Search tips
Search criteria

Results 1-25 (1207)

Clipboard (0)

Select a Filter Below

Year of Publication
more »
1.  Reward and motivation in pain and pain relief 
Nature neuroscience  2014;17(10):1304-1312.
Pain is fundamentally unpleasant, a feature that protects the organism by promoting motivation and learning. Relief of aversive states, including pain, is rewarding. The aversiveness of pain, as well as the reward from relief of pain, is encoded by brain reward/motivational mesocorticolimbic circuitry. In this Review, we describe current knowledge of the impact of acute and chronic pain on reward/motivation circuits gained from preclinical models and from human neuroimaging. We highlight emerging clinical evidence suggesting that anatomical and functional changes in these circuits contribute to the transition from acute to chronic pain. We propose that assessing activity in these conserved circuits can offer new outcome measures for preclinical evaluation of analgesic efficacy to improve translation and speed drug discovery. We further suggest that targeting reward/motivation circuits may provide a path for normalizing the consequences of chronic pain to the brain, surpassing symptomatic management to promote recovery from chronic pain.
PMCID: PMC4301417  PMID: 25254980
2.  Frequency-specific hippocampal-prefrontal interactions during associative learning 
Nature neuroscience  2015;18(4):576-581.
Much of our knowledge of the world depends on learning associations (e.g., face-name), for which the hippocampus (HPC) and prefrontal cortex (PFC) are critical. HPC-PFC interactions have rarely been studied in monkeys, whose cognitive/mnemonic abilities are akin to humans. Here, we show functional differences and frequency-specific interactions between HPC and PFC of monkeys learning object-pair associations, an animal model of human explicit memory. PFC spiking activity reflected learning in parallel with behavioral performance, while HPC neurons reflected feedback about whether trial-and-error guesses were correct or incorrect. Theta-band HPC-PFC synchrony was stronger after errors, was driven primarily by PFC to HPC directional influences, and decreased with learning. In contrast, alpha/beta-band synchrony was stronger after correct trials, was driven more by HPC, and increased with learning. Rapid object associative learning may occur in PFC, while HPC may guide neocortical plasticity by signaling success or failure via oscillatory synchrony in different frequency bands.
PMCID: PMC4444366  PMID: 25706471
3.  Identification of a cellular node for motor control pathways 
Nature neuroscience  2014;17(4):586-593.
The rich behavioral repertoire of animals is encoded in the CNS as a set of motorneuron activation patterns, also called ‘motor synergies’. However, the neurons that orchestrate these motor programs as well as their cellular properties and connectivity are poorly understood. Here we identify a population of molecularly defined motor synergy encoder (MSE) neurons in the mouse spinal cord that may represent a central node in neural pathways for voluntary and reflexive movement. This population receives direct inputs from the motor cortex and sensory pathways and, in turn, has monosynaptic outputs to spinal motorneurons. Optical stimulation of MSE neurons drove reliable patterns of activity in multiple motor groups, and we found that the evoked motor patterns varied on the basis of the rostrocaudal location of the stimulated MSE. We speculate that these neurons comprise a cellular network for encoding coordinated motor output programs.
PMCID: PMC4569558  PMID: 24609464
4.  CRESTing the ALS mountain 
Nature neuroscience  2013;16(7):774-775.
PMCID: PMC4565517  PMID: 23799466
5.  Microcircuits and their interactions in epilepsy: Is the focus out of focus? 
Nature neuroscience  2015;18(3):351-359.
Epileptic seizures represent dysfunctional neural networks dominated by excessive and/or hypersynchronous activity. Recent progress in the field has outlined two concepts regarding mechanisms of seizure generation or ictogenesis. First, all seizures, even those associated with what have historically been thought of as “primary generalized” epilepsies appear to originate within local microcircuits and then propagate from that initial ictogenic zone. Second, seizures propagate through cerebral networks and engage microcircuits in distal nodes—a process that can be weakened or even interrupted by suppressing activity in such nodes. Here, we describe various microcircuit motifs, with a special emphasis on one broadly implicated in several epilepsies - feed-forward inhibition. Further, we discuss how, in the dynamic network in which seizures propagate, focusing on circuit “choke points” remote from the initiation site might be as important as that of the initial dysfunction—the seizure “focus.”
PMCID: PMC4561622  PMID: 25710837
6.  Cocaine-evoked negative symptoms require AMPA receptor trafficking in the lateral habenula 
Nature neuroscience  2015;18(3):376-378.
Addictive substances mediate positive and negative states promoting persistent drug use. However, substrates for aversive effects of drugs remain elusive. We found that, in mouse lateral habenula (LHb) neurons targeting the rostromedial tegmental nucleus, cocaine enhanced glutamatergic transmission, reduced K+ currents and increased excitability. GluA1 trafficking in LHb was instrumental for these cocaine-evoked modifications and drug-driven aversive behaviors. Altogether, our results suggest that long-lasting adaptations in LHb shape negative symptoms after drug taking.
PMCID: PMC4357267  PMID: 25643299
Nature neuroscience  2015;18(3):360-366.
The epilepsies and related disorders of brain circuitry present significant challenges for using human cells to study disease mechanisms and develop new therapies. Some of these obstacles are being overcome with the use of induced pluripotent stem cell techniques to obtain patient-derived neural cells for in vitro studies and as a source of cell based treatments. The field is evolving rapidly with the addition of genome editing approaches and expanding protocols for generating different neural cell types and three-dimensional tissues, but the application to neurological disorders and particularly to the epilepsies is in its infancy. We discuss the progress made to date, the unique advantages and limitations of using patient-derived cells to study or treat epilepsy, and critical future directions for the field.
PMCID: PMC4483308  PMID: 25710838
8.  Attentional flexibility in the thalamus: now we're getting soMwhere 
Nature neuroscience  2015;18(1):2-4.
Loss of the receptor tyrosine kinase ErbB4 in somatostatin (SOM) inhibitory neurons of the thalamic reticular nucleus (TRN) enhances top-down cortical feedback, improving feature detection at the cost of reduced ability to switch attention. The study furthers our understanding of the circuit mechanisms underlying TRN function.
PMCID: PMC4556356  PMID: 25547472
9.  State of play in amyotrophic lateral sclerosis genetics 
Nature neuroscience  2013;17(1):17-23.
PMCID: PMC4544832  PMID: 24369373
10.  Genotype to phenotype relationships in autism spectrum disorders 
Nature neuroscience  2014;18(2):191-198.
Autism spectrum disorders (ASD) are characterized by both phenotypic and genetic heterogeneity. Our analysis of functional networks perturbed in ASD suggests that both truncating and non-truncating de novo mutations contribute to autism, although there is a strong bias against truncating mutations in early embryonic development. We find that functional mutations are preferentially observed in genes likely to be haploinsufficient. Multiple cell types and brain areas are affected, but the impact of ASD mutations appears to be strongest in the cortical neurons and the medium spiny neurons of the striatum, implicating corticostriatal brain circuits. In females, truncating ASD mutations on average impact genes with 50–100% higher brain expression levels compared to males. Our study also suggests that truncating de novo mutations play a smaller role in the etiology of high-functioning ASD cases. Overall, we find that stronger functional insults usually lead to more severe intellectual, social and behavioral ASD phenotypes.
PMCID: PMC4397214  PMID: 25531569
11.  Complementary adaptive processes contribute to the developmental plasticity of spatial hearing 
Nature neuroscience  2015;18(2):185-187.
Spatial hearing evolved independently in mammals and birds, and is thought to adapt to altered developmental input in different ways. We found, however, that ferrets possess multiple forms of plasticity that are expressed according to which spatial cues are available, suggesting that the basis for adaptation may be similar across species. Our results also provide insight into the way sound source location is represented by populations of cortical neurons.
PMCID: PMC4338598  PMID: 25581359
12.  Visual recognition memory, manifest as long-term habituation, requires synaptic plasticity in V1 
Nature neuroscience  2015;18(2):262-271.
Familiarity with stimuli that bring neither reward nor punishment, manifested through behavioural habituation, enables organisms to detect novelty and devote cognition to important elements of the environment. Here we describe in mice a form of long-term behavioural habituation to visual grating stimuli that is selective for stimulus orientation. Orientation-selective habituation (OSH) can be observed both in exploratory behaviour in an open arena, and in a stereotyped motor response to visual stimuli in head-restrained mice. We show that the latter behavioural response, termed a vidget, requires V1. Parallel electrophysiological recordings in V1 reveal that plasticity, in the form of stimulus-selective response potentiation (SRP), occurs in layer 4 of V1 as OSH develops. Local manipulations of V1 that prevent and reverse electrophysiological modifications likewise prevent and reverse memory demonstrated behaviourally. These findings suggest that a form of long-term visual recognition memory is stored via synaptic plasticity in primary sensory cortex.
PMCID: PMC4383092  PMID: 25599221
13.  Contribution of mGluR5 to hippocampal pathophysiology in a mouse model of human chromosome 16p11.2 microdeletion 
Nature neuroscience  2015;18(2):182-184.
Human chromosome 16p11.2 microdeletion is the most common gene copy number variation in autism, but the synaptic pathophysiology caused by this mutation is largely unknown. Here we show using a mouse with the same genetic deficiency that metabotropic glutamate receptor 5-(mGluR5-) dependent synaptic plasticity and protein synthesis is altered in the hippocampus, and that hippocampus-dependent memory is impaired. Remarkably, chronic treatment with a negative allosteric modulator of mGluR5 reverses the cognitive deficit.
PMCID: PMC4323380  PMID: 25581360
14.  NeuroGrid: recording action potentials from the surface of the brain 
Nature neuroscience  2014;18(2):310-315.
Recording from neural networks at the resolution of action potentials is critical for understanding how information is processed in the brain. Here, we address this challenge by developing an organic material-based, ultra-conformable, biocompatible and scalable neural interface array (the ‘NeuroGrid’) that can record both LFP and action potentials from superficial cortical neurons without penetrating the brain surface. Spikes with features of interneurons and pyramidal cells were simultaneously acquired by multiple neighboring electrodes of the NeuroGrid, allowing for isolation of putative single neurons in rats. Spiking activity demonstrated consistent phase modulation by ongoing brain oscillations and was stable in recordings exceeding one week. We also recorded LFP-modulated spiking activity intra-operatively in patients undergoing epilepsy surgery. The NeuroGrid constitutes an effective method for large-scale, stable recording of neuronal spikes in concert with local population synaptic activity, enhancing comprehension of neural processes across spatiotemporal scales and potentially facilitating diagnosis and therapy for brain disorders.
PMCID: PMC4308485  PMID: 25531570
15.  The development of cortical circuits for motion discrimination 
Nature neuroscience  2015;18(2):252-261.
Stimulus discrimination depends on the selectivity and variability of neural responses, as well as the size and correlation structure of the responsive population. For direction discrimination in visual cortex, only the selectivity of neurons has been well characterized across development. Here we show in ferrets that at eye opening, the cortical response to visual stimulation exhibits several immaturities, including: a high density of active neurons that display prominent wave-like activity, a high degree of variability, and strong noise correlations. Over the next three weeks, the population response becomes increasingly sparse, wave-like activity disappears, and variability and noise correlations are markedly reduced. Similar changes are observed in identified neuronal populations imaged repeatedly over days. Furthermore, experience with a moving stimulus is capable of driving a reduction in noise correlations over a matter of hours. These changes in variability and correlation contribute significantly to a marked improvement in direction discriminability over development.
PMCID: PMC4334116  PMID: 25599224
16.  Musical experience shapes human brainstem encoding of linguistic pitch patterns 
Nature neuroscience  2007;10(4):420-422.
Music and speech are very cognitively demanding auditory phenomena generally attributed to cortical rather than subcortical circuitry. We examined brainstem encoding of linguistic pitch and found that musicians show more robust and faithful encoding compared with nonmusicians. These results not only implicate a common subcortical manifestation for two presumed cortical functions, but also a possible reciprocity of corticofugal speech and music tuning, providing neurophysiological explanations for musicians’ higher language-learning ability.
PMCID: PMC4508274  PMID: 17351633
17.  Mind matters: Placebo enhances reward learning in Parkinson’s disease 
Nature neuroscience  2014;17(12):1793-1797.
Expectations have a powerful influence on how we experience the world. Neurobiological and computational models of learning suggest that dopamine is crucial for shaping expectations of reward and that expectations alone may influence dopamine levels. However, because expectations and reinforcers are typically manipulated together, the role of expectations per se has remained unclear. Here, we separated these two factors using a placebo dopaminergic manipulation in Parkinson’s patients. We combined a reward learning task with fMRI to test how expectations of dopamine release modulate learning-related activity in the brain. We found that the mere expectation of dopamine release enhances reward learning and modulates learning-related signals in the striatum and the ventromedial prefrontal cortex. These effects were selective to learning from reward: neither medication nor placebo had an effect on learning to avoid monetary loss. These findings suggest a neurobiological mechanism by which expectations shape learning and affect.
PMCID: PMC4503317  PMID: 25326691
18.  Metabolic regulator LKB1 plays a crucial role in Schwann cell-mediated axon maintenance 
Nature neuroscience  2014;17(10):1351-1361.
Schwann cells (SCs) promote axonal integrity independently of myelination by poorly understood mechanisms. Current models suggest that SC metabolism is critical for this support function and that SC metabolic deficits may lead to axonal demise. The LKB1-AMPK kinase pathway targets multiple downstream effectors including mTOR and is a key metabolic regulator implicated in metabolic diseases. We show through integrative molecular, structural, and behavioral characterization of SC-specific mutant mice that LKB1 activity is central to axon stability, whereas AMPK and mTOR in SCs are largely dispensable. The degeneration of axons in LKB1-mutants is most dramatic in unmyelinated small sensory fibers, whereas motor axons are relatively spared. LKB1 deletion in SCs leads to abnormalities in nerve energy and lipid homeostasis, and increased lactate release. The latter acts in a compensatory manner to support distressed axons. LKB1 signaling is essential for SC-mediated axon support, a function that may be dysregulated in diabetic neuropathy.
PMCID: PMC4494117  PMID: 25195104
19.  High-fidelity optical reporting of neuronal electrical activity with an ultrafast fluorescent voltage sensor 
Nature neuroscience  2014;17(6):884-889.
Accurate optical reporting of electrical activity in genetically defined neuronal populations is a long-standing goal in neuroscience. Here we describe Accelerated Sensor of Action Potentials 1 (ASAP1), a novel voltage sensor design in which a circularly permuted green fluorescent protein is inserted within an extracellular loop of a voltage-sensing domain, rendering fluorescence responsive to membrane potential. ASAP1 demonstrates on- and off- kinetics of 2.1 and 2.0 ms, reliably detects single action potentials and subthreshold potential changes, and tracks trains of action potential waveforms up to 200 Hz in single trials. With a favorable combination of brightness, dynamic range, and speed, ASAP1 enables continuous monitoring of membrane potential in neurons at KHz frame rates using standard epifluorescence microscopy.
PMCID: PMC4494739  PMID: 24755780
20.  Zinc alleviates pain through high-affinity binding to the NMDA receptor NR2A subunit 
Nature neuroscience  2011;14(8):1017-1022.
Zinc is abundant in the central nervous system and regulates pain, but the underlying mechanisms are unknown. In vitro studies have shown that extracellular zinc modulates a plethora of signaling membrane proteins, including NMDA receptors containing the NR2A subunit, which display exquisite zinc sensitivity. We created NR2A-H128S knock-in mice to investigate whether Zn2+–NR2A interaction influences pain control. In these mice, high-affinity (nanomolar) zinc inhibition of NMDA currents was lost in the hippocampus and spinal cord. Knock-in mice showed hypersensitivity to radiant heat and capsaicin, and developed enhanced allodynia in inflammatory and neuropathic pain models. Furthermore, zinc-induced analgesia was completely abolished under both acute and chronic pain conditions. Our data establish that zinc is an endogenous modulator of excitatory neurotransmission in vivo and identify a new mechanism in pain processing that relies on NR2A NMDA receptors. The study also potentially provides a molecular basis for the pain-relieving effects of dietary zinc supplementation.
PMCID: PMC4494785  PMID: 21725314
21.  ErbB4 regulation of a thalamic reticular nucleus circuit for sensory selection 
Nature neuroscience  2014;18(1):104-111.
Selective processing of behaviorally relevant sensory inputs against irrelevant ones is a fundamental cognitive function, impairments of which have been implicated in major psychiatric disorders. It is known that the thalamic reticular nucleus (TRN) gates sensory information en route to the cortex, however the underlying mechanisms remain unclear. Here we show in mice that deficiency of Erbb4 gene in somatostatin-expressing TRN neurons markedly altered behaviors dependent on sensory selection. Whereas performance in identifying targets from distractors was improved, the ability to switch attention between conflicting sensory cues was impaired. These behavioral changes were mediated by enhanced cortical drive onto TRN that promotes the TRN-mediated cortical feedback inhibition of thalamic neurons. Our results uncover a previously unknown role of ErbB4 in regulating cortico-TRN-thalamic circuit function. We propose that ErbB4 sets the sensitivity of TRN to cortical inputs at levels that can support sensory selection while allowing behavioral flexibility.
PMCID: PMC4281280  PMID: 25501036
Nature neuroscience  2014;18(1):97-103.
Images are processed in the primary visual cortex by neurons that encode different stimulus orientations and spatial phases. In primates and carnivores, neighboring cortical neurons share similar orientation preferences but spatial phases were thought to be randomly distributed. Here we reveal a columnar organization for spatial phase in cats that shares resemblances with the columnar organization for orientation. For both orientation and phase, the mean difference across vertically aligned neurons was less than 1/4 of a cycle. Cortical neurons showed three times more diversity in phase than orientation preference, however, the average phase of local neuronal populations was similar through the depth of layer 4. We conclude that columnar organization for visual space is not only defined by the spatial location of the stimulus but also by absolute phase. Taken together with previous studies, our results suggest that this phase-visuotopy is responsible for the emergence of orientation maps.
PMCID: PMC4281281  PMID: 25420070
23.  Developmental regulation of human cortex transcription and its clinical relevance at base resolution 
Nature neuroscience  2014;18(1):154-161.
Transcriptome analysis of human brain provides fundamental insight about development and disease, but largely relies on existing annotation. We sequenced transcriptomes of 72 prefrontal cortex samples across six life stages, and identified 50,650 differentially expression regions (DERs) associated with developmental and aging, agnostic of annotation. While many DERs annotated to non-exonic sequence (41.1%), most were similarly regulated in cytosolic mRNA extracted from independent samples. The DERs were developmentally conserved across 16 brain regions and within the developing mouse cortex, and were expressed in diverse cell and tissue types. The DERs were further enriched for active chromatin marks and clinical risk for neurodevelopmental disorders like schizophrenia. Lastly, we demonstrate quantitatively that these DERs associate with a changing neuronal phenotype related to differentiation and maturation. These data highlight conserved molecular signatures of transcriptional dynamics across brain development, some potential clinical relevance and the incomplete annotation of the human brain transcriptome.
PMCID: PMC4281298  PMID: 25501035
gene expression; brain development; postmortem human brain; RNA sequencing
24.  A novel role for visual perspective cues in the neural computation of depth 
Nature neuroscience  2014;18(1):129-137.
As we explore a scene, our eye movements add global patterns of motion to the retinal image, complicating visual motion produced by self-motion or moving objects. Conventionally, it has been assumed that extra-retinal signals, such as efference copy of smooth pursuit commands, are required to compensate for the visual consequences of eye rotations. We consider an alternative possibility: namely, that the visual system can infer eye rotations from global patterns of image motion. We visually simulated combinations of eye translation and rotation, including perspective distortions that change dynamically over time. We demonstrate that incorporating these “dynamic perspective” cues allows the visual system to generate selectivity for depth sign from motion parallax in macaque area MT, a computation that was previously thought to require extra-retinal signals regarding eye velocity. Our findings suggest novel neural mechanisms that analyze global patterns of visual motion to perform computations that require knowledge of eye rotations.
PMCID: PMC4281299  PMID: 25436667
25.  Cell-specific STORM superresolution imaging reveals nanoscale organization of cannabinoid signaling 
Nature neuroscience  2014;18(1):75-86.
A major challenge in neuroscience is to determine the nanoscale position and quantity of signaling molecules in a cell-type-, and subcellular compartment-specific manner. We therefore developed a novel approach combining cell-specific physiological and anatomical characterization with superresolution imaging, and studied the molecular and structural parameters shaping the physiological properties of synaptic endocannabinoid signaling in the mouse hippocampus. We found that axon terminals of perisomatically-projecting GABAergic interneurons possess increased CB1 receptor number, active-zone complexity, and receptor/effector ratio compared to dendritically-projecting interneurons, in agreement with higher efficiency of cannabinoid signaling at somatic versus dendritic synapses. Furthermore, chronic Δ9-tetrahydrocannabinol administration, which reduces cannabinoid efficacy on GABA release, evoked dramatic CB1-downregulation in a dose-dependent manner. Full receptor recovery required several weeks after cessation of Δ9-tetrahydrocannabinol treatment. These findings demonstrate that cell-type-specific nanoscale analysis of endogenous protein distribution is possible in brain circuits, and identify novel molecular properties controlling endocannabinoid signaling and cannabis-induced cognitive dysfunction.
PMCID: PMC4281300  PMID: 25485758

Results 1-25 (1207)