Search tips
Search criteria

Results 1-25 (701)

Clipboard (0)

Select a Filter Below

Year of Publication
1.  Developmental Treatment with Ethinyl Estradiol, but Not Bisphenol A, Causes Alterations in Sexually Dimorphic Behaviors in Male and Female Sprague Dawley Rats 
Toxicological Sciences  2014;140(2):374-392.
The developing central nervous system may be particularly sensitive to bisphenol A (BPA)-induced alterations. Here, pregnant Sprague Dawley rats (n = 11–12/group) were gavaged daily with vehicle, 2.5 or 25.0 μg/kg BPA, or 5.0 or 10.0 μg/kg ethinyl estradiol (EE2) on gestational days 6–21. The BPA doses were selected to be below the no-observed-adverse-effect level (NOAEL) of 5 mg/kg/day. On postnatal days 1–21, all offspring/litter were orally treated with the same dose. A naïve control group was not gavaged. Body weight, pubertal age, estrous cyclicity, and adult serum hormone levels were measured. Adolescent play, running wheel activity, flavored solution intake, female sex behavior, and manually elicited lordosis were assessed. No significant differences existed between the vehicle and naïve control groups. Vehicle controls exhibited significant sexual dimorphism for most behaviors, indicating these evaluations were sensitive to sex differences. However, only EE2 treatment caused significant effects. Relative to female controls, EE2-treated females were heavier, exhibited delayed vaginal opening, aberrant estrous cyclicity, increased play behavior, decreased running wheel activity, and increased aggression toward the stimulus male during sexual behavior assessments. Relative to male controls, EE2-treated males were older at testes descent and preputial separation and had lower testosterone levels. These results suggest EE2-induced masculinization/defeminization of females and are consistent with increased volume of the sexually dimorphic nucleus of the preoptic area (SDN-POA) at weaning in female siblings of these subjects (He, Z., Paule, M. G. and Ferguson, S. A. (2012) Low oral doses of bisphenol A increase volume of the sexually dimorphic nucleus of the preoptic area in male, but not female, rats at postnatal day 21. Neurotoxicol. Teratol. 34, 331–337). Although EE2 treatment caused pubertal delays and decreased testosterone levels in males, their behaviors were within the range of control males. Conversely, BPA treatment did not alter any measured endpoint. Similar to our previous reports (Ferguson, S. A., Law, C. D. Jr and Abshire, J. S. (2011) Developmental treatment with bisphenol A or ethinyl estradiol causes few alterations on early preweaning measures. Toxicol. Sci. 124, 149–160; Ferguson, S. A., Law, C. D. and Abshire, J. S. (2012) Developmental treatment with bisphenol A causes few alterations on measures of postweaning activity and learning. Neurotoxicol. Teratol. 34, 598–606), the BPA doses and design used here produced few alterations.
PMCID: PMC4133561  PMID: 24798382
bisphenol A; ethinyl estradiol; developmental; behavior; estrous cycle; puberty
2.  A Systems Biology Approach Utilizing a Mouse Diversity Panel Identifies Genetic Differences Influencing Isoniazid-Induced Microvesicular Steatosis 
Toxicological Sciences  2014;140(2):481-492.
Isoniazid (INH), the mainstay therapeutic for tuberculosis infection, has been associated with rare but serious hepatotoxicity in the clinic. However, the mechanisms underlying inter-individual variability in the response to this drug have remained elusive. A genetically diverse mouse population model in combination with a systems biology approach was utilized to identify transcriptional changes, INH-responsive metabolites, and gene variants that contribute to the liver response in genetically sensitive individuals. Sensitive mouse strains developed severe microvesicular steatosis compared with corresponding vehicle control mice following 3 days of oral treatment with INH. Genes involved in mitochondrial dysfunction were enriched among liver transcripts altered with INH treatment. Those associated with INH treatment and susceptibility to INH-induced steatosis in the liver included apolipoprotein A-IV, lysosomal-associated membrane protein 1, and choline phosphotransferase 1. These alterations were accompanied by metabolomic changes including reduced levels of glutathione and the choline metabolites betaine and phosphocholine, suggesting that oxidative stress and reduced lipid export may additionally contribute to INH-induced steatosis. Finally, genome-wide association mapping revealed that polymorphisms in perilipin 2 were linked to increased triglyceride levels following INH treatment, implicating a role for inter-individual differences in lipid packaging in the susceptibility to INH-induced steatosis. Taken together, our data suggest that INH-induced steatosis is caused by not one, but multiple events involving lipid retention in the livers of genetically sensitive individuals. This work also highlights the value of using a mouse diversity panel to investigate drug-induced responses across a diverse population.
PMCID: PMC4168290  PMID: 24848797
3.  Persistence of Cisplatin-Induced Mutagenicity in Hematopoietic Stem Cells: Implications for Secondary Cancer Risk Following Chemotherapy 
Toxicological Sciences  2014;140(2):307-314.
Cisplatin is a cytostatic agent used in the treatment of many types of cancer, but its use is associated with increased incidences of secondary leukemia. We evaluated cisplatin's in vivo genotoxic potential by analyzing peripheral blood for Pig-a mutant phenotype erythrocytes and for chromosomal damage in the form of micronuclei. Mutant phenotype reticuloyte and erythrocyte frequencies, based on anti-CD59 antibody labeling and flow cytometric analysis, were determined in male Sprague Dawley rats treated for 28 consecutive days (days 1–28) with up to 0.4 mg cisplatin/kg/day, and sampled on days −4, 15, 29, and 56. Vehicle and highest dose groups were evaluated at additional time points post-treatment up to 6 months. Day 4 and 29 blood samples were also analyzed for micronucleated reticulocyte frequency using flow cytometry and anti-CD71-based labeling. Mutant phenotype reticulocytes were significantly elevated at doses ≥0.1 mg/kg/day, and mutant phenotype erythrocytes were elevated at doses ≥0.05 mg/kg/day. In the 0.4 mg/kg/day group, these effects persisted for the 6 month observation period. Cisplatin also induced a modest but statistically significant increase in micronucleus frequency at the highest dose tested. The prolonged persistence in the production of mutant erythrocytes following cisplatin exposure suggests that this drug mutates hematopoietic stem cells and that this damage may ultimately contribute to the increased incidence of secondary leukemias seen in patients cured of primary malignancies with platinum-based regimens.
PMCID: PMC4176048  PMID: 24798381
cisplatin; Pig-a gene; mutation; flow cytometry; micronuclei; genotoxicity; stem cells
4.  Toluene Diisocyanate (TDI) Disposition and Co-Localization of Immune Cells in Hair Follicles 
Toxicological Sciences  2014;140(2):327-337.
Diisocyanates (dNCOs) are potent chemical allergens utilized in various industries. It has been proposed that skin exposure to dNCOs produces immune sensitization leading to work-related asthma and allergic disease. We examined dNCOs sensitization by using a dermal murine model of toluene diisocyanate (TDI) exposure to characterize the disposition of TDI in the skin, identify the predominant haptenated proteins, and discern the associated antigen uptake by dendritic cells. Ears of BALB/c mice were dosed once with TDI (0.1% or 4% v/v acetone). Ears and draining lymph nodes (DLNs) were excised at selected time points between 1 h and 15 days post-exposure and were processed for histological, immunohistochemical, and proteomic analyses. Monoclonal antibodies specific for TDI-haptenated protein (TDI-hp) and antibodies to various cell markers were utilized with confocal microscopy to determine co-localization patterns. Histopathological changes were observed following exposure in ear tissue of mice dosed with 4% TDI/acetone. Immunohistochemical staining demonstrated TDI-hp localization in the stratum corneum, hair follicles, and sebaceous glands. TDI-hp were co-localized with CD11b+ (integrin αM/Mac-1), CD207+ (langerin), and CD103+ (integrin αE) cells in the hair follicles and in sebaceous glands. TDI-hp were also identified in the DLN 1 h post-exposure. Cytoskeletal and cuticular keratins along with mouse serum albumin were identified as major haptenated species in the skin. The results of this study demonstrate that the stratum corneum, hair follicles, and associated sebaceous glands in mice are dendritic cell accessible reservoirs for TDI-hp and thus identify a mechanism for immune recognition following epicutaneous exposure to TDI.
PMCID: PMC4176049  PMID: 24798378
diisocyanates; langerin; dendritic cells; allergy
5.  Human Receptor Activation by Aroclor 1260, a Polychlorinated Biphenyl Mixture 
Toxicological Sciences  2014;140(2):283-297.
Polychlorinated biphenyls (PCBs) are persistent environmental toxicants, present in 100% of U.S. adults and dose-dependently associated with obesity and non-alcoholic fatty liver disease (NAFLD). PCBs are predicted to interact with receptors previously implicated in xenobiotic/energy metabolism and NAFLD. These receptors include the aryl hydrocarbon receptor (AhR), pregnane xenobiotic receptor (PXR), constitutive androstane receptor (CAR), peroxisome proliferator-activated receptors (PPARs), liver-X-receptor (LXRα), and farnesoid-X-receptor (FXR). This study evaluates Aroclor 1260, a PCB mixture with congener composition mimicking that of human adipose tissue, and selected congeners, as potential ligands for these receptors utilizing human hepatoma-derived (HepG2) and primate-derived (COS-1) cell lines, and primary human hepatocytes. Aroclor 1260 (20 μg/ml) activated AhR, and PCB 126, a minor component, was a potent inducer. Aroclor 1260 activated PXR in a simple concentration-dependent manner at concentrations ≥10 μg/ml. Among the congeners tested, PCBs 138, 149, 151, 174, 183, 187, and 196 activated PXR. Aroclor 1260 activated CAR2 and CAR3 variants at lower concentrations and antagonize CAR2 activation by the CAR agonist, CITCO, at higher concentrations (≥20 μg/ml). Additionally, Aroclor 1260 induced CYP2B6 in primary hepatocytes. At subtoxic doses, Aroclor 1260 did not activate LXR or FXR and had no effect on LXR- or FXR-dependent induction by the agonists T0901317 or GW4064, respectively. Aroclor 1260 (20 μg/ml) suppressed PPARα activation by the agonist nafenopin, although none of the congeners tested demonstrated significant inhibition. The results suggest that Aroclor 1260 is a human AhR, PXR and CAR3 agonist, a mixed agonist/antagonist for CAR2, and an antagonist for human PPARα.
PMCID: PMC4176050  PMID: 24812009
Aroclor 1260; PCBs; aryl hydrocarbon receptor; nuclear receptors
6.  Acrolein Decreases Endothelial Cell Migration and Insulin Sensitivity Through Induction of let-7a 
Toxicological Sciences  2014;140(2):271-282.
Acrolein is a major reactive component of vehicle exhaust, and cigarette and wood smoke. It is also present in several food substances and is generated endogenously during inflammation and lipid peroxidation. Although previous studies have shown that dietary or inhalation exposure to acrolein results in endothelial activation, platelet activation, and accelerated atherogenesis, the basis for these effects is unknown. Moreover, the effects of acrolein on microRNA (miRNA) have not been studied. Using AGILENT miRNA microarray high-throughput technology, we found that treatment of cultured human umbilical vein endothelial cells with acrolein led to a significant (>1.5-fold) upregulation of 12, and downregulation of 15, miRNAs. Among the miRNAs upregulated were members of the let-7 family and this upregulation was associated with decreased expression of their protein targets, β3 integrin, Cdc34, and K-Ras. Exposure to acrolein attenuated β3 integrin-dependent migration and reduced Akt phosphorylation in response to insulin. These effects of acrolein on endothelial cell migration and insulin signaling were reversed by expression of a let-7a inhibitor. Also, inhalation exposure of mice to acrolein (1 ppm x 6 h/day x 4 days) upregulated let-7a and led to a decrease in insulin-stimulated Akt phosphorylation in the aorta. These results suggest that acrolein exposure has broad effects on endothelial miRNA repertoire and that attenuation of endothelial cell migration and insulin signaling by acrolein is mediated in part by the upregulation of let-7a. This mechanism may be a significant feature of vascular injury caused by inflammation, oxidized lipids, and exposure to environmental pollutants.
PMCID: PMC4176051  PMID: 24812010
miRNA; migration; insulin signaling
7.  Forecasting Cell Death Dose-Response from Early Signal Transduction Responses In Vitro 
Toxicological Sciences  2014;140(2):338-351.
The rapid pharmacodynamic response of cells to toxic xenobiotics is primarily coordinated by signal transduction networks, which follow a simple framework: the phosphorylation/dephosphorylation cycle mediated by kinases and phosphatases. However, the time course from initial pharmacodynamic response(s) to cell death following exposure can have a vast range. Viewing this time lag between early signaling events and the ultimate cellular response as an opportunity, we hypothesize that monitoring the phosphorylation of proteins related to cell death and survival pathways at key, early time points may be used to forecast a cell's eventual fate, provided that we can measure and accurately interpret the protein responses. In this paper, we focused on a three-phased approach to forecast cell death after exposure: (1) determine time points relevant to important signaling events (protein phosphorylation) by using estimations of adenosine triphosphate production to reflect the relationship between mitochondrial-driven energy metabolism and kinase response, (2) experimentally determine phosphorylation values for proteins related to cell death and/or survival pathways at these significant time points, and (3) use cluster analysis to predict the dose-response relationship between cellular exposure to a xenobiotic and plasma membrane degradation at 24 h post-exposure. To test this approach, we exposed HepG2 cells to two disparate treatments: a GSK-3β inhibitor and a MEK inhibitor. After using our three-phased approach, we were able to accurately forecast the 24 h HepG2 plasma membrane degradation dose-response from protein phosphorylation values as early as 20 min post-MEK inhibitor exposure and 40 min post-GSK-3β exposure.
PMCID: PMC4176052  PMID: 24824809
predictive toxicology; signal transduction; kinase; cytotoxicity; dose-response
8.  Target Organ Specific Activity of Drosophila MRP (ABCC1) Moderates Developmental Toxicity of Methylmercury 
Toxicological Sciences  2014;140(2):425-435.
Methylmercury (MeHg) is a ubiquitous and persistent neurotoxin that poses a risk to human health. Although the mechanisms of MeHg toxicity are not fully understood, factors that contribute to susceptibility are even less well known. Studies of human gene polymorphisms have identified a potential role for the multidrug resistance-like protein (MRP/ABCC) family, ATP-dependent transporters, in MeHg susceptibility. MRP transporters have been shown to be important for MeHg excretion in adult mouse models, but their role in moderating MeHg toxicity during development has not been explored. We therefore investigated effects of manipulating expression levels of MRP using a Drosophila development assay. Drosophila MRP (dMRP) is homologous to human MRP1–4 (ABCC1–4), sharing 50% identity and 67% similarity with MRP1. A greater susceptibility to MeHg is seen in dMRP mutant flies, demonstrated by reduced rates of eclosion on MeHg-containing food. Furthermore, targeted knockdown of dMRP expression using GAL4>UAS RNAi methods demonstrates a tissue-specific function for dMRP in gut, Malpighian tubules, and the nervous system in moderating developmental susceptibility to MeHg. Using X-ray synchrotron fluorescence imaging, these same tissues were also identified as the highest Hg-accumulating tissues in fly larvae. Moreover, higher levels of Hg are seen in dMRP mutant larvae compared with a control strain fed an equivalent dose of MeHg. In sum, these data demonstrate that dMRP expression, both globally and within Hg-targeted organs, has a profound effect on susceptibility to MeHg in developing flies. Our findings point to a potentially novel and specific role for dMRP in neurons in the protection against MeHg. Finally, this experimental system provides a tractable model to evaluate human polymorphic variants of MRP and other gene variants relevant to genetic studies of mercury-exposed populations.
PMCID: PMC4176053  PMID: 24863968
methylmercury; multidrug resistance-like protein; Drosophila; X-ray synchrotron fluorescence; Malpighian tubule; fat body
9.  A Short-term In Vivo Screen Using Fetal Testosterone Production, a Key Event in the Phthalate Adverse Outcome Pathway, to Predict Disruption of Sexual Differentiation 
Toxicological Sciences  2014;140(2):403-424.
This study was designed to develop and validate a short-term in vivo protocol termed the Fetal Phthalate Screen (FPS) to detect phthalate esters (PEs) and other chemicals that disrupt fetal testosterone synthesis and testis gene expression in rats. We propose that the FPS can be used to screen chemicals that produce adverse developmental outcomes via disruption of the androgen synthesis pathway more rapidly and efficiently, and with fewer animals than a postnatal one-generation study. Pregnant rats were dosed from gestational day (GD) 14 to 18 at one dose level with one of 27 chemicals including PEs, PE alternatives, pesticides known to inhibit steroidogenesis, an estrogen and a potent PPARα agonist and ex vivo testis testosterone production (T Prod) was measured on GD 18. We also included some chemicals with “unknown” activity including DMEP, DHeP, DHEH, DPHCH, DAP, TOTM, tetrabromo-diethyl hexyl phthalate (BrDEHP), and a relatively potent environmental estrogen BPAF. Dose-response studies also were conducted with this protocol with 11 of the above chemicals to determine their relative potencies. CD-1 mice also were exposed to varying dose levels of DPeP from GD 13 to 17 to determine if DPeP reduced T Prod in this species since there is a discrepancy among the results of in utero studies of PEs in mice. Compared to the known male reproductive effects of the PEs in rats the FPS correctly identified all known “positives” and “negatives” tested. Seven of eight “unknowns” tested were “negatives”, they did not reduce T Prod, whereas DAP produced an “equivocal” response. Finally, a dose-response study with DPeP in CD-1 mice revealed that fetal T Prod can be inhibited by exposure to a PE in utero in this species, but at a higher dose level than required in rats.Key words. Phthalate Syndrome, Fetal endocrine biomarkers, Phthalate adverse outcome pathway, testosterone production, fetal rat testis.
PMCID: PMC4471440  PMID: 24798384
Phthalate Syndrome; Fetal endocrine biomarkers; Phthalate adverse outcome pathway; testosterone production; fetal rat testis
10.  Developmental Exposure to Concentrated Ambient Ultrafine Particulate Matter Air Pollution in Mice Results in Persistent and Sex-Dependent Behavioral Neurotoxicity and Glial Activation 
Toxicological Sciences  2014;140(1):160-178.
The brain appears to be a target of air pollution. This study aimed to further ascertain behavioral and neurobiological mechanisms of our previously observed preference for immediate reward (Allen, J. L., Conrad, K., Oberdorster, G., Johnston, C. J., Sleezer, B., and Cory-Slechta, D. A. (2013). Developmental exposure to concentrated ambient particles and preference for immediate reward in mice. Environ. Health Perspect. 121, 32–38), a phenotype consistent with impulsivity, in mice developmentally exposed to inhaled ultrafine particles. It examined the impact of postnatal and/or adult concentrated ambient ultrafine particles (CAPS) or filtered air on another behavior thought to reflect impulsivity, Fixed interval (FI) schedule-controlled performance, and extended the assessment to learning/memory (novel object recognition (NOR)), and locomotor activity to assist in understanding behavioral mechanisms of action. In addition, levels of brain monoamines and amino acids, and markers of glial presence and activation (GFAP, IBA-1) were assessed in mesocorticolimbic brain regions mediating these cognitive functions. This design produced four treatment groups/sex of postnatal/adult exposure: Air/Air, Air/CAPS, CAPS/Air, and CAPS/CAPS. FI performance was adversely influenced by CAPS/Air in males, but by Air/CAPS in females, effects that appeared to reflect corresponding changes in brain mesocorticolimbic dopamine/glutamate systems that mediate FI performance. Both sexes showed impaired short-term memory on the NOR. Mechanistically, cortical and hippocampal changes in amino acids raised the potential for excitotoxicity, and persistent glial activation was seen in frontal cortex and corpus callosum of both sexes. Collectively, neurodevelopment and/or adulthood CAPS can produce enduring and sex-dependent neurotoxicity. Although mechanisms of these effects remain to be fully elucidated, findings suggest that neurodevelopment and/or adulthood air pollution exposure may represent a significant underexplored risk factor for central nervous system diseases/disorders and thus a significant public health threat even beyond current appreciation.
PMCID: PMC4081635  PMID: 24690596
11.  PARP-1 Hyperactivation and Reciprocal Elevations in Intracellular Ca2+ During ROS-Induced Nonapoptotic Cell Death 
Toxicological Sciences  2014;140(1):118-134.
The generation of reactive oxygen species (ROS) has been implicated in the pathogenesis of renal ischemia/reperfusion injury, and many other pathological conditions. DNA strand breaks caused by ROS lead to the activation of poly(ADP-ribose)polymerase-1 (PARP-1), the excessive activation of which can result in cell death. We have utilized a model in which 2,3,5-tris(glutathion-S-yl)hydroquinone (TGHQ), a nephrotoxic and nephrocarcinogenic metabolite of hydroquinone, causes ROS-dependent cell death in human renal proximal tubule epithelial cells (HK-2), to further elucidate the role of PARP-1 in ROS-dependent cell death. TGHQ-induced ROS generation, DNA strand breaks, hyperactivation of PARP-1, rapid depletion of nicotinamide adenine dinucleotide (NAD), elevations in intracellular Ca2+ concentrations, and subsequent nonapoptotic cell death in both a PARP- and Ca2+-dependent manner. Thus, inhibition of PARP-1 with PJ34 completely blocked TGHQ-mediated accumulation of poly(ADP-ribose) polymers and NAD consumption, and delayed HK-2 cell death. In contrast, chelation of intracellular Ca2+ with BAPTA completely abrogated TGHQ-induced cell death. Ca2+ chelation also attenuated PARP-1 hyperactivation. Conversely, inhibition of PARP-1 modulated TGHQ-mediated changes in Ca2+ homeostasis. Interestingly, PARP-1 hyperactivation was not accompanied by the translocation of apoptosis-inducing factor (AIF) from mitochondria to the nucleus, a process usually associated with PARP-dependent cell death. Thus, pathways coupling PARP-1 hyperactivation to cell death are likely to be context-dependent, and therapeutic strategies designed to target PARP-1 need to recognize such variability. Our studies provide new insights into PARP-1-mediated nonapoptotic cell death, during which PARP-1 hyperactivation and elevations in intracellular Ca2+ are reciprocally coupled to amplify ROS-induced nonapoptotic cell death.
PMCID: PMC4081636  PMID: 24752504
2,3,5-tris(glutathion-S-yl)hydroquinone; HK-2 cells; reactive oxygen species; poly(ADP-ribose)polymerase-1; apoptosis-inducing factor; intracellular Ca2+
12.  2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) Is Selectively Toxic to Primary Dopaminergic Neurons In Vitro 
Toxicological Sciences  2014;140(1):179-189.
Parkinson's disease (PD) is the second most common neurodegenerative disease. Much data has linked the etiology of PD to a variety of environmental factors. The majority of cases are thought to arise from a combination of genetic susceptibility and environmental factors. Chronic exposures to dietary factors, including meat, have been identified as potential risk factors. Although heterocyclic amines that are produced during high-temperature meat cooking are known to be carcinogenic, their effect on the nervous system has yet to be studied in depth. In this study, we investigated neurotoxic effects of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), a highly abundant heterocyclic amine in cooked meat, in vitro. We tested toxicity of PhIP and the two major phase I metabolites, N-OH-PhIP and 4′-OH-PhIP, using primary mesencephalic cultures from rat embryos. This culture system contains both dopaminergic and nondopaminergic neurons, which allows specificity of neurotoxicity to be readily examined. We find that exposure to PhIP or N-OH-PhIP is selectively toxic to dopaminergic neurons in primary cultures, resulting in a decreased percentage of dopaminergic neurons. Neurite length is decreased in surviving dopaminergic neurons. Exposure to 4′-OH-PhIP did not produce significant neurotoxicity. PhIP treatment also increased formation of oxidative damage markers, 4-hydroxy-2-nonenal (HNE) and 3-nitrotyrosine in dopaminergic neurons. Pretreatment with N-acetylcysteine was protective. Finally, treatment with blueberry extract, a dietary factor with known antioxidant and other protective mechanisms, prevented PhIP-induced toxicity. Collectively, our study suggests, for the first time, that PhIP is selectively toxic to dopaminergic neurons likely through inducing oxidative stress.
PMCID: PMC4133585  PMID: 24718704
Parkinson's disease; PhIP; neurotoxicity; heterocyclic amines
13.  Benzo[a]pyrene Effects on Reproductive Endpoints in Fundulus heteroclitus 
Toxicological Sciences  2014;140(1):73-82.
Benzo[a]pyrene (BaP) is a polycyclic aromatic hydrocarbon (PAH) that has been implicated in modulating aromatase enzyme function with the potential to interrupt normal reproductive function. The aim of this study was to use a fish model, Fundulus heteroclitus, to assess whether BaP exposure adversely impacts reproduction. Adult fish were exposed to waterborne BaP nominal concentrations of (0, 1, or 10 μg/l) for 28 days. Males and females were combined for the second half of the exposure (days 14–28) in order to quantitate egg production and fertilization success. Egg fertilization and subsequent hatching success of F1 embryos was significantly decreased by the high dose of BaP. In males, both gonad weight and plasma testosterone concentrations were significantly reduced compared to controls by 10 μg/l BaP. Histopathological examination of testes including spermatogonia, spermatocyte and spermatid cyst areas, percentage of cysts per phase, and area of spermatozoa per seminiferous tubule were not significantly affected. Other biomarkers, including male liver weight, liver vitellogenin (vtg) mRNA expression and sperm concentrations, were also not affected. In females, estradiol concentrations were significantly reduced after BaP exposure, but egg production, gonad weight, liver weight, vtg expression and oocyte maturation were not altered. Steroid concentrations in Fundulus larvae from exposed parents at 1 and 3 weeks posthatch were not significantly changed. BaP exposure at these environmentally relevant concentrations caused negative alterations particularly in male fish to both biochemical and phenotypic biomarkers associated with reproduction and multigenerational embryo survival.
PMCID: PMC4133586  PMID: 24747980
benzo[a]pyrene; reproduction; steroid concentrations; Fundulus
14.  Liver Tumor Promotion by 2,3,7,8-Tetrachlorodibenzo-p-dioxin Is Dependent on the Aryl Hydrocarbon Receptor and TNF/IL-1 Receptors 
Toxicological Sciences  2014;140(1):135-143.
We set out to better understand the signal transduction pathways that mediate liver tumor promotion by 2,3,7,8-tetrachlorodibenzo-p-dioxn (“dioxin”). To this end, we first employed congenic mice homozygous for either the Ahrb1 or Ahrd alleles (encoding an aryl hydrocarbon receptor (AHR) with high or low binding affinity for dioxin, respectively) and demonstrated that hepatocellular tumor promotion in response to dioxin segregated with the Ahr locus. Once we had genetic evidence for the importance of AHR signaling, we then asked if tumor promotion by dioxin was influenced by “interleukin-1 (IL-1)-like” inflammatory cytokines. The importance of this question arose from our earlier observation that aspects of the acute hepatocellular toxicity of dioxin are dependent upon IL1-like cytokine signaling. To address this issue, we employed a triple knock-out (TKO) mouse model with null alleles at the loci encoding the three relevant receptors for tumor necrosis factors α and β and IL-1α and IL-1β (i.e., null alleles at the Tnfrsf1a, Tnfrsf1b, and Il-1r1 loci). The observation that TKO mice were resistant to the tumor promoting effects of dioxin in liver suggests that inflammatory cytokines play an important step in dioxin mediated liver tumor promotion in the mouse. Collectively, these data support the idea that the mechanism of dioxin acute hepatotoxicity and its activity as a promoter in a mouse two stage liver cancer model may be similar, i.e., tumor promotion by dioxin, like acute hepatotoxicity, are mediated by the linked action of two receptor systems, the AHR and the receptors for the “IL-1-like” cytokines.
PMCID: PMC4133587  PMID: 24718703
dioxin; aryl hydrocarbon receptor (AHR); liver; tumor promotion; IL-1-like cytokine
15.  Aggregate Culture of Human Embryonic Stem Cell-Derived Hepatocytes in Suspension Are an Improved In Vitro Model for Drug Metabolism and Toxicity Testing 
Toxicological Sciences  2014;140(1):236-245.
Early phase drug development relies on primary human hepatocytes for studies of drug metabolism, cytotoxicity, and drug-drug interactions. However, primary human hepatocytes rapidly lose metabolic functions ex vivo and are refractory to expansion in culture and thus are limited in quantity. Hepatocytes derived from human pluripotent stem cells (either embryonic stem (ES) or induced pluripotent stem (iPS) cells), have the potential to overcome many of the limitations of primary human hepatocytes, but to date the use of human pluripotent stem cell-derived hepatocytes has been limited by poor enzyme inducibility and immature metabolic function. Here, we present a simple suspension culture of aggregates of ES cell-derived hepatocytes that compared to conventional monolayer adherent culture significantly increases induction of CYP 1A2 by omeprazole and 3A4 by rifampicin. Using liquid chromatography-tandem mass spectrometry, we further show that ES cell-derived hepatocytes in aggregate culture convert omeprazole and rifampicin to their human-specific metabolites. We also show that these cells convert acetaminophen (APAP) to its cytotoxic metabolite (N-acetyl-p-benzoquinone imine (NAPQI)), although they fail to perform APAP glucuronidation. In summary, we show that human pluripotent stem cell-derived hepatocytes in aggregate culture display improved enzymatic inducibility and metabolic function and is a promising step toward a simple, scalable system, but nonetheless will require further improvements to completely replace primary human hepatocytes in drug development.
PMCID: PMC4133588  PMID: 24752503
Drug testing; Toxicity testing; Stem cells; Hepatocytes; ES cells; iPS cells
16.  Air Pollution Upregulates Endothelial Cell Procoagulant Activity via Ultrafine Particle-Induced Oxidant Signaling and Tissue Factor Expression 
Toxicological Sciences  2014;140(1):83-93.
Air pollution exposure is associated with cardiovascular events triggered by clot formation. Endothelial activation and initiation of coagulation are pathophysiological mechanisms that could link inhaled air pollutants to vascular events. Here we investigated the underlying mechanisms of increased endothelial cell procoagulant activity following exposure to soluble components of ultrafine particles (soluble UF). Human coronary artery endothelial cells (HCAEC) were exposed to soluble UF and assessed for their ability to trigger procoagulant activity in platelet-free plasma. Exposed HCAEC triggered earlier thrombin generation and faster fibrin clot formation, which was abolished by an anti-tissue factor (TF) antibody, indicating TF-dependent effects. Soluble UF exposure increased TF mRNA expression without compensatory increases in key anticoagulant proteins. To identify early events that regulate TF expression, we measured endothelial H2O2 production following soluble UF exposure and identified the enzymatic source. Soluble UF exposure increased endothelial H2O2 production, and antioxidants attenuated UF-induced upregulation of TF, linking the procoagulant responses to reactive oxygen species (ROS) formation. Chemical inhibitors and RNA silencing showed that NOX-4, an important endothelial source of H2O2, was involved in UF-induced upregulation of TF mRNA. These data indicate that soluble UF exposure induces endothelial cell procoagulant activity, which involves de novo TF synthesis, ROS production, and the NOX-4 enzyme. These findings provide mechanistic insight into the adverse cardiovascular effects associated with air pollution exposure.
PMCID: PMC4133589  PMID: 24752501
air pollution; NADPH oxidases; reactive oxygen species; tissue factor; thrombin generation
17.  Investigation of the Effects of Subchronic Low Dose Oral Exposure to Bisphenol A (BPA) and Ethinyl Estradiol (EE) on Estrogen Receptor Expression in the Juvenile and Adult Female Rat Hypothalamus 
Toxicological Sciences  2014;140(1):190-203.
Concerns have been raised regarding the long-term impacts of early life exposure to the ubiquitous environmental contaminant bisphenol A (BPA) on brain organization. Because BPA has been reported to affect estrogen signaling, and steroid hormones play a critical role in brain sexual differentiation, there is also concern that BPA exposure could alter neural sex differences. Here, we examine the impact of subchronic exposure from gestation to adulthood to oral doses of BPA below the current no-observed-adverse-effect level (NOAEL) of 5 mg/kg body weight (bw)/day on estrogen receptor (ESR) expression in sexually dimorphic brain regions of prepubertal and adult female rats. The dams were gavaged daily with vehicle (0.3% carboxymethylcellulose), 2.5, 25, 260, or 2700 μg BPA/kg bw/day, or 0.5 or 5.0 μg ethinyl estradiol (EE)/kg bw/day from gestational day 6 until labor began. Offspring were then gavaged directly from the day after birth until the day before scheduled sacrifice on postnatal days 21 or 90. Using in situ hybridization, one or more BPA doses produced significant decreases in Esr1 expression in the juvenile female rat anteroventral periventricular nucleus (AVPV) of the hypothalamus and significant decreases in Esr2 expression in the adult female rat AVPV and medial preoptic area (MPOA), relative to vehicle controls. BPA did not simply reproduce EE effects, indicating that BPA is not acting solely as an estrogen mimic. The possible consequences of long-term changes in hypothalamic ESR expression resulting from subchronic low dose BPA exposure on neuroendocrine effects are discussed and being addressed in ongoing, related work.
PMCID: PMC4133590  PMID: 24752507
brain; endocrine disruptor; endocrine disruption; hypothalamus; development; subchronic exposure; sexually dimorphic; ethinyl estradiol; bisphenol A
18.  Dose- and Time-Dependent Epigenetic Changes in the Livers of Fisher 344 Rats Exposed to Furan 
Toxicological Sciences  2014;139(2):371-380.
The presence of furan in common cooked foods along with evidence from experimental studies that lifetime exposure to furan causes liver tumors in rats and mice has caused concern to regulatory public health agencies worldwide; however, the mechanisms of the furan-induced hepatocarcinogenicity remain unclear. The goal of the present study was to investigate whether or not long-term exposure to furan causes epigenetic alterations in rat liver. Treating of male Fisher 344 rats by gavage 5 days per week with 0, 0.92, 2.0, or 4.4 mg furan/kg body weight (bw)/day resulted in dose- and time-dependent epigenetic changes consisting of alterations in DNA methylation and histone lysine methylation and acetylation, altered expression of chromatin modifying genes, and gene-specific methylation. Specifically, exposure to furan at doses 0.92, 2.0, or 4.4 mg furan/kg bw/day caused global DNA demethylation after 360 days of treatment. There was also a sustained decrease in the levels of histone H3 lysine 9 and H4 lysine 20 trimethylation after 180 and 360 days of furan exposure, and a marked reduction of histone H3 lysine 9 and H3 lysine 56 acetylation after 360 days at 4.4 mg/kg bw/day. These histone modification changes were accompanied by a reduced expression of Suv39h1, Prdm2, and Suv4-20h2 histone methyltransferases and Ep300 and Kat2a histone acetyltransferases. Additionally, furan at 2.0 and 4.4 mg/kg bw/day induced hypermethylation-dependent down-regulation of the Rassf1a gene in the livers after 180 and 360 days. These findings indicate possible involvement of dose- and time-dependent epigenetic modifications in the furan hepatotoxicity and carcinogenicity. Key words: Furan; liver; rat; epigenetic changes.
PMCID: PMC4064012  PMID: 24614236
19.  Retinoids Modulate Thioacetamide-Induced Acute Hepatotoxicity 
Toxicological Sciences  2014;139(2):284-292.
The literature indicates that retinoids can influence the metabolism and actions of xenobiotics and conversely that xenobiotics can influence the metabolism and actions of retinoids. We were interested in understanding the degree to which hepatic retinoid stores, accumulated over a lifetime, affect xenobiotic metabolism, and actions. To investigate this, we induced liver injury through administration of the hepatotoxin thioacetamide (TAA) to chow fed wild type (WT) mice and lecithin:retinol acyltransferase-deficient (Lrat−/−) mice that are genetically unable to accumulate hepatic retinoid stores. Within 48 h of TAA-treatment, WT mice develop liver injury as evidenced by focal necrotic areas and increases in serum ALT activity and myeloperoxidase activity in hepatic parenchyma. Simultaneously, features of hepatic encephalopathy develop, as evidenced by a 25% increase in blood ammonia and a threefold reduction of blood glucose levels. This is accompanied by reduced hepatic glutathione, and increased thiobarbituric acid reactive substances, protein carbonyl and sulfhydryl groups, and increased cytochrome P450-catalyzed hydroxylation activity and flavin-containing monooxygenase activity in microsomes prepared from WT liver. Strikingly, none of these TAA-induced effects were observed for matched Lrat−/− mice. To confirm that TAA hepatotoxicity depends on retinoid availability, we administered, over 48 h, four oral doses of 3000 IU retinyl acetate each to the mice. This led to the development of hepatotoxicity in Lrat−/− mice that was similar in extent to that observed in WT mice. Our findings establish that endogenous hepatic retinoid stores can modulate the toxicity of TAA in mice.
PMCID: PMC4064013  PMID: 24614237
vitamin A; retinoic acid; retinyl ester; hepatic stellate cell; gavage
20.  Regulation of Copper Transport Crossing Brain Barrier Systems by Cu-ATPases: Effect of Manganese Exposure 
Toxicological Sciences  2014;139(2):432-451.
Regulation of cellular copper (Cu) homeostasis involves Cu-transporting ATPases (Cu-ATPases), i.e., ATP7A and ATP7B. The question as to how these Cu-ATPases in brain barrier systems transport Cu, i.e., toward brain parenchyma, cerebrospinal fluid (CSF), or blood, remained unanswered. This study was designed to characterize roles of Cu-ATPases in regulating Cu transport at the blood-brain barrier (BBB) and blood-CSF barrier (BCB) and to investigate how exposure to toxic manganese (Mn) altered the function of Cu-ATPases, thereby contributing to the etiology of Mn-induced parkinsonian disorder. Studies by quantitative real-time RT-PCR (qPCR), Western blot, and immunocytochemistry revealed that both Cu-ATPases expressed abundantly in BBB and BCB. Transport kinetic studies by in situ brain infusion and ventriculo-cisternal (VC) perfusion in Sprague Dawley rat suggested that the BBB was a major site for Cu entry into brain, whereas the BCB was a predominant route for Cu efflux from the CSF to blood. Confocal evidence showed that the presence of excess Cu or Mn in the choroid plexus cells led to ATP7A relocating toward the apical microvilli facing the CSF, but ATP7B toward the basolateral membrane facing blood. Mn exposure inhibited the production of both Cu-ATPases. Collectively, these data suggest that Cu is transported by the BBB from the blood to brain, which is mediated by ATP7A in brain capillary. By diffusion, Cu ions move from the interstitial fluid into the CSF, where they are taken up by the BCB. Within the choroidal epithelial cells, Cu ions are transported by ATP7B back to the blood. Mn exposure alters these processes, leading to Cu dyshomeostasis-associated neuronal injury.
PMCID: PMC4064014  PMID: 24614235
copper; Cu-ATPases; copper transport; blood-brain barrier; blood-CSF barrier; manganese
21.  Genetic or Pharmacologic Activation of Nrf2 Signaling Fails to Protect Against Aflatoxin Genotoxicity in Hypersensitive GSTA3 Knockout Mice 
Toxicological Sciences  2014;139(2):293-300.
Mice are resistant to aflatoxin hepatotoxicity, primarily due to high expression of glutathione S-transferases (GSTs), and in particular the GSTA3 subunit. Nuclear factor erythroid 2 related factor 2 (Nrf2) signaling, which controls a broad-based cytoprotective response, was activated either genetically or pharmacologically in an attempt to rescue GSTA3 knockout mice from aflatoxin genotoxicity. Genetic activation of Nrf2 signaling was attained in a GSTA3: hepatocyte-specific Keap1 double knockout (DKO) mouse whereas pharmacologic activation of Nrf2 was achieved through pretreatment of mice with the triterpenoid 1-[2-cyano-3-,12-dioxoleana-1,9(11)-dien-28-oyl] imidazole (CDDO-Im) prior to aflatoxin B1 exposure. Following oral treatment with aflatoxin, urine was collected from mice for 24 h and hepatic and urinary aflatoxin metabolites then quantified using isotope dilution-mass spectrometry. Although Nrf2 was successfully activated genetically and pharmacologically, neither means affected the response of GSTA3 knockout mice to chemical insult with aflatoxin. Hepatic aflatoxin B1-N7-guanine levels were elevated 120-fold in GSTA3 knockout mice compared with wild-type and levels were not attenuated by the interventions. This lack of effect was mirrored in the urinary excretion of aflatoxin B1-N7-guanine. By contrast, urinary excretion of aflatoxin B1-N-acetylcysteine was >200-fold higher in wild-type mice compared with the single GSTA3 knockout or DKO mouse. The inability to rescue GSTA3 knockout mice from aflatoxin genotoxicity through the Nrf2 transcriptional program indicates that Gsta3 is unilaterally responsible for the detoxication of aflatoxin in mice.
PMCID: PMC4064015  PMID: 24675090
Nrf2; Keap1; aflatoxin; glutathione S-transferases; DNA adducts
22.  The Role of Toxicological Science in Meeting the Challenges and Opportunities of Hydraulic Fracturing 
Toxicological Sciences  2014;139(2):271-283.
We briefly describe how toxicology can inform the discussion and debate of the merits of hydraulic fracturing by providing information on the potential toxicity of the chemical and physical agents associated with this process, individually and in combination. We consider upstream activities related to bringing chemical and physical agents to the site, on-site activities including drilling of wells and containment of agents injected into or produced from the well, and downstream activities including the flow/removal of hydrocarbon products and of produced water from the site. A broad variety of chemical and physical agents are involved. As the industry expands this has raised concern about the potential for toxicological effects on ecosystems, workers, and the general public. Response to these concerns requires a concerted and collaborative toxicological assessment. This assessment should take into account the different geology in areas newly subjected to hydraulic fracturing as well as evolving industrial practices that can alter the chemical and physical agents of toxicological interest. The potential for ecosystem or human exposure to mixtures of these agents presents a particular toxicological and public health challenge. These data are essential for developing a reliable assessment of the potential risks to the environment and to human health of the rapidly increasing use of hydraulic fracturing and deep underground horizontal drilling techniques for tightly bound shale gas and other fossil fuels. Input from toxicologists will be most effective when employed early in the process, before there are unwanted consequences to the environment and human health, or economic losses due to the need to abandon or rework costly initiatives.
PMCID: PMC4064016  PMID: 24706166
hydraulic fracturing; mixtures; shale gas; methane; benzene; radon
23.  Relative Potency for Altered Humoral Immunity Induced by Polybrominated and Polychlorinated Dioxins/Furans in Female B6C3F1/N Mice 
Toxicological Sciences  2014;139(2):488-500.
The use of brominated flame retardants and incineration of bromine-containing materials has lead to an increase in polybrominated dibenzo-p-dioxins and dibenzofurans (PBDD/Fs) in the environment. Measurable amounts of PBDD/Fs have been detected in soil, seafood, and human breast milk and serum. Studies indicate that the relative potencies of some PBDD/Fs based on enzyme induction are equivalent to those of some polychlorinated dibenzo-p-dioxins and dibenzofurans. To assess the humoral immunity relative potencies of PBDD/Fs and compare them to their chlorinated analogs, female B6C3F1/N mice received a single oral exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), 2,3,7,8-tetrabromodibenzofuran (TBDF), 2,3,7,8-tetrachlorodibenzofuran (TCDF), 1,2,3,7,8-pentabromodibenzofuran (1PeBDF), 1,2,3,7,8-pentachlorodibenzofuran (1PeCDF), 2,3,4,7,8-pentabromodibenzofuran (4PeBDF), 2,3,4,7,8-pentachlorodibenzofuran (4PeCDF), 2,3-dibromo-7,8-dichlorodibenzo-p-dioxin (DBDCDD), or 2,3,7-tribromodibenzo-p-dioxin (TriBDD). Inhibition of the immunoglobulin M (IgM) antibody forming cell response was measured 4 days following immunization with sheep red blood cells. The data were fit to a Hill model to estimate the ED50 for inhibition. Expression of xenobiotic metabolizing enzyme (XME) and thyroxine transport protein (Ttr) genes in liver was measured by PCR to assess aryl hydrocarbon-mediated responses. TCDD, TBDF, TCDF, 1PeBDF, 4PeBDF, 4PeCDF, and DBDCDD suppressed the IgM antibody response and Ttr gene expression, and upregulated phase I XME genes. 1PeCDF suppressed the IgM antibody response but only upregulated phase I XME genes; TriBDD had no effect on antibody response. The rank order of potency (ED50) for these chemicals was TCDD>TBDF>4PeBDF>TCDF/4PeCDF/1PeBDF>1PeCDF. Whereas TCDD was the most potent compound tested, the brominated analogs were more potent than their chlorinated analogs, suggesting that these compounds should be considered in toxic equivalency factor evaluation and risk assessment.
PMCID: PMC4031622  PMID: 24713691
2; 3; 7; 8-tetrachlorodibenzo-p-dioxin; chlorinated furans; brominated dioxins; brominated furans; relative potency; IgM antibody forming cell; toxic equivalency factor; TEF
24.  Knockdown of a Zebrafish Aryl Hydrocarbon Receptor Repressor (AHRRa) Affects Expression of Genes Related to Photoreceptor Development and Hematopoiesis 
Toxicological Sciences  2014;139(2):381-395.
The aryl hydrocarbon receptor repressor (AHRR) is a transcriptional repressor of aryl hydrocarbon receptor (AHR) and hypoxia-inducible factor (HIF) and is regulated by an AHR-dependent mechanism. Zebrafish (Danio rerio) possess two AHRR paralogs; AHRRa regulates constitutive AHR signaling during development, whereas AHRRb regulates polyaromatic hydrocarbon-induced gene expression. However, little is known about the endogenous roles and targets of AHRRs. The objective of this study was to elucidate the role of AHRRs during zebrafish development using a loss-of-function approach followed by gene expression analysis. Zebrafish embryos were microinjected with morpholino oligonucleotides against AHRRa or AHRRb to knockdown AHRR protein expression. At 72 h postfertilization (hpf), microarray analysis revealed that the expression of 279 and 116 genes was altered by knockdown of AHRRa and AHRRb, respectively. In AHRRa-morphant embryos, 97 genes were up-regulated and 182 genes were down-regulated. Among the down-regulated genes were several related to photoreceptor function, including cone-specific genes such as several opsins (opn1sw1, opn1sw2, opn1mw1, and opn1lw2), phosphodiesterases (pde6H and pde6C), retinol binding protein (rbp4l), phosducin, and arrestins. Down-regulation was confirmed by RT-PCR and with samples from an independent experiment. The four genes tested (opn1sw1, pde6H, pde6C, and arr3b) were not inducible by 2,3,7,8-tetrachlorodibenzo-p-dioxin. AHRRa knockdown also caused up-regulation of embryonic hemoglobin (hbbe3), suggesting a role for AHRR in regulating hematopoiesis. Knockdown of AHRRb caused up-regulation of 31 genes and down-regulation of 85 genes, without enrichment for any specific biological process. Overall, these results suggest that AHRRs may have important roles in development, in addition to their roles in regulating xenobiotic signaling.
PMCID: PMC4031623  PMID: 24675095
microarrays; morpholino oligonucleotides; opsins; cones; development; repressor; zebrafish; aryl hydrocarbon receptor; dioxin; TCDD; AHR; AHRR
25.  Prenatal Arsenic Exposure and Shifts in the Newborn Proteome: Interindividual Differences in Tumor Necrosis Factor (TNF)-Responsive Signaling 
Toxicological Sciences  2014;139(2):328-337.
Editor's Highlight: Babies, infants and young children are not just small adults; their physiology and biochemistry differs in countless ways creating a need for research on this vulnerable population. But such research poses numerous ethical and moral challenges. The acquisition of umbilical cord blood provides an opportunity to assess the newborn's environment without risk to the child. In this issue of the Journal, Bailey and coworkers used antibody arrays to examine protein profiles in umbilical cord blood and compared it to levels of arsenic in the mothers' urine and drinking water. The study population was based in G'omez Palacio, Mexico, where arsenic levels are well above regulatory guidelines. Protein network analysis revealed several proteins involved in tumor necrosis factor signaling were elevated in the offspring of highly exposed mothers, suggesting that elevated arsenic induces widespread inflammatory signaling. Such markers could ultimately be used to assess the impact of arsenic exposure in this and other vulnerable populations and may lead to mechanisms whereby arsenic exposure in utero contributes to adverse outcomes later in life. —Gary W. Miller and Ronald N. Hines
Exposure to inorganic arsenic (iAs) early in life is associated with adverse health effects in infants, children, and adults, and yet the biological mechanisms that underlie these effects are understudied. The objective of this research was to examine the proteomic shifts associated with prenatal iAs exposure using cord blood samples isolated from 50 newborns from Gómez Palacio, Mexico. Levels of iAs in maternal drinking water (DW-iAs) and the sum of iAs and iAs metabolites in maternal urine (U-tAs) were determined. Cord blood samples representing varying iAs exposure levels during the prenatal period (DW-iAs ranging from <1 to 236 μg As/l) were analyzed for altered expression of proteins associated with U-tAs using a high throughput, antibody-based method. A total of 111 proteins were identified that had a significant association between protein level in newborn cord blood and maternal U-tAs. Many of these proteins are regulated by tumor necrosis factor and are enriched in functionality related to immune/inflammatory response and cellular development/proliferation. Interindividual differences in proteomic response were observed in which 30 newborns were “activators,” displaying a positive relationship between protein expression and maternal U-tAs. For 20 “repressor” newborns, a negative relationship between protein expression level and maternal U-tAs was observed. The activator/repressor status was significantly associated with maternal U-tAs and head circumference in newborn males. These results may provide a critical groundwork for understanding the diverse health effects associated with prenatal arsenic exposure and highlight interindividual responses to arsenic that likely influence differential susceptibility to adverse health outcomes.
PMCID: PMC4031624  PMID: 24675094
arsenic; arsenic metabolism; in utero; metals; pregnancy; birth outcomes

Results 1-25 (701)