Search tips
Search criteria

Results 1-25 (69)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
more »
1.  Pharmacological Chaperone for Alpha-Crystallin Partially Restores Transparency in Cataract Models 
Science (New York, N.Y.)  2015;350(6261):674-677.
Cataracts reduce vision in 50% of individuals over 70 years of age and are a common form of blindness worldwide. Cataracts are caused when damage to the major lens crystallin proteins causes their misfolding and aggregation into insoluble amyloids. Using a thermal stability assay, we identified a class of molecules that bind α-crystallins (cryAA and cryAB) and reversed their aggregation in vitro. The most promising compound improved lens transparency in the R49C cryAA and R120G cryAB mouse models of hereditary cataract. It also partially restored solubility in aged mouse and human lenses. These findings suggest an approach to treating cataracts by stabilizing α-crystallins.
PMCID: PMC4725592  PMID: 26542570
2.  Specific binding of tetratricopeptide repeat (TPR) proteins to heat shock protein 70 (Hsp70) and heat shock protein 90 (Hsp90) is regulated by affinity and phosphorylation 
Biochemistry  2015;54(48):7120-7131.
The heat shock proteins Hsp70 and Hsp90 require the help of tetratricopeptide repeat (TPR) domain-containing co-chaperones for many of their functions. Each monomer of Hsp70 or Hsp90 can only interact with a single TPR co-chaperone at a time and each member of the TPR co-chaperone family brings distinct functions into the complex. Thus, competition for TPR binding sites on Hsp70 and Hsp90 appears to shape chaperone activity. Recent structural and biophysical efforts have improved our understanding of chaperone-TPR contacts, focusing on the C-terminal EEVD motif that is present in both chaperones. To better understand these important protein-protein interactions on a wider scale, we measured the affinity of five TPR co-chaperones, CHIP, Hop, DnaJC7, FKBP51, and FKBP52, for the C-termini of four members of the chaperone family, Hsc70, Hsp72, Hsp90α, and Hsp90β, in vitro. These studies identified some surprising selectivity amongst the chaperone-TPR pairs, including the selective binding of FKBP51/52 to Hsp90α/β. These results also revealed that other TPR co-chaperones are only able to weakly discriminate between the chaperones or between their paralogs. We also explored whether mimicking phosphorylation of serine and threonine residues near the EEVD motif might impact affinity and found that pseudophosphorylation had selective effects on binding to CHIP but not other co-chaperones. Together, these findings suggest that both intrinsic affinity and post-translational modifications tune the interactions between Hsp70/90 and the TPR co-chaperones.
PMCID: PMC4714923  PMID: 26565746
3.  Selective Targeting of Cells via Bi-Specific Molecules that Exploit Co-Expression of Two Intracellular Proteins 
ACS chemical biology  2015;10(11):2441-2447.
In drug discovery, small molecules must often discriminate between healthy and diseased cells. This feat is usually accomplished by binding to a protein that is preferentially expressed in the target cell or on its surface. However, in many cases, the expression of an individual protein may not generate sufficient cyto-selectivity. Here, we demonstrate that bi-specific molecules can better discriminate between similar cell types by exploiting their simultaneous affinity for two proteins. Inspired by the natural product, FK506, we designed molecules that have affinity for both FKBP12 and HIV protease. Using cell-based reporters and live virus assays, we observed that these compounds preferentially accumulated in cells that express both targets, mimicking an infected lymphocyte. Treatment with FKBP12 inhibitors reversed this partitioning, while over-expression of FKBP12 protein further promoted it. The partitioning into the target cell type could be tuned by controlling the properties of the linker and the affinities for the two proteins. These results show that bi-specific molecules create significantly better potential for cyto-selectivity, which might be especially important in the development of safe and effective anti-virals and anti-cancer compounds.
Graphical Abstract
PMCID: PMC4714926  PMID: 26322864
4.  Defining Hsp70 Subnetworks in Dengue Virus Replication Reveals Key Vulnerability in Flavivirus Infection 
Cell  2015;163(5):1108-1123.
Viral protein homeostasis depends entirely on the machinery of the infected cell. Accordingly, viruses can illuminate the interplay between cellular proteostasis components and their distinct substrates. Here we define how the Hsp70 chaperone network mediates the dengue virus life cycle. Cytosolic Hsp70 isoforms are required at distinct steps of the viral cycle, including entry, RNA replication and virion biogenesis. Hsp70 function at each step is specified by nine distinct DNAJ cofactors. Of these, DnaJB11 relocalizes to virus-induced replication complexes to promote RNA synthesis, while DnaJB6 associates with capsid protein and facilitates virion biogenesis. Importantly, an allosteric Hsp70 inhibitor, JG40, potently blocks infection of different dengue serotypes in human primary blood cells without eliciting viral resistance or exerting toxicity to the host cells. JG40 also blocks replication of other medically-important flaviviruses including yellow fever, West Nile and Japanese encephalitis viruses. Thus, targeting host Hsp70 subnetworks provides a path for broad-spectrum antivirals.
PMCID: PMC4869517  PMID: 26582131
5.  Validation of the Hsp70-Bag3 Protein-Protein Interaction as a Potential Therapeutic Target in Cancer 
Molecular cancer therapeutics  2015;14(3):642-648.
Heat shock protein 70 (Hsp70) is a stress-inducible molecular chaperone that is required for cancer development at several steps. Targeting the active site of Hsp70 has proven relatively challenging, driving interest in alternative approaches. Hsp70 collaborates with the Bcl2-associated athanogene 3 (Bag3) to promote cell survival through multiple pathways, including FoxM1. Therefore, inhibitors of the Hsp70-Bag3 protein-protein interaction (PPI) may provide a non-canonical way to target this chaperone. We report that JG-98, an allosteric inhibitor of this PPI, indeed has anti-proliferative activity (EC50 values between 0.3 and 4 μM) across cancer cell lines from multiple origins. JG-98 destabilized FoxM1 and relieved suppression of downstream effectors, including p21 and p27. Based on these findings, JG-98 was evaluated in mice for pharmacokinetics, tolerability and activity in two xenograft models. The results suggested that the Hsp70-Bag3 interaction may be a promising, new target for anti-cancer therapy.
PMCID: PMC4456214  PMID: 25564440
6.  Deconvolution method for specific and nonspecific binding of ligand to multi-protein complex by native mass spectrometry 
Analytical chemistry  2015;87(16):8541-8546.
In native mass spectrometry, it has been difficult to discriminate between specific binding of a ligand to a multi-protein complex from the nonspecific interactions. Here, we present a deconvolution model that consists of two levels of data reduction. At the first level, the apparent association binding constants are extracted from the measured intensities of the target/ligand complexes by varying ligand concentration. At the second level, two functional forms representing the specific- and non-specific binding events are fit to the binding constants obtained from the first level of modeling. Using this approach, we found that an inverse power distribution described nonspecific binding of α-amanitin to yeast RNA polymerase II. Moreover, treating the concentration of the multi-protein complex as a fitting parameter reduced the impact of inaccuracies in this experimental measurement on the apparent association constants. This model provides an improved way of separating specific and non-specific binding to large, multi-protein complexes in native mass spectrometry.
PMCID: PMC4714924  PMID: 26189511
7.  Conditionally controlling nuclear trafficking in yeast by chemical-induced protein dimerization 
Nature protocols  2010;5(11):1831-1843.
We present here a protocol to conditionally control the nuclear trafficking of target proteins in yeast. In this system, rapamycin is used to heterodimerize two chimeric proteins. one chimera consists of a FK506-binding protein (FKBp12) fused to a cellular ‘address’ (nuclear localization signal or nuclear export sequence). the second chimera consists of a target protein fused to a fluorescent protein and the FKBp12-rapamycin-binding (FrB) domain from FKBp-12-rapamycin associated protein 1 (Frap1, also known as mtor). rapamycin induces dimerization of the FKBp12- and FrB-containing chimeras; these interactions selectively place the target protein under control of the cell address, thereby directing the protein into or out of the nucleus. By chemical-induced dimerization, protein mislocalization is reversible and enables the identification of conditional loss-of-function and gain-of-function phenotypes, in contrast to other systems that require permanent modification of the targeted protein. Yeast strains for this analysis can be constructed in 1 week, and the technique allows protein mislocalization within 15 min after drug treatment.
PMCID: PMC4976631  PMID: 21030958
8.  Synthesis, Stereochemical Analysis, and Derivatization of Myricanol Provide New Probes That Promote Autophagic Tau Clearance 
ACS chemical biology  2015;10(4):1099-1109.
We previously discovered that one specific scalemic preparation of myricanol (1), a constituent of Myrica cerifera (bayberry/southern wax myrtle) root bark, could lower the levels of the microtubule-associated protein tau (MAPT). The significance is that tau accumulates in a number of neurodegenerative diseases, the most common being Alzheimer’s disease (AD). Herein, a new synthetic route to prepare myricanol using a suitable boronic acid pinacol ester intermediate is reported. An X-ray crystal structure of the isolated myricanol (1) was obtained and showed a co-crystal consisting of (+)-aR,11S-myricanol (2) and (−)-aS,11R-myricanol (3) coformers. Surprisingly, 3, obtained from chiral separation from 1, reduced tau levels in both cultured cells and ex vivo brain slices from a mouse model of tauopathy at reasonable mid-to-low micromolar potency, whereas 2 did not. SILAC proteomics and cell assays revealed that 3 promoted tau degradation through an autophagic mechanism, which was in contrast to that of other tau-lowering compounds previously identified by our group. During the course of structure–activity relationship (SAR) development, we prepared compound 13 by acid-catalyzed dehydration of 1. 13 had undergone an unexpected structural rearrangement through the isomyricanol substitution pattern (e.g., 16), as verified by X-ray structural analysis. Compound 13 displayed robust tau-lowering activity, and, importantly, its enantiomers reduced tau levels similarly. Therefore, the semisynthetic analogue 13 provides a foundation for further development as a tau-lowering agent without its SAR being based on chirality.
Graphical abstract
PMCID: PMC4971885  PMID: 25588114
9.  The active Hsc70/tau complex can be exploited to enhance tau turnover without damaging microtubule dynamics 
Human Molecular Genetics  2015;24(14):3971-3981.
The pathological accumulation of abnormally hyperphosphorylated and aggregated tau, a neuronal microtubule (MT)-associated protein that functions to maintain MT stability, is implicated in a number of hereditary and sporadic neurodegenerative diseases including frontotemporal dementia and Alzheimer's disease. Targeting tau for the treatment of these diseases is an area of intense interest and toward that end, modulation of cellular molecular chaperones is a potential therapeutic target. In particular, the constitutive Hsp70 isoform, Hsc70, seems highly interconnected with tau, preserving tau protein levels and synergizing with it to assemble MTs. But the relationship between tau and Hsc70, as well as the impact of this interaction in neurons and its therapeutic implications remain unknown. Using a human dominant negative Hsc70 that resembles isoform selective inhibition of this important chaperone, we found for the first time that Hsc70 activity is required to stimulate MT assembly in cells and brain. However, surprisingly, active Hsc70 also requires active tau to regulate MT assembly in vivo, suggesting that tau acts in some ways as a co-chaperone for Hsc70 to coordinate MT assembly. This was despite tau binding to Hsc70 as substrate, as determined biochemically. Moreover, we show that while chronic Hsc70 inhibition damaged MT dynamics, intermittent treatment with a small molecule Hsp70 inhibitor lowered tau in brain tissue without disrupting MT integrity. Thus, in tauopathies, where MT injury would be detrimental to neurons, the unique relationship of tau with the Hsc70 machinery can be exploited to deplete tau levels without damaging MT networks.
PMCID: PMC4560066  PMID: 25882706
10.  Concise Synthesis of Spergualin-Inspired Molecules With Broad-Spectrum Antibiotic Activity 
MedChemComm  2015;6(5):912-918.
There is a growing need to identify new, broad-spectrum antibiotics. The natural product spergualin was previously shown to have promising anti-bacterial activity and a privileged structure, but its challenging synthesis had limited further exploration. For example, syntheses of spergualin and its analogs have been reported in approximately 10 linear steps, with overall yields between 0.3 and 18%. Using the Ugi multi-component reaction, we assembled spergualin-inspired molecules in a single step, dramatically improving the overall yield (20% to 96%). Using this strategy, we generated 43 new analogs and tested them for anti-bacterial activity against two Gram-negative and four Gram-positive strains. We found that the most potent analogue, compound 6, had MIC values between 4 and 32 μg/mL against the six strains, which is a significant improvement on spergualin (MIC ∼ 6.25 to 50 μg/mL). These studies provide a concise route to a broad-spectrum antibiotic with a novel chemical scaffold.
PMCID: PMC4829345  PMID: 27087913
convergent synthesis; Ugi reaction; 15-deoxyspergualin; anti-infective; polyamine
11.  High-Throughput Screen of Natural Product Extracts in A Yeast Model of Polyglutamine Proteotoxicity 
Chemical biology & drug design  2014;83(4):440-449.
Proteins with expanded polyglutamine (polyQ) segments cause a number of fatal neurodegenerative disorders, including Huntington’s disease (HD). Previous high-throughput screens in cellular and biochemical models of HD have revealed compounds that mitigate polyQ aggregation and proteotoxicity, providing insight into the mechanisms of disease and leads for potential therapeutics. However, the structural diversity of natural products has not yet been fully mobilized toward these goals. Here, we have screened a collection of ~11 000 natural product extracts for the ability to recover the slow growth of ΔProQ103-expressing yeast cells in 384-well plates (Z’ ~ 0.7, CV ~ 8%). This screen identified actinomycin D as a strong inhibitor of polyQ aggregation and proteotoxicity at nanomolar concentrations (~50–500 ng/mL). We found that a low dose of actinomycin D increased the levels of the heat-shock proteins Hsp104, Hsp70 and Hsp26 and enhanced binding of Hsp70 to the polyQ in yeast. Actinomycin also suppressed aggregation of polyQ in mammalian cells, suggesting a conserved mechanism. These results establish natural products as a rich source of compounds with interesting mechanisms of action against polyQ disorders.
PMCID: PMC4068144  PMID: 24636344
heat shock protein 70; high throughput screening; Huntington’s disease; molecular chaperones
12.  Direct and Propagated Effects of Small Molecules on Protein–Protein Interaction Networks 
Networks of protein–protein interactions (PPIs) link all aspects of cellular biology. Dysfunction in the assembly or dynamics of PPI networks is a hallmark of human disease, and as such, there is growing interest in the discovery of small molecules that either promote or inhibit PPIs. PPIs were once considered undruggable because of their relatively large buried surface areas and difficult topologies. Despite these challenges, recent advances in chemical screening methodologies, combined with improvements in structural and computational biology have made some of these targets more tractable. In this review, we highlight developments that have opened the door to potent chemical modulators. We focus on how allostery is being used to produce surprisingly robust changes in PPIs, even for the most challenging targets. We also discuss how interfering with one PPI can propagate changes through the broader web of interactions. Through this analysis, it is becoming clear that a combination of direct and propagated effects on PPI networks is ultimately how small molecules re-shape biology.
PMCID: PMC4547496  PMID: 26380257
multi-protein complexes; allostery; PPI inhibition
13.  Targeting Proteostasis Through the Protein Quality Control Function of the Hsp90/Hsp70-based Chaperone Machinery for Treatment of Adult Onset Neurodegenerative Diseases 
Currently available therapies for adult onset neurodegenerative diseases provide symptomatic relief, but are not disease modifying. We explore here a new neuroprotective approach based on drugs targeting chaperone-directed protein quality control. Critical target proteins that unfold and aggregate in these diseases, such as the polylglutamine androgen receptor (spinal and bulbar muscular atrophy), huntingtin (Huntington’s disease), α-synuclein (Parkinson’s disease) and tau (Alzheimer’s disease) are client proteins of Hsp90, and their turnover is regulated by the protein quality control function of the Hsp90/Hsp70-based chaperone machinery. In protein quality control Hsp90 and Hsp70 have opposing effects on client protein stability; Hsp90 stabilizes the clients and inhibits their ubiquitination, whereas Hsp70 promotes CHIP-dependent ubiquitination and proteasomal degradation. We discuss how drugs that modulate proteostasis by inhibiting Hsp90 function or by promoting Hsp70 function enhance the degradation of the critical aggregating proteins and ameliorate toxic symptoms in cell and animal disease models.
PMCID: PMC4372135  PMID: 25292434
Neurodegeneration; protein aggregation; ubiquitination; CHIP; proteasome
14.  Expanding the Number of “Druggable” Targets: Non-Enzymes and Protein-Protein Interactions 
Chemical biology & drug design  2013;81(1):22-32.
Following sequencing and assembly of the human genome, the preferred methods for identification of new drug targets have changed dramatically. Modern tactics such as genome-wide association studies (GWAS) and deep sequencing are fundamentally different from the pharmacology-guided approaches used previously, in which knowledge of small molecule ligands acting at their cellular targets was the primary discovery engine. A consequence of the “target-first, pharmacology-second” strategy is that many predicted drug targets are non-enzymes, such as scaffolding, regulatory or structural proteins, and their activities are often dependent on protein-protein interactions (PPIs). These types of targets create unique challenges to drug discovery efforts because enzymatic turnover cannot be used as a convenient surrogate for compound potency. Moreover, it is often challenging to predict how ligand binding to non-enzymes might affect changes in protein function and/or pathobiology. Thus, in the post-genomic era, targets might be strongly implicated by molecular biology-based methods, yet they often later earn the designation of “undruggable.” Can the scope of available targets be widened to include these promising, but challenging, non-enzymes? In this review, we discuss advances in high throughput screening technology and chemical library design that are emerging to deal with these challenges.
PMCID: PMC3531880  PMID: 23253128
15.  Hsp70 Protein Complexes as Drug Targets 
Current pharmaceutical design  2013;19(3):404-417.
Heat shock protein 70 (Hsp70) plays critical roles in proteostasis and is an emerging target for multiple diseases. However, competitive inhibition of the enzymatic activity of Hsp70 has proven challenging and, in some cases, may not be the most productive way to redirect Hsp70 function. Another approach is to inhibit Hsp70’s interactions with important co-chaperones, such as J proteins, nucleotide exchange factors (NEFs) and tetratricopeptide repeat (TPR) domain-containing proteins. These co-chaperones normally bind Hsp70 and guide its many diverse cellular activities. Complexes between Hsp70 and co-chaperones have been shown to have specific functions, such as pro-folding, pro-degradation and pro-trafficking. Thus, a promising strategy may be to block protein-protein interactions between Hsp70 and its co-chaperones or to target allosteric sites that disrupt these contacts. Such an approach might shift the balance of Hsp70 complexes and re-shape the proteome and it has the potential to restore healthy proteostasis. In this review, we discuss specific challenges and opportunities related to those goals. By pursuing Hsp70 complexes as drug targets, we might not only develop new leads for therapeutic development, but also discover new chemical probes for use in understanding Hsp70 biology.
PMCID: PMC3593251  PMID: 22920901
heat shock protein 70; molecular chaperones; J proteins; nucleotide exchange factors; tetratricopeptide repeat-containing proteins; protein complex
16.  Cysteine Reactivity Distinguishes Redox Sensing by the Heat Inducible and Constitutive Forms of Heat Shock Protein 70 (Hsp70) 
Chemistry & biology  2012;19(11):1391-1399.
The heat shock protein 70 (Hsp70) family of molecular chaperones has important functions in maintaining proteostasis under stress conditions. Several Hsp70 isoforms, especially Hsp72 (HSPA1A), are dramatically upregulated in response to stress; however, it is unclear whether these family members have biochemical properties that are specifically adapted to these scenarios. The redox-active compound, methylene blue (MB), has been shown to inhibit the ATPase activity of Hsp72 in vitro and it promotes degradation of the Hsp72 substrate, tau, in cellular and animal models. Here, we report that MB irreversibly inactivates Hsp72 but not the nearly identical, constitutively expressed isoform, heat shock cognate 70 (Hsc70; HSPA8). Mass spectrometry results show that MB oxidizes Cys306, which is not conserved in Hsc70. Molecular models suggested that oxidation of Cys306 exposes Cys267 to modification and that both events contribute to loss of ATP binding in response to MB. Consistent with this model, mutating Cys267 and Cys306 to serine made Hsp72 largely resistant to MB in vitro and over-expression of the C306S mutant blocked MB-mediated loss of tau in a cellular model. Further, mutating Cys267 and Cys306 to the pseudo-oxidation mimic, aspartic acid, mirrored MB treatment: the C267D and C306D mutants had reduced ATPase activity in vitro and over-expression of the C267/306D double mutant significantly reduced tau levels in cells. Together, these results suggest that redox sensing by specific cysteine residues in Hsp72, but not Hsc70, may be an important component of the chaperone response to oxidative stress.
PMCID: PMC3508472  PMID: 23177194
17.  Synthetic lethal interactions in yeast reveal functional roles of J protein co-chaperones 
Molecular bioSystems  2012;8(11):2901-2908.
J proteins are a diverse family of co-chaperones that cooperate with heat shock protein 70 (Hsp70) to coordinate protein quality control, especially in response to cellular stress. Current models suggest that individual J proteins might play roles in recruiting Hsp70s to specific functions, such as maintaining cell wall integrity or promoting ribosome biogenesis. However, relatively few stresses have been used to test this model and, as a result, only a few specific activities have been identified. To expand our understanding of the J protein network, we used a synthetic lethal approach in which 11 Saccharomyces cerevisiae deletion strains were treated with 12 well-characterized chemical inhibitors. The results defined new roles for specific J proteins in major signaling pathways. For example, an important role for Swa2 in cell wall integrity was identified and activities of the under-explored Jjj1, Apj1, Jjj3 and Caj1 proteins were suggested. More generally, these findings support a model in which some J proteins, such as Ydj1 and Zuo1, play “generalist” roles, while others, such as Apj1 and Jjj2, are “specialists”, having roles in relatively few pathways. Together, these results provide new insight into the network of J proteins.
PMCID: PMC3463740  PMID: 22851130
18.  Analysis of the Tau-Associated Proteome Reveals that Exchange of Hsp70 for Hsp90 Is Involved in Tau Degradation 
ACS chemical biology  2012;7(10):1677-1686.
The microtubule associated protein tau (MAPT/tau) aberrantly accumulates in fifteen neurodegenerative diseases, termed tauopathies. One way to treat tauopathies may be to accelerate tau clearance, but the molecular mechanisms governing tau stability are not yet clear. We recently identified chemical probes that markedly accelerate the clearance of tau in cellular and animal models. In the current study, we used one of these probes in combination with immunoprecipitation and mass spectrometry to identify 48 proteins whose association with tau changes during the first 10 minutes after treatment. These proteins included known modifiers of tau proteotoxicity, such as ILF-2 (NFAT), ILF-3, and ataxin-2. A striking observation from the dataset was that tau binding to heat shock protein 70 (Hsp70) decreased while binding to Hsp90 significantly increased. Both chaperones have been linked to tau homeostasis, but their mechanisms have not been established. Using peptide arrays and binding assays, we found that Hsp70 and Hsp90 appeared to compete for binding to shared sites on tau. Further, the Hsp90-bound complex proved to be important in initiating tau clearance in cells. These results suggest that the relative levels of Hsp70 and Hsp90 may help determine whether tau is retained or degraded. Consistent with this model, analysis of reported microarray expression data from Alzheimer’s disease patients and age-matched controls showed that the levels of Hsp90 are reduced in the diseased hippocampus. These studies suggest that Hsp70 and Hsp90 work together to coordinate tau homeostasis.
PMCID: PMC3477299  PMID: 22769591
19.  A Model in which Hsp90 Targets Protein Folding Clefts: rationale for a New Approach to Neuroprotective Treatment of Protein Folding Diseases 
In an EBM Minireview published in 2010, we proposed that the Hsp90/Hsp70-based chaperone machinery played a major role in determining the selection of proteins that have undergone oxidative or other toxic damage for ubiquitination and proteasomal degradation (1). The proposal was based on a model in which the Hsp90 chaperone machinery regulates signaling by modulating ligand binding clefts (2). The model provides a framework for thinking about the development of neuroprotective therapies for protein folding diseases like Alzheimer’s disease (AD), Parkinson’s disease (PD) and the polyglutamine expansion disorders, such as Huntington’s disease (HD) and spinal and bulbar muscular atrophy (SBMA). Major aberrant proteins that misfold and accumulate in these diseases are ‘client’ proteins of the abundant and ubiquitous stress chaperone Hsp90 (3). These Hsp90 client proteins include tau (AD), α-synuclein (PD), huntingtin (HD) and the expanded glutamine androgen receptor (polyQ AR) (SBMA). In this minireview we update our model in which Hsp90 acts on protein folding clefts and show how it forms a rational basis for developing drugs that promote the targeted elimination of these aberrant proteins.
PMCID: PMC4318483  PMID: 24990484
20.  Pharmacological Tuning of Heat Shock Protein 70 Modulates Polyglutamine Toxicity and Aggregation 
ACS chemical biology  2012;7(9):1556-1564.
Nine neurodegenerative disorders are caused by the abnormal expansion of polyglutamine (polyQ) regions within distinct proteins. Genetic and biochemical evidence has documented that the molecular chaperone, heat shock protein 70 (Hsp70), modulates polyQ toxicity and aggregation, yet it remains unclear how Hsp70 might be used as a potential target in polyQ-related diseases. We have utilized a pair of membrane-permeable compounds that tune the activity of Hsp70 by either stimulating or by inhibiting its ATPase functions. Using these two pharmacological agents in both yeast and PC12 cell models of polyQ aggregation and toxicity, we were surprised to find that stimulating Hsp70 solubilized polyQ conformers and simultaneously exacerbated polyQ-mediated toxicity. By contrast, inhibiting Hsp70’s ATPase activity protected against polyQ toxicity and promoted aggregation. These findings clarify Hsp70’s role as a possible drug target in polyQ disorders and suggest that Hsp70 uses ATP hydrolysis to help partition polyQ proteins into structures with varying levels of proteotoxicity. Our results thus support an emerging concept in which certain kinds of polyQ aggregates may be protective, while more soluble polyQ species are toxic.
PMCID: PMC3448832  PMID: 22709427
polyQ; protein misfolding; molecular chaperones; heat shock protein 70 (Hsp70); proteostasis; chemical genetics; chemical probes
Molecular bioSystems  2012;8(9):2323-2333.
In Escherichia coli, the molecular chaperones DnaK and DnaJ cooperate to assist the folding of newly synthesized or unfolded polypeptides. DnaK and DnaJ bind to hydrophobic motifs in these proteins and also each other to promote folding. This system is thought to be sufficiently versatile to act on the entire proteome, which creates interesting challenges in understanding the large-scale, ternary interactions between DnaK, DnaJ and their thousands of potential substrates. To address this question, we computationally predicted the number and frequency of DnaK- and DnaJ-binding motifs in the E. coli proteome, guided by free energy-based binding consensus motifs. This analysis revealed that nearly every protein is predicted to contain multiple DnaK- and DnaJ-binding sites, with the DnaJ sites occurring approximately twice as often. Further, we found that an overwhelming majority of the DnaK sites partially or completely overlapped with the DnaJ-binding motifs. It is well known that high concentrations of DnaJ inhibit DnaK-DnaJ-mediated refolding. The observed overlapping binding sites suggest that this phenomenon may be explained by an important balance in the relative stoichiometry of DnaK and DnaJ which determines whether they bind synergistically or competitively. To test this idea, we measured the chaperone-assisted folding of two denatured substrates and found that the distribution of predicted DnaK- and DnaJ-binding sites was indeed a good predictor of the optimal stoichiometry required for folding. These studies provide insight into how DnaK and DnaJ might cooperate to maintain global protein homeostasis.
PMCID: PMC3462289  PMID: 22732719
22.  Features of Protein-Protein Interactions that Translate into Potent Inhibitors: Topology, Surface Area and Affinity 
Protein-protein interactions (PPIs) control the assembly of multi-protein complexes and, thus, these contacts have enormous potential as drug targets. However, the field has produced a mix of both exciting success stories and frustrating challenges. Here, we review known examples and explore how the physical features of a PPI, such as its affinity, hotspots, off-rates, buried surface area and topology, may influence the chances of success in finding inhibitors. This analysis suggests that concise, tight binding PPIs are most amenable to inhibition. However, it is also clear that emerging technical methods are expanding the repertoire of “druggable” protein contacts and increasing the odds against difficult targets. In particular, natural product-like compound libraries, high throughput screens specifically designed for PPIs and approaches that favor discovery of allosteric inhibitors appear to be attractive routes. The first group of PPI inhibitors has entered clinical trials, further motivating the need to understand the challenges and opportunities in pursuing these types of targets.
PMCID: PMC3591511  PMID: 22831787
high throughput screening; allostery; multi-protein complexes; Hsp70; Hsp90; fragment based drug discovery; natural products; protein-protein interactions
23.  Allosteric drugs: the interaction of anti-tumor compound MKT-077 with human Hsp70 chaperones 
Journal of molecular biology  2011;411(3):614-632.
The Hsp70 chaperones (Heat shock protein 70 kDa) are key to cellular protein homeostatis. However, they also have the ability to inhibit tumor apoptosis, and contribute to aberrant accumulation of hyperphosphorylated tau in neuronal cells affected by tauopathies, including Alzheimer’s disease. Hence, Hsp70 are increasingly been identified as targets for therapeutic intervention in these widely abundant diseases. Hsp70 proteins are allosteric machines and offer besides classical active site targets, also opportunities to target the mechanism of allostery. In this work, it is demonstrated that the action of the potent anti-cancer compound MKT-077, is through differential interaction with the Hsp70 allosteric states. MKT-077 (1-ethyl-2-[[3-ethyl-5-(3-methylbenzothiazolin-2-yliden)]-4- oxothiazolidin-2-ylidenemethyl] pyridinium chloride) is therefore an “allosteric drug”. Using NMR spectroscopy, the compound’s binding site on human HSPA8 (Hsc70) is identified. The binding pose is obtained from NMR-restrained docking calculations, subsequently scored by molecular dynamics-based energy and solvation computations. Suggestions for improvement of the compound’s properties are made on the basis of the binding location and pose.
PMCID: PMC3146629  PMID: 21708173
24.  An Allosteric Modulator of HIV-1 Protease Shows Equipotent Inhibition of Wild-Type and Drug-Resistant Proteases 
Journal of Medicinal Chemistry  2014;57(15):6468-6478.
NMR and MD simulations have demonstrated that the flaps of HIV-1 protease (HIV-1p) adopt a range of conformations that are coupled with its enzymatic activity. Previously, a model was created for an allosteric site located between the flap and the core of HIV-1p, called the Eye site (Biopolymers2008, 89, 643−65218381626). Here, results from our first study were combined with a ligand-based, lead-hopping method to identify a novel compound (NIT). NIT inhibits HIV-1p, independent of the presence of an active-site inhibitor such as pepstatin A. Assays showed that NIT acts on an allosteric site other than the dimerization interface. MD simulations of the ligand–protein complex show that NIT stably binds in the Eye site and restricts the flaps. That bound state of NIT is consistent with a crystal structure of similar fragments bound in the Eye site (Chem. Biol. Drug Des.2010, 75, 257−26820659109). Most importantly, NIT is equally potent against wild-type and a multidrug-resistant mutant of HIV-1p, which highlights the promise of allosteric inhibitors circumventing existing clinical resistance.
PMCID: PMC4136727  PMID: 25062388
25.  Insight into Amyloid Structure Using Chemical Probes 
Chemical biology & drug design  2011;77(6):399-411.
Alzheimer’s disease (AD) is a common neurodegenerative disorder characterized by the deposition of amyloids in the brain. One prominent form of amyloid is composed of repeating units of the amyloid-β (Aβ) peptide. Over the past decade, it has become clear that these Aβ amyloids are not homogeneous; rather, they are composed of a series of structures varying in their overall size and shape and the number of Aβ peptides they contain. Recent theories suggest that these different amyloid conformations may play distinct roles in disease, although their relative contributions are still being discovered. Here, we review how chemical probes, such as congo red, thioflavin T and their derivatives, have been powerful tools for better understanding amyloid structure and function. Moreover, we discuss how design and deployment of conformationally selective probes might be used to test emerging models of AD.
PMCID: PMC3097318  PMID: 21457473
Alzheimer’s disease; thioflavin T; congo red; curcumin; fibrils; protofibrils; oligomers; amyloid beta

Results 1-25 (69)