PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-13 (13)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
Document Types
1.  Allosteric heat shock protein 70 inhibitors rapidly rescue synaptic plasticity deficits by reducing aberrant tau 
Biological psychiatry  2013;74(5):367-374.
Background
The microtubule associated protein tau accumulates in neurodegenerative diseases known as tauopathies, the most common being Alzheimer’s disease (AD). One way to treat these disorders may be to reduce abnormal tau levels through chaperone manipulation, thus subverting synaptic plasticity defects caused by tau’s toxic accretion.
Methods
Tauopathy models were used to study the impact of YM-01 on tau. YM-01 is an allosteric promoter of triage functions of the most abundant variant of the Hsp70 family in the brain, Hsc70. The mechanisms by which YM-01 modified Hsc70 activity and tau stability were evaluated with biochemical methods, cell cultures and primary neuronal cultures from tau transgenic mice. YM-01 was also administered to acute brain slices of tau mice; changes in tau stability and electrophysiological correlates of learning and memory were measured.
Results
Tau levels were rapidly and potently reduced in vitro and ex vivo upon treatment with nanomolar concentrations of YM-01. Consistent with Hsc70 having a key role in this process, over-expression of Hsp40 (DNAJB2), an Hsp70 co-chaperone, suppressed YM-01 activity. In contrast to its effects in pathogenic tauopathy models, YM-01 had little activity in ex vivo brain slices from normal, wildtype mice unless microtubules were disrupted, suggesting that Hsc70 acts preferentially on abnormal pools of free tau. Finally, treatment with YM-01 increased long-term potentiation in from tau transgenic brain slices.
Conclusions
Therapeutics that exploit the ability of chaperones to selectively target abnormal tau can rapidly and potently rescue the synaptic dysfunction that occurs in AD and other tauopathies.
doi:10.1016/j.biopsych.2013.02.027
PMCID: PMC3740016  PMID: 23607970
tau; Alzheimer’s disease; chaperones; Hsc70; rhodocyanine; YM-01
2.  Synthesis and Initial Evaluation of YM-08, a Blood-Brain Barrier Permeable Derivative of the Heat Shock Protein 70 (Hsp70) Inhibitor MKT-077, Which Reduces Tau Levels 
ACS Chemical Neuroscience  2013;4(6):930-939.
The molecular chaperone, heat shock protein 70 (Hsp70), is an emerging drug target for treating neurodegenerative tauopathies. We recently found that one promising Hsp70 inhibitor, MKT-077, reduces tau levels in cellular models. However, MKT-077 does not penetrate the blood-brain barrier (BBB), limiting its use as either a clinical candidate or probe for exploring Hsp70 as a drug target in the central nervous system (CNS). We hypothesized that replacing the cationic pyridinium moiety in MKT-077 with a neutral pyridine might improve its clogP and enhance its BBB penetrance. To test this idea, we designed and synthesized YM-08, a neutral analogue of MKT-077. Like the parent compound, YM-08 bound to Hsp70 in vitro and reduced phosphorylated tau levels in cultured brain slices. Pharmacokinetic evaluation in CD1 mice showed that YM-08 crossed the BBB and maintained a brain/plasma (B/P) value of ∼0.25 for at least 18 h. Together, these studies suggest that YM-08 is a promising scaffold for the development of Hsp70 inhibitors suitable for use in the CNS.
doi:10.1021/cn300210g
PMCID: PMC3689201  PMID: 23472668
Allosteric inhibitors; microtubule-associated protein tau (MAPT); Alzheimer’s disease; tauopathy; proteostasis; protein quality control; rhodacyanines
3.  Cysteine Reactivity Distinguishes Redox Sensing by the Heat Inducible and Constitutive Forms of Heat Shock Protein 70 (Hsp70) 
Chemistry & biology  2012;19(11):1391-1399.
The heat shock protein 70 (Hsp70) family of molecular chaperones has important functions in maintaining proteostasis under stress conditions. Several Hsp70 isoforms, especially Hsp72 (HSPA1A), are dramatically upregulated in response to stress; however, it is unclear whether these family members have biochemical properties that are specifically adapted to these scenarios. The redox-active compound, methylene blue (MB), has been shown to inhibit the ATPase activity of Hsp72 in vitro and it promotes degradation of the Hsp72 substrate, tau, in cellular and animal models. Here, we report that MB irreversibly inactivates Hsp72 but not the nearly identical, constitutively expressed isoform, heat shock cognate 70 (Hsc70; HSPA8). Mass spectrometry results show that MB oxidizes Cys306, which is not conserved in Hsc70. Molecular models suggested that oxidation of Cys306 exposes Cys267 to modification and that both events contribute to loss of ATP binding in response to MB. Consistent with this model, mutating Cys267 and Cys306 to serine made Hsp72 largely resistant to MB in vitro and over-expression of the C306S mutant blocked MB-mediated loss of tau in a cellular model. Further, mutating Cys267 and Cys306 to the pseudo-oxidation mimic, aspartic acid, mirrored MB treatment: the C267D and C306D mutants had reduced ATPase activity in vitro and over-expression of the C267/306D double mutant significantly reduced tau levels in cells. Together, these results suggest that redox sensing by specific cysteine residues in Hsp72, but not Hsc70, may be an important component of the chaperone response to oxidative stress.
doi:10.1016/j.chembiol.2012.07.026
PMCID: PMC3508472  PMID: 23177194
4.  A Screen for Modulators of Large T Antigen's ATPase Activity Uncovers Novel Inhibitors of Simian Virus 40 and BK Virus Replication 
Antiviral research  2012;96(1):70-81.
New polyomaviruses are continually being identified, and it is likely that links between this virus family and disease will continue to emerge. Unfortunately, a specific treatment for polyomavirus-associated disease is lacking. Because polyomaviruses express large Tumor Antigen, TAg, we hypothesized that small molecule inhibitors of the essential ATPase activity of TAg would inhibit viral replication. Using a new screening platform, we identified inhibitors of TAg's ATPase activity. Lead compounds were moved into a secondary assay, and ultimately two FDA approved compounds, bithionol and hexachlorophene, were identified as the most potent TAg inhibitors known to date. Both compounds inhibited Simian Virus 40 replication as assessed by plaque assay and quantitative PCR. Moreover, these compounds inhibited BK virus, which causes BKV Associated Nephropathy. In neither case was host cell viability compromised at these concentrations. Our data indicate that directed screening for TAg inhibitors is a viable method to identify polyomavirus inhibitors, and that bithionol and hexachlorophene represent lead compounds that may be further modified and/or ultimately used to combat diseases associated with polyomavirus infection.
doi:10.1016/j.antiviral.2012.07.012
PMCID: PMC3465505  PMID: 22898086
polyomavirus; bithionol; hexachlorophene; T antigen; molecular chaperone; high throughput screen
5.  Activation of Hsp70 reduces neurotoxicity by promoting polyglutamine protein degradation 
Nature chemical biology  2012;9(2):112-118.
We sought novel strategies to reduce levels of the polyglutamine androgen receptor (polyQ AR) and achieve therapeutic benefits in models of spinobulbar muscular atrophy (SBMA), a protein aggregation neurodegenerative disorder. Proteostasis of the polyQ AR is controlled by the Hsp90/Hsp70-based chaperone machinery, but mechanisms regulating the protein’s turnover are incompletely understood. We demonstrate that overexpression of Hip, a co-chaperone that enhances binding of Hsp70 to its substrates, promotes client protein ubiquitination and polyQ AR clearance. Furthermore, we identify a small molecule that acts similarly to Hip by allosterically promoting Hsp70 binding to unfolded substrates. Like Hip, this synthetic co-chaperone enhances client protein ubiquitination and polyQ AR degradation. Both genetic and pharmacologic approaches targeting Hsp70 alleviate toxicity in a Drosophila model of SBMA. These findings highlight the therapeutic potential of allosteric regulators of Hsp70, and provide new insights into the role of the chaperone machinery in protein quality control.
doi:10.1038/nchembio.1140
PMCID: PMC3552084  PMID: 23222885
6.  HEME-DEPENDENT ACTIVATION OF NEURONAL NITRIC-OXIDE SYNTHASE BY CYTOSOL IS DUE TO AN HSP70-DEPENDENT, THIOREDOXIN-MEDIATED THIOL-DISULFIDE INTERCHANGE IN THE HEME/SUBSTRATE BINDING CLEFT† 
Biochemistry  2011;50(33):7146-7156.
We have reported that heme-dependent activation of apo-neuronal nitric oxide synthase (apo-nNOS) to the active holo-enzyme dimer is dependent upon factors present in reticulocyte lysate and other cytosols. Here, we find that both Hsp70 and thioredoxin are components of the activation system. The apo-nNOS activating activity of reticulocyte lysate is retained in a pool of fractions containing Hsp70 that elute from DE52 prior to Hsp90. All of the activating activity and 20–30% of the Hsp70 elute in the flow-through fraction upon subsequent ATP-agarose chromatography. Apo-nNOS activation by this flow-through fraction is inhibited by pifithrin-μ, a small molecule inhibitor of Hsp70, suggesting that a non-ATP-binding form of Hsp70 is involved in heme-dependent apo-nNOS activation. Previous work has shown that apo-nNOS can be activated by thiol-disulfide exchange, and we show substantial activation with a small molecule dithiol modeled on the active motifs of thioredoxin and protein disulfide isomerase. Further fractionation of the ATP-agarose flow-through on Sephacryl S-300 separates free thioredoxin from apo-nNOS activating activity, Hsp70, and a small amount of thioredoxin, all of which are eluted throughout the macromolecular peak. Incubation of apo-nNOS with the macromolecular fraction in combination with either the thioredoxin-containing fraction or with purified recombinant human thioredoxin restores full heme-dependent activating activity. This supports a model in which Hsp70 binding to apo-nNOS stabilizes an open state of the heme/substrate binding cleft to facilitate thioredoxin access to the active site cysteine that coordinates with heme iron, permitting heme binding and dimerization to the active enzyme.
doi:10.1021/bi200751t
PMCID: PMC3156863  PMID: 21755988
7.  Correction: Rhodacyanine Derivative Selectively Targets Cancer Cells and Overcomes Tamoxifen Resistance 
PLoS ONE  2012;7(7):10.1371/annotation/7493e5d2-4c1a-43eb-a83f-16814861ff13.
doi:10.1371/annotation/7493e5d2-4c1a-43eb-a83f-16814861ff13
PMCID: PMC3398052
8.  Molecular chaperones and regulation of tau quality control: strategies for drug discovery in tauopathies 
Future medicinal chemistry  2011;3(12):1523-1537.
Tau is a microtubule-associated protein that accumulates in at least 15 different neurodegenerative disorders, which are collectively referred to as tauopathies. In these diseases, tau is often hyperphosphorylated and found in aggregates, including paired helical filaments, neurofibrillary tangles and other abnormal oligomers. Tau aggregates are associated with neuron loss and cognitive decline, which suggests that this protein can somehow evade normal quality control allowing it to aberrantly accumulate and become proteotoxic. Consistent with this idea, recent studies have shown that molecular chaperones, such as heat shock protein 70 and heat shock protein 90, counteract tau accumulation and neurodegeneration in disease models. These molecular chaperones are major components of the protein quality control systems and they are specifically involved in the decision to retain or degrade many proteins, including tau and its modified variants. Thus, one potential way to treat tauopathies might be to either accelerate interactions of abnormal tau with these quality control factors or tip the balance of triage towards tau degradation. In this review, we summarize recent findings and suggest models for therapeutic intervention.
doi:10.4155/fmc.11.88
PMCID: PMC3190966  PMID: 21882945
9.  Rhodacyanine Derivative Selectively Targets Cancer Cells and Overcomes Tamoxifen Resistance 
PLoS ONE  2012;7(4):e35566.
MKT-077, a rhodacyanine dye, was shown to produce cancer specific cell death. However, complications prevented the use of this compound beyond clinical trials. Here we describe YM-1, a derivative of MKT-077. We found that YM-1 was more cytotoxic and localized differently than MKT-077. YM-1 demonstrated this cytotoxicity across multiple cancer cell lines. This toxicity was limited to cancer cell lines; immortalized cell models were unaffected. Brief applications of YM-1 were found to be non-toxic. Brief treatment with YM-1 restored tamoxifen sensitivity to a refractory tamoxifen-resistant MCF7 cell model. This effect is potentially due to altered estrogen receptor alpha phosphorylation, an outcome precipitated by selective reductions in Akt levels (Akt/PKB). Thus, modifications to the rhodocyanine scaffold could potentially be made to improve efficacy and pharmacokinetic properties. Moreover, the impact on tamoxifen sensitivity could be a new utility for this compound family.
doi:10.1371/journal.pone.0035566
PMCID: PMC3338522  PMID: 22563386
10.  Chemical Screens Against A Reconstituted Multi-Protein Complex: Myricetin Blocks DnaJ Regulation of DnaK through an Allosteric Mechanism 
Chemistry & biology  2011;18(2):210-221.
SUMMARY
DnaK is a molecular chaperone responsible for multiple aspects of proteostasis. The intrinsically slow ATPase activity of DnaK is stimulated by its co-chaperone, DnaJ, and these proteins often work in concert. To identify inhibitors, we screened plant-derived extracts against a re-constituted mixture of DnaK and DnaJ. This approach resulted in the identification of flavonoids, including myricetin, which inhibited activity by up to 75%. Interestingly, myricetin prevented DnaJ-mediated stimulation of ATPase activity, with minimal impact on either DnaK’s intrinsic turnover rate or its stimulation by another co-chaperone, GrpE. Using NMR, we found that myricetin binds DnaK at an unanticipated site between the IB and IIB subdomains and that it allosterically blocked binding of DnaJ. Together, these results highlight a “gray box” screening approach, which approximates a limited amount of the complexity expected in physiological, multi-protein systems.
doi:10.1016/j.chembiol.2010.12.010
PMCID: PMC3057461  PMID: 21338918
11.  High Throughput Screen for Escherichia coli Heat Shock Protein 70 (Hsp70/DnaK): ATPase Assay in Low Volume By Exploiting Energy Transfer 
Journal of biomolecular screening  2010;15(10):1211-1219.
Members of the heat shock protein 70 (Hsp70) family of molecular chaperones are emerging as potential therapeutic targets. Their ATPase activity has classically been measured using colorimetric phosphate-detection reagents, such as quinaldine red (QR). While such assays are suitable for 96-well plate formats, they typically lose sensitivity when attempted in lower volume due to path length and meniscus effects. These limitations and Hsp70’s weak enzymatic activity have combined to create significant challenges in high throughput screening. To overcome these difficulties, we have adopted an energy transfer strategy that was originally reported by Zuck et al. (Anal. Biochem. 2005, 342:254–259). Briefly, white 384-well plates emit fluorescence when irradiated at 430 nm. In turn, this intrinsic fluorescence can be quenched by energy transfer with the QR-based chromophore. Using this more sensitive approach, we tested 55,400 compounds against DnaK, a prokaryotic member of the Hsp70 family. The assay performance was good (Z′ ~ 0.6, CV ~8%) and at least one promising new inhibitor was identified. In secondary assays, this compound specifically blocked stimulation of DnaK by its co-chaperone, DnaJ. Thus, this simple and inexpensive adaptation of a colorimetric method might be suitable for screening against Hsp70-family members.
doi:10.1177/1087057110380571
PMCID: PMC3052282  PMID: 20926844
phosphate; malachite green; ATPase; molecular chaperone; fluorescence assay
12.  Chemical Manipulation of Hsp70 ATPase Activity Regulates Tau Stability 
Alzheimer’s disease and other tauopathies have recently been clustered with a group of nervous system disorders termed protein misfolding diseases. The common element established between these disorders is their requirement for processing by the chaperone complex. It is now clear that the individual components of the chaperone system, such as Hsp70 and Hsp90, exist in an intricate signaling network that exerts pleiotropic effects on a host of substrates. Therefore, we have endeavored to identify new compounds that can specifically regulate individual components of the chaperone family. Here, we hypothesized that chemical manipulation of Hsp70 ATPase activity, a target that has not previously been pursued, could illuminate an entirely novel pathway towards chaperone-based therapies. Using a newly developed high-throughput screening system, we identified inhibitors and activators of Hsp70 enzymatic activity. Inhibitors led to rapid proteasome-dependent tau degradation in a cell-based model. Conversely, Hsp70 activators preserved tau levels in the same system. Hsp70 inhibition did not result in general protein degradation, nor did it induce a heat shock response. We also found that inhibiting Hsp70 ATPase activity after increasing its expression levels facilitated tau degradation at lower doses, suggesting that we can combine genetic and pharmacologic manipulation of Hsp70 to control the fate of bound substrates. Disease relevance of this strategy was further established when tau levels were rapidly and substantially reduced in brain tissue from tau transgenic mice. These findings reveal an entirely novel path towards therapeutic intervention of tauopathies by inhibition of the previously untargeted ATPase activity of Hsp70.
doi:10.1523/JNEUROSCI.3345-09.2009
PMCID: PMC2775811  PMID: 19793966
Tau; Alzheimer’s disease; chaperones; heat shock proteins; therapeutic; chemical
13.  Pharmacological Targeting of the Hsp70 Chaperone 
The molecular chaperone, heat shock protein 70 (Hsp70), acts at multiple steps in a protein’s life cycle, including during the processes of folding, trafficking, remodeling and degradation. To accomplish these various tasks, the activity of Hsp70 is shaped by a host of co-chaperones, which bind to the core chaperone and influence its functions. Genetic studies have strongly linked Hsp70 and its co-chaperones to numerous diseases, including cancer, neurodegeneration and microbial pathogenesis, yet the potential of this chaperone as a therapeutic target remains largely underexplored. Here, we review the current state of Hsp70 as a drug target, with a special emphasis on the important challenges and opportunities imposed by its co-chaperones, protein-protein interactions and allostery.
PMCID: PMC2799686  PMID: 19860737
proteostasis; flavonoids; dihydropyrimidines; spergualin; sulfoglycolipids; geranylgeranyl acetone; protein folding; ATPase; protein-protein interactions

Results 1-13 (13)