PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-5 (5)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Factors Determining Dissemination of Results and Uptake of Genetic Testing in Families with Known BRCA1/2 Mutations 
Genetic testing  2008;12(1):81-91.
Background
Uptake of genetic testing remains low, even in families with known BRCA1 and BRCA2 (BRCA1/2) mutations, despite effective interventions to reduce risk. We report disclosure and uptake patterns by BRCA1/2-positive individuals to at-risk relatives, in the setting of no-cost genetic counseling and testing.
Methods
Relatives of BRCA1/2-positive individuals were offered cost-free and confidential genetic counseling and testing. If positive for a BRCA1/2 mutation, participants were eligible to complete a survey about their disclosure of mutation status and the subsequent uptake of genetic testing by at-risk family members.
Results
One hundred and fifteen of 142 eligible individuals responded to the survey (81%). Eighty-eight (77%) of those surveyed disclosed results to all at-risk relatives. Disclosure to first-degree relatives (FDRs) was higher than to second-degree relatives (SDRs) and third-degree relatives (TDR) (95% vs. 78%; p <0.01). Disclosure rates to male versus female relatives were similar, but reported completion of genetic testing was higher among female versus male FDRs (73% vs. 49%; p<0.01) and SDRs (68% vs. 43%; p<0.01), and among members of maternal versus paternal lineages (63% vs. 0%; p<0.01). Men were more likely than women to express general difficulty discussing positive BCRA1/2 results with at-risk family members (90% vs. 70%; p = 0.03), while women reported more emotional distress associated with disclosure than men (48% vs. 13%; p < 0.01).
Discussion
We report a very high rate of disclosure of genetic testing information to at-risk relatives. However, uptake of genetic testing among at-risk individuals was low despite cost-free testing services, particularly in men, SDRs, and members of paternal lineages. The complete lack of testing among paternally related at-risk individuals and the lower testing uptake among men signify a significant barrier to testing and a challenge for genetic counselors and physicians working with high-risk groups. Further research is necessary to ensure that family members understand their risk and the potential benefits of genetic counseling.
doi:10.1089/gte.2007.0037
PMCID: PMC3072893  PMID: 18373407
2.  Explaining Behavior Change after Genetic Testing: The Problem of Collinearity between Test Results and Risk Estimates 
Genetic testing  2008;12(3):381-386.
This paper explores whether and how the behavioral impact of genotype disclosure can be disentangled from the impact of numerical risk estimates generated by genetic tests. Secondary data analyses are presented from a randomized controlled trial of 162 first-degree relatives of Alzheimer’s disease (AD) patients. Each participant received a lifetime risk estimate of AD. Control group estimates were based on age, gender, family history, and assumed ε4-negative apolipoprotein E (APOE) genotype; intervention group estimates were based upon the first three variables plus true APOE genotype, which was also disclosed. AD-specific self-reported behavior change (diet, exercise, and medication use) was assessed at 12 months. Behavior change was significantly more likely with increasing risk estimates, and also more likely, but not significantly so, in ε4-positive intervention group participants (53% changed behavior) than in control group participants (31%). Intervention group participants receiving ε4-negative genotype feedback (24% changed behavior) and control group participants had similar rates of behavior change and risk estimates, the latter allowing assessment of the independent effects of genotype disclosure. However, collinearity between risk estimates and ε4-positive genotypes, which engender high-risk estimates, prevented assessment of the independent effect of the disclosure of an ε4 genotype. Novel study designs are proposed to determine whether genotype disclosure has an impact upon behavior beyond that of numerical risk estimates.
doi:10.1089/gte.2007.0103
PMCID: PMC2925186  PMID: 18666860
3.  Colorectal Cancer Cases and Relatives of Cases Indicate Similar Willingness to Receive and Disclose Genetic Information 
Genetic testing  2008;12(3):415-420.
Context
Recent developments in genetic testing allow us to detect individuals with inherited susceptibility to some cancers. Genetic testing to identify carriers of cancer-related mutations may help lower risk by encouraging preventive behaviors and surveillance. This study assessed willingness of colon cancer cases and relatives to receive genetic information that may indicate an increased risk for cancer, to whom they would disclose genetic information, and whether receiving genetic test results may influence future prevention behaviors among individuals enrolled in the Seattle Colorectal Cancer Family Registry.
Methods
Incident invasive colorectal cancer cases were identified from the Puget Sound Surveillance Epidemiology and End Results (SEER) registry. In 2007, a sequential sample of cases and relatives (n = 147) were asked to respond to a questionnaire addressing study aims. The questionnaire was administered during a baseline or 5-year follow-up interview.
Results
Patterns of response to each statement were similar between colorectal cancer cases and relatives. Both colorectal cases (95%) and relatives (95%) reported willingness to receive genetic information. Nearly all participants would tell their doctor the results of a genetic test (99% of cases; 98% of relatives), and all married participants would tell their spouses. Cases (96%) anticipated being slightly more likely than relatives (90%) to change their cancer screening behavior, but this difference was not statistically significant (p = 0.33).
Conclusions
A high percentage of both colorectal cancer cases and relatives sampled from the Seattle Colorectal Cancer Family Registry are interested in identifying their genetic status, discussing their genetic status with their family and doctor, and adopting behavioral changes that may reduce cancer risk.
doi:10.1089/gte.2008.0007
PMCID: PMC2683753  PMID: 18752450
4.  Association of Smoking Behavior with an Odorant Receptor Allele Telomeric to the Human Major Histocompatibility Complex 
Genetic testing  2008;12(4):481-486.
Smoking behavior has been associated in two independent European cohorts with the most common Caucasian human leukocyte antigen (HLA) haplotype (A1-B8-DR3). We aimed to test whether polymorphic members of the two odorant receptor (OR) clusters within the extended HLA complex might be responsible for the observed association, by genotyping a cohort of Hungarian women in which the mentioned association had been found. One hundred and eighty HLA haplotypes from Centre d’Etude du Polymorphisme Humain families were analyzed in silico to identify single-nucleotide polymorphisms (SNPs) within OR genes that are in linkage disequilibrium with the A1-B8-DR3 haplotype, as well as with two other haplotypes indirectly linked to smoking behavior. A nonsynonymous SNP within the OR12D3 gene (rs3749971T) was found to be linked to the A1-B8-DR3 haplotype. This polymorphism leads to a 97Thr → Ile exchange that affects a putative ligand binding region of the OR12D3 protein. Smoking was found to be associated in the Hungarian cohort with the rs3749971T allele (p = 1.05×10−2), with higher significance than with A1-B8-DR3 (p = 2.38×10−2). Our results link smoking to a distinct OR allele, and demonstrate that the rs3749971T polymorphism is associated with the HLA haplotype-dependent differential recognition of cigarette smoke components, at least among Caucasian women.
doi:10.1089/gte.2008.0029
PMCID: PMC2635552  PMID: 18939942
5.  Information Needs of Mothers Regarding Communicating BRCA1/2 Cancer Genetic Test Results to their Children 
Genetic testing  2007;11(3):249-255.
Mothers who participate in genetic testing for hereditary breast/ovarian cancer risk must decide if, when, and how to ultimately share their BRCA1 and BRCA2 (BRCA1/2) test results with their minor-age children. One of the primary aides for mothers in making this decision is cancer genetic counseling. However, counseling is limited in how well it can educate mothers about such decisions without the availability of resources that are specific to family communication and genetic testing per se. In an effort to fill this gap and identify mothers most likely to benefit from such resources, surveys were conducted with 187 mothers undergoing BRCA1/2 testing who had children 8-21 years-old. Data were collected weeks after genetic testing but prior to mothers' learning of their test results; quantitative assessments of informational resource needs (i.e., speaking with previous BRCA1/2 testing participants who are parents regarding their experiences, reading educational literature about options and what to expect, speaking with a family counselor, attending a family support group, and self-nominated other resources), testing motivations, decision making vigilance, and decisional conflict regarding communicating test results to children were included. Mothers' most-to-least frequently cited information resource needs were: literature (93.4%), family counseling (85.8%), prior participants (79.0%), support groups (53.9%), and other (28.9%; e.g., pediatricians and psychologists). Seventy-eight percent of mothers were interested in accessing 3 or more resources. In multivariate regression analyses, testing motivations (β=0.35, p=.03), decision making vigilance (β=0.16, p=.00) and decisional conflict (β=0.10, p=.00) were associated with mothers' need level; mothers with a greater interest in testing to learn about their children's risks, those with more vigilant decision making styles, and those with higher decisional conflict had the greatest need. In conjunction with enhanced genetic counseling focusing on family disclosure, educational literature and psychosocial support may promote improved outcomes.
doi:10.1089/gte.2006.0534
PMCID: PMC2495765  PMID: 17949286

Results 1-5 (5)