precedes DGK activation. The temporal production of PA by PLD2 is important for the nuclear activation of ERK. While inhibition of both PLD and DGK had no effect on the overall ERK activity, inhibition of PLD2 but not PLD1 or DGK blocked the nuclear ERK activity in several cancer cell lines. The decrease of active ERK in the nucleus inhibited the activation of Elk1, c-fos, and Fra1, the ERK nuclear targets, leading to decreased proliferation of HCC1806 cells. Together, these findings reveal that PA production by PLD2 determines the output of ERK in cancer cell growth factor signaling.
doi:10.1128/MCB.00987-13
PMCID: PMC3911278  PMID: 24164897
18.  Targeted Deletion of the Gene Encoding the La Autoantigen (Sjögren's Syndrome Antigen B) in B Cells or the Frontal Brain Causes Extensive Tissue Loss 
Molecular and Cellular Biology  2014;34(1):123-131.
La antigen (Sjögren's syndrome antigen B) is a phosphoprotein associated with nascent precursor tRNAs and other RNAs, and it is targeted by autoantibodies in patients with Sjögren's syndrome, systemic lupus erythematosus, and neonatal lupus. Increased levels of La are associated with leukemias and other cancers, and various viruses usurp La to promote their replication. Yeast cells (Saccharomyces cerevisiae and Schizosaccharomyces pombe) genetically depleted of La grow and proliferate, whereas deletion from mice causes early embryonic lethality, raising the question of whether La is required by mammalian cells generally or only to surpass a developmental stage. We developed a conditional La allele and used it in mice that express Cre recombinase in either B cell progenitors or the forebrain. B cell Mb1Cre La-deleted mice produce no B cells. Consistent with αCamKII Cre, which induces deletion in hippocampal CA1 cells in the third postnatal week and later throughout the neocortex, brains develop normally in La-deleted mice until ∼5 weeks and then lose a large amount of forebrain cells and mass, with evidence of altered pre-tRNA processing. The data indicate that La is required not only in proliferating cells but also in nondividing postmitotic cells. Thus, La is essential in different cell types and required for normal development of various tissue types.
doi:10.1128/MCB.01010-13
PMCID: PMC3911279  PMID: 24190965
19.  Identification of the Immunoproteasome as a Novel Regulator of Skeletal Muscle Differentiation 
Molecular and Cellular Biology  2014;34(1):96-109.
While many of the molecular details of myogenesis have been investigated extensively, the function of immunoproteasomes (i-proteasomes) in myogenic differentiation remains unknown. We show here that the mRNA of i-proteasome subunits, the protein levels of constitutive and inducible proteasome subunits, and the proteolytic activities of the 20S and 26S proteasomes were significantly upregulated during differentiation of skeletal muscle C2C12 cells. Knockdown of the i-proteasome catalytic subunit PSMB9 by short hairpin RNA (shRNA) decreased the expression of both PSMB9 and PSMB8 without affecting other catalytic subunits of the proteasome. PSMB9 knockdown and the use of i-proteasome-specific inhibitors both decreased 26S proteasome activities and prevented C2C12 differentiation. Inhibition of the i-proteasome also impaired human skeletal myoblast differentiation. Suppression of the i-proteasome increased protein oxidation, and these oxidized proteins were found to be more susceptible to degradation by exogenous i-proteasomes. Downregulation of the i-proteasome also increased proapoptotic proteins, including Bax, as well as cleaved caspase 3, cleaved caspase 9, and cleaved poly(ADP-ribose) polymerase (PARP), suggesting that impaired differentiation is likely to occur because of significantly increased apoptosis. These results demonstrate for the first time that i-proteasomes, independent of constitutive proteasomes, are critical for skeletal muscle differentiation of mouse C2C12 cells.
doi:10.1128/MCB.00622-13
PMCID: PMC3911280  PMID: 24164898
20.  Role of the HIN Domain in Regulation of Innate Immune Responses 
The oligonucleotide/oligosaccharide binding (OB) fold is employed by proteins to bind nucleic acids during replication, transcription, and translation. Recently, a variation of the OB fold consisting of a tandem pair of OB folds named the HIN (hematopoietic expression, interferon-inducible nature, and nuclear localization) domain was shown to play essential roles in the regulation of innate immune responses originating from binding of nucleic acids in the cytoplasm or the nucleus of the cell. Although the two OB folds of the HIN domain are linked via a long linker region, conserved hydrophobic contacts between the two OB folds hold them together firmly, resulting in a single compact domain. This overall topology of the HIN domain seems to be highly conserved, and proteins containing the HIN domain have been grouped in the PYHIN family. Structures of the recently solved HIN domains reveal that these domains exhibit either absent in melanoma2 (Aim2) HIN-like or p202 HINa-like modes of DNA binding. These two modes of DNA binding seem to result in different responses and as a consequence confer distinct roles on the proteins. This review summarizes our current understanding of the structure and function of the HIN domains in context with the innate immune responses.
doi:10.1128/MCB.00857-13
PMCID: PMC3911281  PMID: 24164899
21.  A Reactive Oxygen Species-Mediated, Self-Perpetuating Loop Persistently Activates Platelet-Derived Growth Factor Receptor α 
Molecular and Cellular Biology  2014;34(1):110-122.
The platelet-derived growth factor (PDGF) receptors (PDGFRs) are central to a spectrum of human diseases. When PDGFRs are activated by PDGF, reactive oxygen species (ROS) and Src family kinases (SFKs) act downstream of PDGFRs to enhance PDGF-mediated tyrosine phosphorylation of various signaling intermediates. In contrast to these firmly established principles of signal transduction, much less is known regarding the recently appreciated ability of ROS and SFKs to indirectly and chronically activate monomeric PDGF receptor α (PDGFRα) in the setting of a blinding condition called proliferative vitreoretinopathy (PVR). In this context, we made a series of discoveries that substantially expands our appreciation of epigenetic-based mechanisms to chronically activate PDGFRα. Vitreous, which contains growth factors outside the PDGF family but little or no PDGFs, promoted formation of a unique SFK-PDGFRα complex that was dependent on SFK-mediated phosphorylation of PDGFRα and activated the receptor's kinase activity. While vitreous engaged a total of five receptor tyrosine kinases, PDGFRα was the only one that was activated persistently (at least 16 h). Prolonged activation of PDGFRα involved mTOR-mediated inhibition of autophagy and accumulation of mitochondrial ROS. These findings reveal that growth factor-containing biological fluids, such as vitreous, are able to tirelessly activate PDGFRα by engaging a ROS-mediated, self-perpetuating loop.
doi:10.1128/MCB.00839-13
PMCID: PMC3911282  PMID: 24190966
22.  Transcriptome-Wide RNA Interaction Profiling Reveals Physical and Functional Targets of hnRNP L in Human T Cells 
Molecular and Cellular Biology  2014;34(1):71-83.
The RNA processing factor hnRNP L is required for T cell development and function. However, the spectrum of direct targets of hnRNP L activity in T cells has yet to be defined. In this study, we used cross-linking and immunoprecipitation followed by high-throughput sequencing (CLIP-seq) to identify the RNA binding sites of hnRNP L within the transcriptomes of human CD4+ and cultured Jurkat T cells. We find that hnRNP L binds preferentially to transcripts encoding proteins involved in RNA processing and in Wnt and T cell receptor (TCR) signaling. This binding is largely conserved across both quiescent and activated T cells, in agreement with the critical role of hnRNP L throughout T cell biology. Importantly, based on the binding profile of hnRNP L, we validate numerous instances of hnRNP L-dependent alternative splicing of genes critical to T cell function. We further show that alternative exons with weak 5′ splice site sequences specifically show a strong correlation between hnRNP L binding and hnRNP L-dependent splicing regulation. Together, these data provide the first transcriptome-wide analysis of the RNA targets of hnRNP L in lymphoid cells and add to the functional understanding of hnRNP L in human biology.
doi:10.1128/MCB.00740-13
PMCID: PMC3911283  PMID: 24164894
23.  Hypoxia-Inducible Factor 1 Regulation through Cross Talk between mTOR and MT1-MMP 
Molecular and Cellular Biology  2014;34(1):30-42.
Hypoxia-inducible factor 1 (HIF-1) plays a key role in the cellular adaptation to hypoxia. Although HIF-1 is usually strongly suppressed by posttranslational mechanisms during normoxia, HIF-1 is active and enhances tumorigenicity in malignant tumor cells that express the membrane protease MT1-MMP. The cytoplasmic tail of MT1-MMP, which can bind a HIF-1 suppressor protein called factor inhibiting HIF-1 (FIH-1), promotes inhibition of FIH-1 by Mint3 during normoxia. To explore possible links between HIF-1 activation by MT1-MMP/Mint3 and tumor growth signals, we surveyed a panel of 252 signaling inhibitors. The mTOR inhibitor rapamycin was identified as a possible modulator, and it inhibited the mTOR-dependent phosphorylation of Mint3 that is required for FIH-1 inhibition. A mutant Mint3 protein that cannot be phosphorylated exhibited a reduced ability to inhibit FIH-1 and promoted tumor formation in mice. These data suggest a novel molecular link between the important hub proteins MT1-MMP and mTOR that contributes to tumor malignancy.
doi:10.1128/MCB.01169-13
PMCID: PMC3911284  PMID: 24164895
24.  Editorial Board 
doi:10.1128/MCB.masthead.34-2
PMCID: PMC3911285
25.  Identification of a Novel Protein Interaction Motif in the Regulatory Subunit of Casein Kinase 2 
Molecular and Cellular Biology  2014;34(2):246-258.
Casein kinase 2 (CK2) regulates multiple cellular processes and can promote oncogenesis. Interactions with the CK2β regulatory subunit of the enzyme target its catalytic subunit (CK2α or CK2α′) to specific substrates; however, little is known about the mechanisms by which these interactions occur. We previously showed that by binding CK2β, the Epstein-Barr virus (EBV) EBNA1 protein recruits CK2 to promyelocytic leukemia (PML) nuclear bodies, where increased CK2-mediated phosphorylation of PML proteins triggers their degradation. Here we have identified a KSSR motif near the dimerization interface of CK2β as forming part of a protein interaction pocket that mediates interaction with EBNA1. We show that the EBNA1-CK2β interaction is primed by phosphorylation of EBNA1 on S393 (within a polyserine region). This phosphoserine is critical for EBNA1-induced PML degradation but does not affect EBNA1 functions in EBV replication or segregation. Using comparative proteomics of wild-type (WT) and KSSR mutant CK2β, we identified an uncharacterized cellular protein, C18orf25/ARKL1, that also binds CK2β through the KSSR motif and show that this involves a polyserine sequence resembling the CK2β binding sequence in EBNA1. Therefore, we have identified a new mechanism of CK2 interaction used by viral and cellular proteins.
doi:10.1128/MCB.00968-13
PMCID: PMC3911286  PMID: 24216761

Results 1-25 (21594)