Search tips
Search criteria

Results 1-10 (10)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Novel Indole-2-Carboxamide Compounds Are Potent Broad-Spectrum Antivirals Active against Western Equine Encephalitis Virus In Vivo 
Journal of Virology  2014;88(19):11199-11214.
Neurotropic alphaviruses, including western, eastern, and Venezuelan equine encephalitis viruses, cause serious and potentially fatal central nervous system infections in humans for which no currently approved therapies exist. We previously identified a series of thieno[3,2-b]pyrrole derivatives as novel inhibitors of neurotropic alphavirus replication, using a cell-based phenotypic assay (W. Peng et al., J. Infect. Dis. 199:950–957, 2009, doi:, and subsequently developed second- and third-generation indole-2-carboxamide derivatives with improved potency, solubility, and metabolic stability (J. A. Sindac et al., J. Med. Chem. 55:3535–3545, 2012, doi:; J. A. Sindac et al., J. Med. Chem. 56:9222–9241, 2013, In this report, we describe the antiviral activity of the most promising third-generation lead compound, CCG205432, and closely related analogs CCG206381 and CCG209023. These compounds have half-maximal inhibitory concentrations of ∼1 μM and selectivity indices of >100 in cell-based assays using western equine encephalitis virus replicons. Furthermore, CCG205432 retains similar potency against fully infectious virus in cultured human neuronal cells. These compounds show broad inhibitory activity against a range of RNA viruses in culture, including members of the Togaviridae, Bunyaviridae, Picornaviridae, and Paramyxoviridae families. Although their exact molecular target remains unknown, mechanism-of-action studies reveal that these novel indole-based compounds target a host factor that modulates cap-dependent translation. Finally, we demonstrate that both CCG205432 and CCG209023 dampen clinical disease severity and enhance survival of mice given a lethal western equine encephalitis virus challenge. These studies demonstrate that indole-2-carboxamide compounds are viable candidates for continued preclinical development as inhibitors of neurotropic alphaviruses and, potentially, of other RNA viruses.
IMPORTANCE There are currently no approved drugs to treat infections with alphaviruses. We previously identified a novel series of compounds with activity against these potentially devastating pathogens (J. A. Sindac et al., J. Med. Chem. 55:3535–3545, 2012, doi:; W. Peng et al., J. Infect. Dis. 199:950–957, 2009, doi:; J. A. Sindac et al., J. Med. Chem. 56:9222–9241, 2013, We have now produced third-generation compounds with enhanced potency, and this manuscript provides detailed information on the antiviral activity of these advanced-generation compounds, including activity in an animal model. The results of this study represent a notable achievement in the continued development of this novel class of antiviral inhibitors.
PMCID: PMC4178776  PMID: 25031353
2.  Optimization of Novel Nipecotic Bis(amide) Inhibitors of the Rho/MKL1/SRF Transcriptional Pathway as Potential Anti-metastasis Agents 
CCG-1423 (1) is a novel inhibitor of Rho/MKL1/SRF-mediated gene transcription that inhibits invasion of PC-3 prostate cancer cells in a Matrigel model of metastasis. We recently reported the design and synthesis of conformationally restricted analogs (e.g. 2) with improved selectivity for inhibiting invasion vs acute cytotoxicity. In this study we conducted a survey of aromatic substitution with the goal of improving physicochemical parameters (e.g. ClogP, MW) for future efficacy studies in vivo. Two new compounds were identified that attenuated cytotoxicity even further, and were 4-fold more potent than 2 at inhibiting PC-3 cell migration in a scratch wound assay. One of these (8a, CCG-203971, IC50 = 4.2 μM) was well tolerated in mice for 5 days at 100 mg/kg/day i.p., and was able to achieve plasma levels exceeding the migration IC50 for up to 3 hours.
PMCID: PMC3707396  PMID: 23707258
3.  X-ray crystal structures of the Escherichia coli RNA polymerase in complex with Benzoxazinorifamycins 
Journal of medicinal chemistry  2013;56(11):4758-4763.
Rifampin, a semi-synthetic rifamycin, is the cornerstone of current tuberculosis treatment. Among many semi-synthetic rifamycins, benzoxazinorifamycins have great potential for TB treatment due to their superior affinity for wild-type and rifampin-resistant Mycobacterium tuberculosis RNA polymerases, and their reduced hepatic Cyp450 induction activity. In this study, we have determined the crystal structures of the Escherichia coli RNA polymerase complexes with two benzoxazinorifamycins. The ansa-naphthalene moieties of the benzoxazinorifamycins bind in a deep pocket of the β subunit, blocking the path of the RNA transcript. The C3′-tail of benzoxazinorifamycin fits a cavity between the β subunit and σ factor. We propose that, in addition to blocking RNA exit, the benzoxazinorifamycin C3′-tail changes the σ region3.2 loop position, which influences the template DNA at the active site thereby reducing the efficiency of transcription initiation. This study supports expansion of structure–activity relationships of benzoxazinorifamycins inhibition of RNA polymerase toward uncovering superior analogues with development potential.
PMCID: PMC3745299  PMID: 23679862
Escherichia coli RNA polymerase; Benzoxazinorifamycins; X-ray crystallography; Tuberculosis
4.  Inhibitors of TonB Function Identified by a High-Throughput Screen for Inhibitors of Iron Acquisition in Uropathogenic Escherichia coli CFT073 
mBio  2014;5(2):e01089-13.
The urinary tract is one of the most common sites of infection in humans, and uropathogenic Escherichia coli (UPEC) is the main causative agent of urinary tract infections. Bacteria colonizing the urinary tract face extremely low iron availability. To counteract this, UPEC expresses a wide variety of iron acquisition systems. To exploit iron acquisition in UPEC as a global target for small-molecule inhibition, we developed and carried out a whole-cell growth-based high throughput screen of 149,243 compounds. Our primary assay was carried out under iron-limiting conditions. Hits in the primary screen were assayed using two counterscreens that ruled out iron chelators and compounds that inhibit growth by means other than inhibition of iron acquisition. We determined dose-response curves under two different iron conditions and purchased fresh compounds for selected hits. After retesting dose-response relationships, we identified 16 compounds that arrest growth of UPEC only under iron-limiting conditions. All compounds are bacteriostatic and do not inhibit proton motive force. A loss-of-target strategy was employed to identify the cellular target of these inhibitors. Two compounds lost inhibitory activity against a strain lacking TonB and were shown to inhibit irreversible adsorption of a TonB-dependent bacteriophage. Our results validate iron acquisition as a target for antibacterial strategies against UPEC and identify TonB as one of the cellular targets.
Half of women will suffer at least one episode of urinary tract infection (UTI) during their lifetime. The current treatment for UTI involves antibiotic therapy. Resistance to currently used antibiotics has steadily increased over the last decade, generating a pressing need for the development of new therapeutic agents. Since iron is essential for colonization and scarce in the urinary tract, targeting iron acquisition would seem to be an attractive strategy. However, the multiplicity and redundancy of iron acquisition systems in uropathogenic Escherichia coli (UPEC) make it difficult to pinpoint a specific cellular target. Here, we identified 16 iron acquisition inhibitors through a whole-cell high-throughput screen, validating iron acquisition as a target for antibacterial strategies against UPEC. We also identified the cellular target of two of the inhibitors as the TonB system.
PMCID: PMC3940036  PMID: 24570372
5.  Small Molecule Screening Identifies Regulators of the Transcription Factor ΔFosB 
ACS Chemical Neuroscience  2012;3(7):546-556.
ΔFosB protein accumulates in the striatum in response to chronic administration of drugs of abuse, L-DOPA, or stress, triggering long lasting neural and behavioral changes that underlie aspects of drug addiction, abnormal involuntary movements (dyskinesia), and depression. ΔFosB binds AP-1 DNA consensus sequences found in promoters of many genes and can both repress or activate gene transcription. In the striatum, ΔFosB is thought to dimerize with JunD to form a functional transcription factor, though strikingly JunD does not accumulate in parallel. One explanation is that ΔFosB can recruit different partners, including itself, depending on the neuron type in which it is induced and the chronic stimulus, generating protein complexes with different effects on gene transcription. To develop chemical probes to study ΔFosB, a high-throughput screen was carried out to identify small molecules that modulate ΔFosB function. Two compounds with low micromolar activity, termed C2 and C6, disrupt the binding of ΔFosB to DNA via different mechanisms, and in in vitro assays stimulate ΔFosB-mediated transcription. In cocaine-treated mice, C2 significantly elevates mRNA levels of the AMPA glutamate receptor GluR2 subunit with specificity, a known target gene of ΔFosB that plays a role in drug addiction and endogenous resilience mechanisms. C2 and C6 show different activities against ΔFosB homodimers compared to ΔFosB/JunD heterodimers, suggesting that these compounds can be used as probes to study the contribution of different ΔFosB-containing complexes on the regulation of gene transcription in biological systems and to assess the utility of ΔFosB as a therapeutic target.
PMCID: PMC3399579  PMID: 22860224
ΔFosB; high throughput screening; transcription factor; drug addiction; dyskinesia; depression
6.  MScreen: An Integrated Compound Management and High Throughput Screening (HTS) Data Storage and Analysis System 
Journal of biomolecular screening  2012;17(8):1080-1087.
High-throughput screening (HTS) has historically been used by the pharmaceutical industry to rapidly test hundreds of thousands of compounds to identify potential drug candidates. More recently, academic groups have used HTS to identify new chemical probes or small interfering RNA (siRNA) that can serve as experimental tools to examine the biology or physiology of novel proteins, processes, or interactions. HTS presents a significant challenge with the vast and complex nature of data generated. This report describes MScreen, a web-based, open-source cheminformatics application for chemical library and siRNA plate management, primary HTS and dose-response data handling, structure search, and administrative functions. Each project in MScreen can be secured with passwords or shared in an open information environment which enables collaborators to easily compare data from many screens, providing a useful means to identify compounds with desired selectivity. Unique features include compound, substance, mixture, and siRNA plate creation and formatting; automated dose-response fitting and quality control (QC); and user, target, and assay method administration. MScreen provides an effective means to facilitate HTS information handling and analysis in the academic setting so that users can efficiently view their screening data and evaluate results for follow-up.
PMCID: PMC3600606  PMID: 22706349
chemoinformatics; data analysis software; open source; high-throughput screening
7.  Complementary Cell-Based High Throughput Screens Identify Novel Modulators of the Unfolded Protein Response 
Journal of Biomolecular Screening  2011;16(8):825-835.
Despite advances toward understanding the prevention and treatment of many cancers, patients who suffer from oral squamous cell carcinoma (OSCC) confront a survival rate that has remained unimproved for more than two decades indicating our ability to treat them pharmacologically has reached a plateau. In an ongoing effort to improve the clinical outlook for this disease, we previously reported that an essential component of the mechanism by which the proteasome inhibitor bortezomib (PS-341, Velcade) induced apoptosis in OSCC required the activation of a terminal unfolded protein response (UPR). Predicated on these studies, we hypothesized that high throughput screening (HTS) of large diverse chemical libraries might identify more potent or selective small molecule activators of the apoptotic arm of the UPR to control or kill OSCC. We have developed complementary cell-based assays using stably transfected CHO-K1 cell lines that individually assess the PERK/eIF2α/CHOP (apoptotic) or the IRE1/XBP1 (adaptive) UPR sub-pathways. A ~66K compound collection was screened at the University of Michigan Center for Chemical Genomics that included a unique library of pre-fractionated natural product extracts. The mycotoxin methoxycitrinin was isolated from a natural extract and found to selectively activate the CHOP-luciferase reporter at 80μM. A series of citrinin derivatives were isolated from these extracts, including a unique congener that has not been previously described. In an effort to identify more potent compounds we examined the ability of citrinin and the structurally related mycotoxins ochratoxin A and patulin to activate the UPR. Strikingly, we found that patulin at 2.5 – 10μM induced a terminal UPR in a panel of OSCC cells that was characterized by an increase in CHOP, GADD34 and ATF3 gene expression and XBP1 splicing. A luminescent caspase assay and the induction of several BH3-only genes indicated that patulin could induce apoptosis in OSCC cells. These data support the use of this complementary HTS strategy to identify novel modulators of UPR signaling and tumor cell death.
PMCID: PMC3374590  PMID: 21844328
unfolded protein response; endoplasmic reticulum stress; cell-based assay; luciferase reporter; natural products
8.  High Throughput Screen for Escherichia coli Heat Shock Protein 70 (Hsp70/DnaK): ATPase Assay in Low Volume By Exploiting Energy Transfer 
Journal of biomolecular screening  2010;15(10):1211-1219.
Members of the heat shock protein 70 (Hsp70) family of molecular chaperones are emerging as potential therapeutic targets. Their ATPase activity has classically been measured using colorimetric phosphate-detection reagents, such as quinaldine red (QR). While such assays are suitable for 96-well plate formats, they typically lose sensitivity when attempted in lower volume due to path length and meniscus effects. These limitations and Hsp70’s weak enzymatic activity have combined to create significant challenges in high throughput screening. To overcome these difficulties, we have adopted an energy transfer strategy that was originally reported by Zuck et al. (Anal. Biochem. 2005, 342:254–259). Briefly, white 384-well plates emit fluorescence when irradiated at 430 nm. In turn, this intrinsic fluorescence can be quenched by energy transfer with the QR-based chromophore. Using this more sensitive approach, we tested 55,400 compounds against DnaK, a prokaryotic member of the Hsp70 family. The assay performance was good (Z′ ~ 0.6, CV ~8%) and at least one promising new inhibitor was identified. In secondary assays, this compound specifically blocked stimulation of DnaK by its co-chaperone, DnaJ. Thus, this simple and inexpensive adaptation of a colorimetric method might be suitable for screening against Hsp70-family members.
PMCID: PMC3052282  PMID: 20926844
phosphate; malachite green; ATPase; molecular chaperone; fluorescence assay
9.  Identification of Thieno[3,2-b]Pyrrole Derivatives as Novel Small Molecule Inhibitors of Neurotropic Alphaviruses 
The Journal of infectious diseases  2009;199(7):950-957.
Neurotropic alphaviruses such as western, eastern, and Venezuelan equine encephalitis viruses cause serious and potentially fatal central nervous system infections in humans and are high-priority potential bioterrorism agents. There are currently no widely available vaccines or licensed therapies for these virulent pathogens. To identify potential novel antiviral drugs, we developed a cell-based assay with a western equine encephalitis virus replicon that expresses a luciferase reporter gene and screened a small molecule diversity library of 51,028 compounds. We identified and validated a thieno[3,2-b]pyrrole compound with a half maximal inhibitory concentration of <10 µmol/L, a selectivity index >20, and potent activity against live virus in cultured neuronal cells. Furthermore, a structure-activity relationship analysis with 20 related compounds identified several with enhanced activity profiles, including 6 with submicromolar half maximal inhibitory concentrations. In conclusion, we have identified a novel class of promising inhibitors with potent activity against virulent neurotropic alphaviruses.
PMCID: PMC2788236  PMID: 19239364
10.  Differences between high- and low-affinity complexes of enzymes and non-enzymes 
Journal of medicinal chemistry  2008;51(20):6432-6441.
Physical differences in small molecule binding between enzymes and non-enzymes were found through mining the protein-ligand database, Binding MOAD (Mother of All Databases). The data suggest that divergent approaches may be more productive for improving the affinity of ligands for the two classes of proteins. High-affinity ligands of enzymes are much larger than those with low affinity, indicating that the addition of complementary functional groups is likely to improve the affinity of an enzyme inhibitor. However, this process may not be as fruitful for ligands of non-enzymes. High- and low-affinity ligands of non-enzymes are nearly the same size, so modest modifications and isosteric replacement might be most productive. The inherent differences between enzymes and non-enzymes have significant ramifications for scoring functions and structure-based drug design. In particular, non-enzymes were found to have greater ligand efficiencies than enzymes. Ligand efficiencies are often used to indicate druggability of a target, and this finding supports the feasibility of non-enzymes as drug targets. The differences in ligand efficiencies do not appear to come from the ligands; instead, the pockets yield different amino acid compositions, despite very similar distributions of amino acids in the overall protein sequences.
PMCID: PMC2692211  PMID: 18826206

Results 1-10 (10)