Search tips
Search criteria

Results 1-6 (6)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Robust and Persistent Replication of the Genotype 6a Hepatitis C Virus Replicon in Cell Culture 
Genotype 6 (GT6) hepatitis C virus (HCV) is prevalent in Southeast Asia and southern China, where it can constitute up to 50% of HCV infections. Despite this, no direct-acting antivirals are approved to treat GT6 HCV infection, and no cell culture systems have been described. In this study, we aimed to develop a GT6 HCV subgenomic replicon to facilitate the identification and development of new HCV therapies with pan-genotype activity. A subgenomic replicon cDNA encoding a GT6a consensus sequence plus an NS5A amino acid substitution (S232I) was synthesized. Electroporation of RNA encoding the GT6a replicon into Huh-7-derived cells consistently yielded 20 to 100 stable replicon colonies. Genotypic analyses of individual replicon colonies revealed new adaptive mutations across multiple viral nonstructural proteins. The E30V and K272R mutations in NS3 and the K34R mutation in NS4A were observed most frequently and were confirmed to enhance GT6a replicon replication in the presence of the NS5A amino acid substitution S232I. These new adaptive mutations allowed establishment of robust luciferase-encoding GT6a replicons for reproducible quantification of HCV replication, and the luciferase-encoding replicons enabled efficient determinations of antiviral activity for HCV inhibitors in a 384-well assay format. While nucleoside/nucleotide NS5B inhibitors and cyclophilin A inhibitors had similar antiviral activities against both GT6a and GT1b replicons, some nonnucleoside NS5B inhibitors, NS3 protease inhibitors, and NS5A inhibitors had less antiviral activity against GT6a replicons. In conjunction with other genotype replicons, this robust GT6a replicon system will aid in the development of pan-genotypic HCV regimens.
PMCID: PMC3993266  PMID: 24550344
2.  Inhibition of Hepatitis C Virus Replication by GS-6620, a Potent C-Nucleoside Monophosphate Prodrug 
As a class, nucleotide inhibitors (NIs) of the hepatitis C virus (HCV) nonstructural protein 5B (NS5B) RNA-dependent RNA polymerase offer advantages over other direct-acting antivirals, including properties, such as pangenotype activity, a high barrier to resistance, and reduced potential for drug-drug interactions. We studied the in vitro pharmacology of a novel C-nucleoside adenosine analog monophosphate prodrug, GS-6620. It was found to be a potent and selective HCV inhibitor against HCV replicons of genotypes 1 to 6 and against an infectious genotype 2a virus (50% effective concentration [EC50], 0.048 to 0.68 μM). GS-6620 showed limited activities against other viruses, maintaining only some of its activity against the closely related bovine viral diarrhea virus (EC50, 1.5 μM). The active 5′-triphosphate metabolite of GS-6620 is a chain terminator of viral RNA synthesis and a competitive inhibitor of NS5B-catalyzed ATP incorporation, with Ki/Km values of 0.23 and 0.18 for HCV NS5B genotypes 1b and 2a, respectively. With its unique dual substitutions of 1′-CN and 2′-C-Me on the ribose ring, the active triphosphate metabolite was found to have enhanced selectivity for the HCV NS5B polymerase over host RNA polymerases. GS-6620 demonstrated a high barrier to resistance in vitro. Prolonged passaging resulted in the selection of the S282T mutation in NS5B that was found to be resistant in both cellular and enzymatic assays (>30-fold). Consistent with its in vitro profile, GS-6620 exhibited the potential for potent anti-HCV activity in a proof-of-concept clinical trial, but its utility was limited by the requirement of high dose levels and pharmacokinetic and pharmacodynamic variability.
PMCID: PMC4023746  PMID: 24419349
3.  Preclinical Characterization of the Novel Hepatitis C Virus NS3 Protease Inhibitor GS-9451 
GS-9451 is a selective hepatitis C virus (HCV) NS3 protease inhibitor in development for the treatment of genotype 1 (GT1) HCV infection. Key preclinical properties of GS-9451, including in vitro antiviral activity, selectivity, cross-resistance, and combination activity, as well as pharmacokinetic properties, were determined. In multiple GT1a and GT1b replicon cell lines, GS-9451 had mean 50% effective concentrations (EC50s) of 13 and 5.4 nM, respectively, with minimal cytotoxicity; similar potency was observed in chimeric replicons encoding the NS3 protease gene of GT1 clinical isolates. GS-9451 was less active in GT2a replicon cells (EC50 = 316 nM). Additive to synergistic in vitro antiviral activity was observed when GS-9451 was combined with other agents, including alpha interferon, ribavirin, and the polymerase inhibitors GS-6620 and tegobuvir (GS-9190), as well as the NS5A inhibitor ledipasvir (GS-5885). GS-9451 retained wild-type activity against multiple classes of NS5B and NS5A inhibitor resistance mutations. GS-9451 was stable in hepatic microsomes and hepatocytes from human and three other tested species. Systemic clearance was low in dogs and monkeys but high in rats. GS-9451 showed good oral bioavailability in all three species tested. In rats, GS-9451 levels were ∼40-fold higher in liver than plasma after intravenous dosing, and elimination of GS-9451 was primarily through biliary excretion. Together, these results are consistent with the antiviral activity observed in a recent phase 1b study. The results of in vitro cross-resistance and combination antiviral assays support the ongoing development of GS-9451 in combination with other agents for the treatment of chronic HCV infection.
PMCID: PMC3910871  PMID: 23939899
4.  Mechanistic Characterization of GS-9190 (Tegobuvir), a Novel Nonnucleoside Inhibitor of Hepatitis C Virus NS5B Polymerase▿ 
GS-9190 (Tegobuvir) is a novel imidazopyridine inhibitor of hepatitis C virus (HCV) RNA replication in vitro and has demonstrated potent antiviral activity in patients chronically infected with genotype 1 (GT1) HCV. GS-9190 exhibits reduced activity against GT2a (JFH1) subgenomic replicons and GT2a (J6/JFH1) infectious virus, suggesting that the compound's mechanism of action involves a genotype-specific viral component. To further investigate the GS-9190 mechanism of action, we utilized the susceptibility differences between GT1b and GT2a by constructing a series of replicon chimeras where combinations of 1b and 2a nonstructural proteins were encoded within the same replicon. The antiviral activities of GS-9190 against the chimeric replicons were reduced to levels comparable to that of the wild-type GT2a replicon in chimeras expressing GT2a NS5B. GT1b replicons in which the β-hairpin region (amino acids 435 to 455) was replaced by the corresponding sequence of GT2a were markedly less susceptible to GS-9190, indicating the importance of the thumb subdomain of the polymerase in this effect. Resistance selection in GT1b replicon cells identified several mutations in NS5B (C316Y, Y448H, Y452H, and C445F) that contributed to the drug resistance phenotype. Reintroduction of these mutations into wild-type replicons conferred resistance to GS-9190, with the number of NS5B mutations correlating with the degree of resistance. Analysis of GS-9190 cross-resistance against previously reported NS5B drug-selected mutations showed that the resistance pattern of GS-9190 is different from other nonnucleoside inhibitors. Collectively, these data demonstrate that GS-9190 represents a novel class of nonnucleoside polymerase inhibitors that interact with NS5B likely through involvement of the β-hairpin in the thumb subdomain.
PMCID: PMC3165336  PMID: 21746939
5.  Optimized high-throughput screen for Hepatitis C virus translation inhibitors 
Journal of Biomolecular Screening  2011;16(2):211-220.
Hepatitis C virus (HCV) is a considerable global health problem for which new classes of therapeutics are needed. We developed a high-throughput assay to identify compounds that selectively block translation initiation from the HCV internal ribosome entry site (HCV IRES). Rabbit reticulocyte lysate conditions were optimized to faithfully report on authentic HCV IRES-dependent translation relative to a 5′ capped mRNA control. We screened a library of ~430,000 small molecules for IRES inhibition, leading to ~1,700 initial hits. After secondary counter screening the vast majority of hits proved to be luciferase and general translation inhibitors. Despite well-optimized in vitro translation conditions, in the end we found no selective HCV IRES inhibitors but did discover a new scaffold of general translation inhibitor. The analysis of these molecules, and the finding that a large fraction of false positives resulted from off-target effects, highlights the challenges inherent in screens for RNA-specific inhibitors.
PMCID: PMC3260011  PMID: 21297107
Hepatitis C virus (HCV); IRES; luciferase; high-throughput screen; rabbit reticulocyte lysate
6.  Novel Hepatitis C Virus Reporter Replicon Cell Lines Enable Efficient Antiviral Screening against Genotype 1a▿  
The hepatitis C virus (HCV) subgenomic replicon is the primary tool for evaluating the activity of anti-HCV compounds in drug discovery research. Despite the prevalence of HCV genotype 1a (∼70% of U.S. HCV patients), few genotype 1a reporter replicon cell lines have been described; this is presumably due to the low replication capacity of such constructs in available Huh-7 cells. In this report, we describe the selection of highly permissive Huh-7 cell lines that support robust replication of genotype 1a subgenomic replicons harboring luciferase reporter genes. These novel cell lines support the replication of multiple genotype 1a replicons (including the H77 and SF9 strains), are significantly more permissive to genotype 1a HCV replication than parental Huh7-Lunet cells, and maintain stable genotype 1a replication levels suitable for antiviral screening. We found that the sensitivity of genotype 1a luciferase replicons to known antivirals was highly consistent between individual genotype 1a clonal cell lines but could vary significantly between genotypes 1a and 1b. Sequencing of the nonstructural region of 12 stable replicon cell clones suggested that the enhanced permissivity is likely due to cellular component(s) in these new cell lines rather than the evolution of novel adaptive mutations in the replicons. These new reagents will enhance drug discovery efforts targeting genotype 1a and facilitate the profiling of compound activity among different HCV genotypes and subtypes.
PMCID: PMC2916306  PMID: 20516274

Results 1-6 (6)