PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (29836)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
more »
6.  Maternal Infection with Schistosoma japonicum Induces a Profibrotic Response in Neonates 
Infection and Immunity  2014;82(1):350-355.
The global burden of schistosomiasis is significant, with fibrosis a major associated morbidity and the primary cause of mortality. We have previously shown that schistosomiasis during pregnancy upregulates proinflammatory cytokines in the cord blood. In this study, we extend these findings to include a large panel of fibrosis-associated markers. We developed a multiplex bead-based assay to measure the levels of 35 proteins associated with fibrosis. Cord blood from 109 neonates born to mothers residing in an area of Schistosoma japonicum endemicity was assessed for these molecules. Ten mediators were elevated in the cord blood from schistosome-infected pregnancies, including insulin-like growth factor 1 (IGF-1), tumor growth factor β1 (TGF-β1), connective tissue growth factor (CTGF), procollagen I carboxy-terminal propeptide (PICP), amino-telopeptide of type 1 collagen (ICTP), collagen VI, desmosine, matrix metalloproteinase 2 (MMP-2), tissue inhibitor of metalloproteinases 1 (TIMP-1), and TIMP-4. Many of these were also positively correlated with preterm birth (PICP, ICTP, MMP-2, TGF-β1, desmosine, CTGF, TIMP-1). In addition, birth weight was 168 g lower for infants with detectable levels of CTGF than for those with CTGF levels below the level of detection. Maternal schistosomiasis results in upregulation of fibrosis-associated proteins in the cord blood of the neonate, a subset of which are also associated with adverse birth outcomes. As the first report of fibrosis-associated molecules altered in the newborn of infected mothers, this study has broad implications for the health of the fetus, stretching from gestation to adulthood.
doi:10.1128/IAI.01060-13
PMCID: PMC3911825  PMID: 24166958
7.  Streptococcus pyogenes Arginine and Citrulline Catabolism Promotes Infection and Modulates Innate Immunity 
Infection and Immunity  2014;82(1):233-242.
A bacterium's ability to acquire nutrients from its host during infection is an essential component of pathogenesis. For the Gram-positive pathogen Streptococcus pyogenes, catabolism of the amino acid arginine via the arginine deiminase (ADI) pathway supplements energy production and provides protection against acid stress in vitro. Its expression is enhanced in murine models of infection, suggesting an important role in vivo. To gain insight into the function of the ADI pathway in pathogenesis, the virulence of mutants defective in each of its enzymes was examined. Mutants unable to use arginine (ΔArcA) or citrulline (ΔArcB) were attenuated for carriage in a murine model of asymptomatic mucosal colonization. However, in a murine model of inflammatory infection of cutaneous tissue, the ΔArcA mutant was attenuated but the ΔArcB mutant was hyperattenuated, revealing an unexpected tissue-specific role for citrulline metabolism in pathogenesis. When mice defective for the arginine-dependent production of nitric oxide (iNOS−/−) were infected with the ΔArcA mutant, cutaneous virulence was rescued, demonstrating that the ability of S. pyogenes to utilize arginine was dispensable in the absence of nitric oxide-mediated innate immunity. This work demonstrates the importance of arginine and citrulline catabolism and suggests a novel mechanism of virulence by which S. pyogenes uses its metabolism to modulate innate immunity through depletion of an essential host nutrient.
doi:10.1128/IAI.00916-13
PMCID: PMC3911826  PMID: 24144727
8.  Effect of Mature Blood-Stage Plasmodium Parasite Sequestration on Pathogen Biomass in Mathematical and In Vivo Models of Malaria 
Infection and Immunity  2014;82(1):212-220.
Parasite biomass and microvasculature obstruction are strongly associated with disease severity and death in Plasmodium falciparum-infected humans. This is related to sequestration of mature, blood-stage parasites (schizonts) in peripheral tissue. The prevailing view is that schizont sequestration leads to an increase in pathogen biomass, yet direct experimental data to support this are lacking. Here, we first studied parasite population dynamics in inbred wild-type (WT) mice infected with the rodent species of malaria, Plasmodium berghei ANKA. As is commonly reported, these mice became moribund due to large numbers of parasites in multiple tissues. We then studied infection dynamics in a genetically targeted line of mice, which displayed minimal tissue accumulation of parasites. We constructed a mathematical model of parasite biomass dynamics, incorporating schizont-specific host clearance, both with and without schizont sequestration. Combined use of mathematical and in vivo modeling indicated, first, that the slowing of parasite growth in the genetically targeted mice can be attributed to specific clearance of schizonts from the circulation and, second, that persistent parasite growth in WT mice can be explained solely as a result of schizont sequestration. Our work provides evidence that schizont sequestration could be a major biological process driving rapid, early increases in parasite biomass during blood-stage Plasmodium infection.
doi:10.1128/IAI.00705-13
PMCID: PMC3911827  PMID: 24144725
9.  Yersinia enterocolitica Inhibits Salmonella enterica Serovar Typhimurium and Listeria monocytogenes Cellular Uptake 
Infection and Immunity  2014;82(1):174-183.
Yersinia enterocolitica biovar 1B employs two type three secretion systems (T3SS), Ysa and Ysc, which inject effector proteins into macrophages to prevent phagocytosis. Conversely, Salmonella enterica serovar Typhimurium uses a T3SS encoded by Salmonella pathogenicity island 1 (SPI1) to actively invade cells that are normally nonphagocytic and a second T3SS encoded by SPI2 to survive within macrophages. Given the distinctly different outcomes that occur with regard to host cell uptake of S. Typhimurium and Y. enterocolitica, we investigated how each pathogen influences the internalization outcome of the other. Y. enterocolitica reduces S. Typhimurium invasion of HeLa and Caco-2 cells to a level similar to that observed using an S. Typhimurium SPI1 mutant alone. However, Y. enterocolitica had no effect on S. Typhimurium uptake by J774.1 or RAW264.7 macrophage-like cells. Y. enterocolitica was also able to inhibit the invasion of epithelial and macrophage-like cells by Listeria monocytogenes. Y. enterocolitica mutants lacking either the Ysa or Ysc T3SS were partially defective, while double mutants were completely defective, in blocking S. Typhimurium uptake by epithelial cells. S. Typhimurium encodes a LuxR homolog, SdiA, which detects N-acylhomoserine lactones (AHLs) produced by Y. enterocolitica and upregulates the expression of an invasin (Rck) and a putative T3SS effector (SrgE). Two different methods of constitutively activating the S. Typhimurium SdiA regulon failed to reverse the uptake blockade imposed by Y. enterocolitica.
doi:10.1128/IAI.00984-13
PMCID: PMC3911828  PMID: 24126528
10.  Role of Connexin 43 in Helicobacter pylori VacA-Induced Cell Death 
Infection and Immunity  2014;82(1):423-432.
Helicobacter pylori colonizes the human stomach and confers an increased risk for the development of peptic ulceration, noncardia gastric adenocarcinoma, and gastric lymphoma. A secreted H. pylori toxin, VacA, can cause multiple alterations in gastric epithelial cells, including cell death. In this study, we sought to identify host cell factors that are required for VacA-induced cell death. To do this, we analyzed gene trap and short hairpin RNA (shRNA) libraries in AZ-521 human gastric epithelial cells and selected for VacA-resistant clones. Among the VacA-resistant clones, we identified multiple gene trap library clones and an shRNA library clone with disrupted expression of connexin 43 (Cx43) (also known as gap junction protein alpha 1 [GJA1]). Further experiments with Cx43-specific shRNAs confirmed that a reduction in Cx43 expression results in resistance to VacA-induced cell death. Immunofluorescence microscopy experiments indicated that VacA did not colocalize with Cx43. We detected production of the Cx43 protein in AZ-521 cells but not in AGS, HeLa, or RK-13 cells, and correspondingly, AZ-521 cells were the most susceptible to VacA-induced cell death. When Cx43 was expressed in HeLa cells, the cells became more susceptible to VacA. These results indicate that Cx43 is a host cell constituent that contributes to VacA-induced cell death and that variation among cell types in susceptibility to VacA-induced cell death is attributable at least in part to cell type-specific differences in Cx43 production.
doi:10.1128/IAI.00827-13
PMCID: PMC3911829  PMID: 24191302
11.  Mycobacterium avium Biofilm Attenuates Mononuclear Phagocyte Function by Triggering Hyperstimulation and Apoptosis during Early Infection 
Infection and Immunity  2014;82(1):405-412.
Mycobacterium avium subsp. hominissuis is an opportunistic human pathogen that has been shown to form biofilm in vitro and in vivo. Biofilm formation in vivo appears to be associated with infections in the respiratory tract of the host. The reasoning behind how M. avium subsp. hominissuis biofilm is allowed to establish and persist without being cleared by the innate immune system is currently unknown. To identify the mechanism responsible for this, we developed an in vitro model using THP-1 human mononuclear phagocytes cocultured with established M. avium subsp. hominissuis biofilm and surveyed various aspects of the interaction, including phagocyte stimulation and response, bacterial killing, and apoptosis. M. avium subsp. hominissuis biofilm triggered robust tumor necrosis factor alpha (TNF-α) release from THP-1 cells as well as superoxide and nitric oxide production. Surprisingly, the hyperstimulated phagocytes did not effectively eliminate the cells of the biofilm, even when prestimulated with gamma interferon (IFN-γ) or TNF-α or cocultured with natural killer cells (which have been shown to induce anti-M. avium subsp. hominissuis activity when added to THP-1 cells infected with planktonic M. avium subsp. hominissuis). Time-lapse microscopy and the TUNEL (terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling) assay determined that contact with the M. avium subsp. hominissuis biofilm led to early, widespread onset of apoptosis, which is not seen until much later in planktonic M. avium subsp. hominissuis infection. Blocking TNF-α or TNF-R1 during interaction with the biofilm significantly reduced THP-1 apoptosis but did not lead to elimination of M. avium subsp. hominissuis. Our data collectively indicate that M. avium subsp. hominissuis biofilm induces TNF-α-driven hyperstimulation and apoptosis of surveilling phagocytes, which prevents clearance of the biofilm by cells of the innate immune system and allows the biofilm-associated infection to persist.
doi:10.1128/IAI.00820-13
PMCID: PMC3911830  PMID: 24191301
12.  Cross-Reactive Immune Responses as Primary Drivers of Malaria Chronicity 
Infection and Immunity  2014;82(1):140-151.
The within-host dynamics of an infection with the malaria parasite Plasmodium falciparum are the result of a complex interplay between the host immune system and parasite. Continual variation of the P. falciparum erythrocyte membrane protein (PfEMP1) antigens displayed on the surface of infected red blood cells enables the parasite to evade the immune system and prolong infection. Despite the importance of antigenic variation in generating the dynamics of infection, our understanding of the mechanisms by which antigenic variation generates long-term chronic infections is still limited. We developed a model to examine the role of cross-reactivity in generating infection dynamics that are comparable to those of experimental infections. The hybrid computational model we developed is attuned to the biology of malaria by mixing discrete replication events, which mimics the synchrony of parasite replication and invasion, with continuous interaction with the immune system. Using simulations, we evaluated the dynamics of a single malaria infection over time. We then examined three major mechanisms by which the dynamics of a malaria infection can be structured: cross-reactivity of the immune response to PfEMP1, differences in parasite clearance rates, and heterogeneity in the rate at which antigens switch. The results of our simulations demonstrate that cross-reactive immune responses play a primary role in generating the dynamics observed in experimentally untreated infections and in lengthening the period of infection. Importantly, we also find that it is the primary response to the initially expressed PfEMP1, or small subset thereof, that structures the cascading cross-immune dynamics and allows for elongation of the infection.
doi:10.1128/IAI.00958-13
PMCID: PMC3911831  PMID: 24126530
13.  Erythropoietin Protects against Murine Cerebral Malaria through Actions on Host Cellular Immunity 
Infection and Immunity  2014;82(1):165-173.
Cerebral malaria (CM) is associated with excessive host proinflammatory responses and endothelial activation. The hematopoietic hormone erythropoietin (EPO) possesses neuroprotective functions in animal models of ischemic-hypoxic, traumatic, and inflammatory injuries. In the Plasmodium berghei ANKA model of experimental CM (ECM), recombinant human EPO (rhEPO) has shown evident protection against ECM. To elucidate the mechanism of EPO in this ECM model, we investigated the effect of rhEPO on host cellular immune responses. We demonstrated that improved survival of mice with ECM after rhEPO treatment was associated with reduced endothelial activation and improved integrity of the blood-brain barrier. Our results revealed that rhEPO downregulated the inflammatory responses by directly inhibiting the levels and functions of splenic dendritic cells. Conversely, rhEPO treatment led to significant expansion of regulatory T cells and increased expression of the receptor cytotoxic T lymphocyte antigen 4 (CTLA-4). The data presented here provide evidence of the direct effect of rhEPO on host cellular immunity during ECM.
doi:10.1128/IAI.00929-13
PMCID: PMC3911832  PMID: 24126529
14.  Dormant Intracellular Salmonella enterica Serovar Typhimurium Discriminates among Salmonella Pathogenicity Island 2 Effectors To Persist inside Fibroblasts 
Infection and Immunity  2014;82(1):221-232.
Salmonella enterica uses effector proteins delivered by type III secretion systems (TTSS) to colonize eukaryotic cells. Recent in vivo studies have shown that intracellular bacteria activate the TTSS encoded by Salmonella pathogenicity island-2 (SPI-2) to restrain growth inside phagocytes. Growth attenuation is also observed in vivo in bacteria colonizing nonphagocytic stromal cells of the intestinal lamina propria and in cultured fibroblasts. SPI-2 is required for survival of nongrowing bacteria persisting inside fibroblasts, but its induction mode and the effectors involved remain unknown. Here, we show that nongrowing dormant intracellular bacteria use the two-component system OmpR-EnvZ to induce SPI-2 expression and the PhoP-PhoQ system to regulate the time at which induction takes place, 2 h postentry. Dormant bacteria were shown to discriminate the usage of SPI-2 effectors. Among the effectors tested, SseF, SseG, and SseJ were required for survival, while others, such as SifA and SifB, were not. SifA and SifB dispensability correlated with the inability of intracellular bacteria to secrete these effectors even when overexpressed. Conversely, SseJ overproduction resulted in augmented secretion and exacerbated bacterial growth. Dormant bacteria produced other effectors, such as PipB and PipB2, that, unlike what was reported for epithelial cells, did not to traffic outside the phagosomal compartment. Therefore, permissiveness for secreting only a subset of SPI-2 effectors may be instrumental for dormancy. We propose that the S. enterica serovar Typhimurium nonproliferative intracellular lifestyle is sustained by selection of SPI-2 effectors that are produced in tightly defined amounts and delivered to phagosome-confined locations.
doi:10.1128/IAI.01304-13
PMCID: PMC3911833  PMID: 24144726
15.  Secondary Lymphoid Organ Homing Phenotype of Human Myeloid Dendritic Cells Disrupted by an Intracellular Oral Pathogen 
Infection and Immunity  2014;82(1):101-111.
Several intracellular pathogens, including a key etiological agent of chronic periodontitis, Porphyromonas gingivalis, infect blood myeloid dendritic cells (mDCs). This infection results in pathogen dissemination to distant inflammatory sites (i.e., pathogen trafficking). The alteration in chemokine-chemokine receptor expression that contributes to this pathogen trafficking function, particularly toward sites of neovascularization in humans, is unclear. To investigate this, we utilized human monocyte-derived DCs (MoDCs) and primary endothelial cells in vitro, combined with ex vivo-isolated blood mDCs and serum from chronic periodontitis subjects and healthy controls. Our results, using conditional fimbria mutants of P. gingivalis, show that P. gingivalis infection of MoDCs induces an angiogenic migratory profile. This profile is enhanced by expression of DC-SIGN on MoDCs and minor mfa-1 fimbriae on P. gingivalis and is evidenced by robust upregulation of CXCR4, but not secondary lymphoid organ (SLO)-homing CCR7. This disruption of SLO-homing capacity in response to respective chemokines closely matches surface expression of CXCR4 and CCR7 and is consistent with directed MoDC migration through an endothelial monolayer. Ex vivo-isolated mDCs from the blood of chronic periodontitis subjects, but not healthy controls, expressed a similar migratory profile; moreover, sera from chronic periodontitis subjects expressed elevated levels of CXCL12. Overall, we conclude that P. gingivalis actively “commandeers” DCs by reprogramming the chemokine receptor profile, thus disrupting SLO homing, while driving migration toward inflammatory vascular sites.
doi:10.1128/IAI.01157-13
PMCID: PMC3911834  PMID: 24126519
16.  Brucella melitensis T Cell Epitope Recognition in Humans with Brucellosis in Peru 
Infection and Immunity  2014;82(1):124-131.
Brucella melitensis, one of the causative agents of human brucellosis, causes acute, chronic, and relapsing infection. While T cell immunity in brucellosis has been extensively studied in mice, no recognized human T cell epitopes that might provide new approaches to classifying and prognosticating B. melitensis infection have ever been delineated. Twenty-seven pools of 500 major histocompatibility complex class II (MHC-II) restricted peptides were created by computational prediction of promiscuous MHC-II CD4+ T cell derived from the top 50 proteins recognized by IgG in human sera on a genome level B. melitensis protein microarray. Gamma interferon (IFN-γ) and interleukin-5 (IL-5) enzyme-linked immunospot (ELISPOT) analyses were used to quantify and compare Th1 and Th2 responses of leukapheresis-obtained peripheral blood mononuclear cells from Peruvian subjects cured after acute infection (n = 9) and from patients who relapsed (n = 5). Four peptide epitopes derived from 3 B. melitensis proteins (BMEI 1330, a DegP/HtrA protease; BMEII 0029, type IV secretion system component VirB5; and BMEII 0691, a predicted periplasmic binding protein of a peptide transport system) were found repeatedly to produce significant IFN-γ ELISPOT responses in both acute-infection and relapsing patients; none of the peptides distinguished the patient groups. IL-5 responses against the panel of peptides were insignificant. These experiments are the first to systematically identify B. melitensis MHC-II-restricted CD4+ T cell epitopes recognized by the human immune response, with the potential for new approaches to brucellosis diagnostics and understanding the immunopathogenesis related to this intracellular pathogen.
doi:10.1128/IAI.00796-13
PMCID: PMC3911835  PMID: 24126518
17.  MBL2 Variations and Malaria Susceptibility in Indian Populations 
Infection and Immunity  2014;82(1):52-61.
Human mannose-binding lectin (MBL) encoded by the MBL2 gene is a pattern recognition protein and has been associated with many infectious diseases, including malaria. We sought to investigate the contribution of functional MBL2 gene variations to Plasmodium falciparum malaria in well-defined cases and in matched controls. We resequenced the 8.7 kb of the entire MBL2 gene in 434 individuals clinically classified with malaria from regions of India where malaria is endemic. The study cohort included 176 patients with severe malaria, 101 patients with mild malaria, and 157 ethnically matched asymptomatic individuals. In addition, 830 individuals from 32 socially, linguistically, and geographically diverse endogamous populations of India were investigated for the distribution of functional MBL2 variants. The MBL2 −221C (X) allelic variant is associated with increased risk of malaria (mild malaria odds ratio [OR] = 1.9, corrected P value [PCorr] = 0.0036; severe malaria OR = 1.6, PCorr = 0.02). The exon1 variants MBL2*B (severe malaria OR = 2.1, PCorr = 0.036; mild versus severe malaria OR = 2.5, PCorr = 0.039) and MBL2*C (mild versus severe malaria OR = 5.4, PCorr = 0.045) increased the odds of having malaria. The exon1 MBL2*D/*B/*C variant increased the risk for severe malaria (OR = 3.4, PCorr = 0.000045). The frequencies of low MBL haplotypes were significantly higher in severe malaria (14.2%) compared to mild malaria (7.9%) and asymptomatic (3.8%). The MBL2*LYPA haplotypes confer protection, whereas MBL2*LXPA increases the malaria risk. Our findings in Indian populations demonstrate that MBL2 functional variants are strongly associated with malaria and infection severity.
doi:10.1128/IAI.01041-13
PMCID: PMC3911836  PMID: 24126531
18.  Role of Leptin-Mediated Colonic Inflammation in Defense against Clostridium difficile Colitis 
Infection and Immunity  2014;82(1):341-349.
The role of leptin in the mucosal immune response to Clostridium difficile colitis, a leading cause of nosocomial infection, was studied in humans and in a murine model. Previously, a mutation in the receptor for leptin (LEPR) was shown to be associated with susceptibility to infectious colitis and liver abscess due to Entamoeba histolytica as well as to bacterial peritonitis. Here we discovered that European Americans homozygous for the same LEPR Q223R mutation (rs1137101), known to result in decreased STAT3 signaling, were at increased risk of C. difficile infection (odds ratio, 3.03; P = 0.015). The mechanism of increased susceptibility was studied in a murine model. Mice lacking a functional leptin receptor (db/db) had decreased clearance of C. difficile from the gut lumen and diminished inflammation. Mutation of tyrosine 1138 in the intracellular domain of LepRb that mediates signaling through the STAT3/SOCS3 pathway also resulted in decreased mucosal chemokine and cell recruitment. Collectively, these data support a protective mucosal immune function for leptin in C. difficile colitis partially mediated by a leptin-STAT3 inflammatory pathway that is defective in the LEPR Q223R mutation. Identification of the role of leptin in protection from C. difficile offers the potential for host-directed therapy and demonstrates a connection between metabolism and immunity.
doi:10.1128/IAI.00972-13
PMCID: PMC3911837  PMID: 24166957
19.  Importance of Bacillithiol in the Oxidative Stress Response of Staphylococcus aureus 
Infection and Immunity  2014;82(1):316-332.
In Staphylococcus aureus, the low-molecular-weight thiol called bacillithiol (BSH), together with cognate S-transferases, is believed to be the counterpart to the glutathione system of other organisms. To explore the physiological role of BSH in S. aureus, we constructed mutants with the deletion of bshA (sa1291), which encodes the glycosyltransferase that catalyzes the first step of BSH biosynthesis, and fosB (sa2124), which encodes a BSH-S-transferase that confers fosfomycin resistance, in several S. aureus strains, including clinical isolates. Mutation of fosB or bshA caused a 16- to 60-fold reduction in fosfomycin resistance in these S. aureus strains. High-pressure liquid chromatography analysis, which quantified thiol extracts, revealed some variability in the amounts of BSH present across S. aureus strains. Deletion of fosB led to a decrease in BSH levels. The fosB and bshA mutants of strain COL and a USA300 isolate, upon further characterization, were found to be sensitive to H2O2 and exhibited decreased NADPH levels compared with those in the isogenic parents. Microarray analyses of COL and the isogenic bshA mutant revealed increased expression of genes involved in staphyloxanthin synthesis in the bshA mutant relative to that in COL under thiol stress conditions. However, the bshA mutant of COL demonstrated decreased survival compared to that of the parent in human whole-blood survival assays; likewise, the naturally BSH-deficient strain SH1000 survived less well than its BSH-producing isogenic counterpart. Thus, the survival of S. aureus under oxidative stress is facilitated by BSH, possibly via a FosB-mediated mechanism, independently of its capability to produce staphyloxanthin.
doi:10.1128/IAI.01074-13
PMCID: PMC3911838  PMID: 24166956
21.  Insulin Treatment Modulates the Host Immune System To Enhance Pseudomonas aeruginosa Wound Biofilms 
Infection and Immunity  2014;82(1):92-100.
Diabetes affects 25.8 million people in the United States, or 8.3% of the population, and these numbers are even higher in developing countries. Diabetic patients are more susceptible to the development of chronic wounds with debilitating bacterial infections than nondiabetics. Previously, we compared the ability of the opportunistic pathogen Pseudomonas aeruginosa to cause biofilm-associated infections in chronic wounds of diabetic and nondiabetic mice (C. Watters, K. DeLeon, U. Trivedi, J. A. Griswold, M. Lyte, K. J. Hampel, M. J. Wargo, and K. P. Rumbaugh, Med. Microbiol. Immunol. 202:131–141, 2013). Unexpectedly, we observed that insulin-treated diabetic mice had significantly more biofilm in their wounds, which correlated with higher antibiotic tolerance. Here, we investigated whether insulin treatment modulates the diabetic immune system to favor P. aeruginosa biofilm formation. Utilizing a murine chronic wound model, we found that DNA protected P. aeruginosa in the wounds of insulin-treated diabetic mice from antibiotic treatment. We also observed increased numbers of neutrophils, reduced numbers of macrophages, and increased cell death in the wounds of diabetic mice on insulin therapy. Taken together, these data suggest that high levels of lysed neutrophils in the wounds of diabetic mice on insulin, combined with fewer macrophages to remove the cellular debris, contribute to increased DNA levels, which enhance P. aeruginosa biofilms.
doi:10.1128/IAI.00651-13
PMCID: PMC3911840  PMID: 24126517
22.  New Frontiers in Type III Secretion Biology: the Chlamydia Perspective 
Infection and Immunity  2014;82(1):2-9.
Members of the order Chlamydiales comprise a group of exquisitely evolved parasites of eukaryotic hosts that extends from single-celled amoeba to mammals. The most notable are human pathogens and include the agent of oculogenital disease Chlamydia trachomatis, the respiratory pathogen C. pneumoniae, and the zoonotic agent C. psittaci. All of these species are obligate intracellular bacteria that develop within parasitophorous vesicles termed inclusions. This demanding lifestyle necessitates orchestrated entry into nonphagocytic cells, creation of a privileged intracellular niche, and subversion of potent host defenses. All chlamydial genomes contain the coding capacity for a nonflagellar type III secretion system, and this mechanism has arisen as an essential contributor to chlamydial virulence. The emergence of tractable approaches to the genetic manipulation of chlamydiae raises the possibility of explosive progress in understanding this important contributor to chlamydial pathogenesis. This minireview considers challenges and recent advances that have revealed how chlamydiae have maintained conserved aspects of T3S while exploiting diversification to yield a system that exerts a fundamental role in the unique biology of Chlamydia species.
doi:10.1128/IAI.00917-13
PMCID: PMC3911841  PMID: 24126521
23.  Differentiation of Antigen-Specific T Cells with Limited Functional Capacity during Mycobacterium tuberculosis Infection 
Infection and Immunity  2014;82(1):132-139.
Despite the generation of Mycobacterium tuberculosis-specific T cell immune responses during the course of infection, only 5 to 10% of exposed individuals develop active disease, while others develop a latent infection. This phenomenon suggests defective M. tuberculosis-specific immunity, which necessitates more careful characterization of M. tuberculosis-specific T cell responses. Here, we longitudinally analyzed the phenotypes and functions of M. tuberculosis-specific T cells. In contrast to the functional exhaustion of T cells observed after chronic infection, M. tuberculosis-specific CD8+ T cells differentiated into either effector (CD127lo CD62Llo) or effector memory (CD127hi CD62Llo) cells, but not central memory cells (CD127hi CD62Lhi), with low programmed death 1 (PD-1) expression, even in the presence of high levels of bacteria. Additionally, M. tuberculosis-specific CD8+ and CD4+ T cells produced substantial levels of tumor necrosis factor alpha (TNF-α) and gamma interferon (IFN-γ), but not interleukin 2 (IL-2), upon in vitro restimulation. Among M. tuberculosis-specific CD8+ T cells, CD127hi effector memory cells displayed slower ongoing turnover but greater survival potential. In addition, these cells produced more IFN-γ and TNF-α and displayed lytic activity upon antigen stimulation. However, the effector function of M. tuberculosis-specific CD8+ CD127hi effector memory T cells was inferior to that of canonical CD8+ CD127hi memory T cells generated after acute lymphocytic choriomeningitis virus infection. Collectively, our data demonstrate that M. tuberculosis-specific T cells can differentiate into memory T cells during the course of M. tuberculosis infection independent of the bacterial burden but with limited functionality. These results provide a framework for further understanding the mechanisms of M. tuberculosis infection that can be used to develop more effective vaccines.
doi:10.1128/IAI.00480-13
PMCID: PMC3911842  PMID: 24126533
24.  Response of Extraintestinal Pathogenic Escherichia coli to Human Serum Reveals a Protective Role for Rcs-Regulated Exopolysaccharide Colanic Acid 
Infection and Immunity  2014;82(1):298-305.
Extraintestinal Escherichia coli (ExPEC) organisms are the leading cause of Gram-negative bacterial bloodstream infections. These bacteria adapt to survival in the bloodstream through expression of factors involved in scavenging of nutrients and resisting the killing activity of serum. In this study, the transcriptional response of a prototypic ExPEC strain (CFT073) to human serum was investigated. Resistance of CFT073 to the bactericidal properties of serum involved increased expression of envelope stress regulators, including CpxR, σE, and RcsB. Many of the upregulated genes induced by active serum were regulated by the Rcs two-component system. This system is triggered by envelope stress such as changes to cell wall integrity. RcsB-mediated serum resistance was conferred through induction of the exopolysaccharide colanic acid. Production of this exopolysaccharide may be protective while cell wall damage caused by serum components is repaired.
doi:10.1128/IAI.00800-13
PMCID: PMC3911843  PMID: 24166954
25.  Serogroup-Specific Interaction of Neisseria meningitidis Capsular Polysaccharide with Host Cell Microtubules and Effects on Tubulin Polymerization 
Infection and Immunity  2014;82(1):265-274.
We have previously shown that during late stages of the infectious process, serogroup B meningococci (MenB) are able to escape the phagosome of in vitro-infected human epithelial cells. They then multiply in the cytosolic environment and spread intracellularly and to surrounding cells by exploiting the microtubule cytoskeleton, as suggested by results of infections in the presence of microtubule inhibitors and evidence of nanotubes connecting neighboring cells. In this study, by using microtubule binding assays with purified microtubule asters and bundles and microtubule bundles synthesized in vitro, we demonstrate that the MenB capsule directly mediates the interaction between bacteria and microtubules. The direct interaction between the microtubules and the MenB capsular polysaccharide was confirmed by coimmunoprecipitation experiments. Unexpectedly, serogroup C meningococci (MenC), which have a capsular polysaccharide that differs from that of MenB only by its anomeric linkage, α(2→9) instead of α(2→8), were not able to interact with the microtubules, and the lack of interaction was not due to capsular polysaccharide O-acetylation that takes place in most MenC strains but not in MenB strains. Moreover, we demonstrate that the MenB capsular polysaccharide inhibits tubulin polymerization in vitro. Thus, at variance with MenC, MenB may interfere with microtubule dynamics during cell infection.
doi:10.1128/IAI.00501-13
PMCID: PMC3911844  PMID: 24166951

Results 1-25 (29836)