PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-6 (6)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Susceptibility of Gardnerella vaginalis Biofilms to Natural Antimicrobials Subtilosin, ε-Poly-L-Lysine, and Lauramide Arginine Ethyl Ester 
Bacterial vaginosis is a common vaginal infection associated with numerous gynecological and obstetric complications. This condition is characterized by the presence of thick adherent vaginal biofilms, composed mainly of Gardnerella vaginalis. This organism is thought to be the primary aetiological cause of the infection paving the way for various opportunists to colonize the niche. Previously, we reported that the natural antimicrobials subtilosin, ε-poly-L-lysine, and lauramide arginine ethyl ester selectively inhibit the growth of this pathogen. In this study, we used plate counts to evaluate the efficacy of these antimicrobials against established biofilms of G. vaginalis. Additionally, we validated and compared two rapid methods (ATP viability and resazurin assays) for the assessment of cell viability in the antimicrobial-treated G. vaginalis biofilms. Out of the tested antimicrobials, lauramide arginine ethyl ester had the strongest bactericidal effect, followed by subtilosin, with clindamycin and polylysine showing the weakest effect. In comparison to plate counts, ATP viability and resazurin assays considerably underestimated the bactericidal effect of some antimicrobials. Our results indicate that these assays should be validated for every new application.
doi:10.1155/2012/284762
PMCID: PMC3457663  PMID: 23024575
2.  Zinc Lactate and Sapindin Act Synergistically with Lactocin 160 Against Gardnerella vaginalis 
Lactocin 160 is a vaginal probiotic-derived bacteriocin shown to selectively inhibit the growth of Gardenerella vaginalis and some other pathogens commonly associated with bacterial vaginosis. The natural origin of this peptide, its safety, and selective antimicrobial properties make it a promising candidate for successful treatment and prophylaxis of bacterial vaginosis (BV). This study evaluated interactions between lactocin 160 and four other natural antimicrobials in the ability to inhibit G. vaginalis. We report that zinc lactate and soapnut extract act synergistically with lactocin 160 against this pathogen and therefore have a potential to be successfully used as the components of the multiple-hurdle antimicrobial formulation for the treatment of BV.
doi:10.1007/s12602-011-9068-5
PMCID: PMC3138622  PMID: 21779311
Bacteriocin; Natural antimicrobial; Antimicrobial synergy
3.  THE ETIOLOGY OF BACTERIAL VAGINOSIS 
Journal of applied microbiology  2011;110(5):1105-1128.
Bacterial vaginosis (BV) is the most common vaginal infection among women of childbearing age. This condition is notorious for causing severe complications related to the reproductive health of women. Five decades of intense research established many risk factors for acquisition of BV, however due to the complexity of BV and due to lack of a reliable animal model for this condition, its exact etiology remains elusive. In this manuscript we use a historical perspective to critically review the development of major theories on the etiology of BV, ultimately implicating BV-related pathogens, healthy vaginal microbiota, bacteriophages and the immune response of the host. None of these theories on their own can reliably explain the epidemiological data. Instead, BV is caused by a complex interaction of multiple factors, which include the numerous components of the vaginal microbial ecosystem and their human host. Many of these factors are yet to be characterized because a clear understanding of their relative contribution to the etiology of BV is pivotal to formulation of an effective treatment for and prophylaxis of this condition.
doi:10.1111/j.1365-2672.2011.04977.x
PMCID: PMC3072448  PMID: 21332897
bacterial vaginosis; etiology; Gardnerella vaginalis; causes; immune response; lactobacilli; Lactobacillus
4.  Lactocin 160, a Bacteriocin Produced by Vaginal Lactobacillus rhamnosus, Targets Cytoplasmic Membranes of the Vaginal Pathogen, Gardnerella vaginalis 
Bacterial vaginosis (BV) is a commonly occurring vaginal infection that is associated with a variety of serious risks related to the reproductive health of women. Conventional antibiotic treatment for this condition is frequently ineffective because the antibiotics tend to inhibit healthy vaginal microflora along with the pathogens. Lactocin 160, a bacteriocin produced by healthy vaginal lactobacilli, is a promising alternative to antibiotics; this compound specifically inhibits the BV-associated vaginal pathogens such as Gardnerella vaginalis and Prevotella bivia without affecting the healthy microflora. This study investigates the molecular mechanism of action for lactocin 160 and reveals that this compound targets the cytoplasmic membrane of G. vaginalis, causing the efflux of ATP molecules and dissipation of the proton motive force.
doi:10.1007/s12602-008-9003-6
PMCID: PMC2863056  PMID: 20445810
Probiotics; Lactocin 160; Bacterial vaginosis; Bacteriocin; Mode of action
5.  Commercial ampholytes used for isoelectric focusing may interfere with bioactivity based purification of antimicrobial peptides 
BioRad's Rotofor® system has been frequently used for the purification of proteins and smaller peptides such as bacteriocins. In this study, we report that some commercially available ampholytes used with the Rotofor® isoelectric focusing system possess antimicrobial activity, which may interfere with the purification of bacteriocins and bacteriocin-like substances.
doi:10.1016/j.mimet.2007.08.002
PMCID: PMC2040054  PMID: 17884211
Ampholytes; Rotofor; isoelectric focusing; bacteriocins

Results 1-6 (6)