Search tips
Search criteria

Results 1-6 (6)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Probing the General Time Scale Question of Boronic Acid Binding with Sugars in Aqueous Solution at Physiological pH 
Bioorganic & medicinal chemistry  2012;20(9):2957-2961.
The boronic acid group is widely used in chemosensor design due to its ability to reversibly bind diol-containing compounds. The thermodynamic properties of the boronic acid-diol binding process have been investigated extensively. However, there are few studies of the kinetic properties of such binding processes. In this report, stopped-flow method was used for the first time to study the kinetic properties of the binding between three model arylboronic acids, 4-, 5-, and 8-isoquinolinylboronic acids, and various sugars. With all the boronic acid-diol pair sexamined, reactions were complete within seconds. The kon values with various sugars follow the order of D-fructose >D-tagatose>D-mannose >D-glucose. This trend tracks the thermodynamic binding affinities for these sugars and demonstrates that the “on” rate is the key factor determining the binding constant.
PMCID: PMC3355949  PMID: 22464680
stopped-flow; isoquinolinylboronic acid; binding constant; fluorescence
2.  A Transient Kinetic Analysis of PRMT1 Catalysis 
Biochemistry  2011;50(32):7033-7044.
Posttranslational modifications (PTMs) are important strategies used by eukaryotic organisms to modulate their phenotypes. One of the well studied PTMs, arginine methylation, is catalyzed by protein arginine methyltransferases (PRMTs) with SAM as the methyl donor. The functions of PRMTs have been broadly studied in different biological processes and diseased states, but the molecular basis for arginine methylation is not well defined. In this study, we report the transient-state kinetic analysis of PRMT1 catalysis. The fast association and dissociation rates suggest that PRMT1 catalysis of histone H4 methylation follows a rapid equilibrium sequential kinetic mechanism. The data give direct evidence that the chemistry of methyl transfer is the major rate-limiting step, and that binding of the cofactor SAM or SAH affects the association and dissociation of H4 with PRMT1. Importantly, from the stopped-flow fluorescence measurements, we have identified a critical kinetic step suggesting a precatalytic conformational transition induced by substrate binding. These results provide new insights into the mechanism of arginine methylation and the rational design of PRMT inhibitors.
PMCID: PMC3153576  PMID: 21736313
PRMT1; arginine methylation; transient-state kinetics; conformational transition; fluorescent probe; stopped flow
3.  L-Carnitine-supplementation in advanced pancreatic cancer (CARPAN) - a randomized multicentre trial 
Nutrition Journal  2012;11:52.
Cachexia, a >10% loss of body-weight, is one factor determining the poor prognosis of pancreatic cancer. Deficiency of L-Carnitine has been proposed to cause cancer cachexia.
We screened 152 and enrolled 72 patients suffering from advanced pancreatic cancer in a prospective, multi-centre, placebo-controlled, randomized and double-blinded trial to receive oral L-Carnitine (4 g) or placebo for 12 weeks. At entry patients reported a mean weight loss of 12 ± 2,5 (SEM) kg. During treatment body-mass-index increased by 3,4 ± 1,4% under L-Carnitine and decreased (−1,5 ± 1,4%) in controls (p < 0,05). Moreover, nutritional status (body cell mass, body fat) and quality-of-life parameters improved under L-Carnitine. There was a trend towards an increased overall survival in the L-Carnitine group (median 519 ± 50 d versus 399 ± 43 d, not significant) and towards a reduced hospital-stay (36 ± 4d versus 41 ± 9d,n.s.).
While these data are preliminary and need confirmation they indicate that patients with pancreatic cancer may have a clinically relevant benefit from the inexpensive and well tolerated oral supplementation of L-Carnitine.
PMCID: PMC3439338  PMID: 22824168
Pancreatic adenocarcinoma; L-Carnitine; Quality of life; Survival; Cancer cachexia; Fatique syndrome
4.  Scintillation Proximity Assay of Arginine Methylation 
Journal of Biomolecular Screening  2011;17(2):237-244.
Methylation of arginine residues, catalyzed by protein arginine methyltransferases (PRMTs), is one important protein post-translational modification involved in epigenetic regulation of gene expression. A fast and effective assay for PRMT can provide valuable information for dissecting the biological functions of PRMTs, as well as for screening small-molecule inhibitors of arginine methylation. Currently, among the methods used for PRMT activity measurement, many contain laborious separation procedures, which restrict the applications of these assays for high-throughput screening (HTS) in drug discovery. The authors report here a mix-and-measure method to measure PRMT activity based on the principle of scintillation proximity assay (SPA). In this assay, 3H-AdoMet was used as methyl donor, and biotin-modified histone H4 peptide served as a methylation substrate. Following the methylation reaction catalyzed by PRMTs, streptavidin-coated SPA beads were added to the reaction solution, and SPA signals were detected by a MicroBeta scintillation counter. No separation step is needed, which simplifies the assay procedure and greatly enhances the assay speed. Particularly, the miniaturization and robustness suggest that this method is suited for HTS of PRMT inhibitors.
PMCID: PMC3236808  PMID: 21821785
protein arginine methyltransferases; PRMT; scintillation proximity assay; SPA; high-throughput screening; HTS
5.  Self-perceived quality of life predicts mortality risk better than a multi-biomarker panel, but the combination of both does best 
Associations between measures of subjective health and mortality risk have previously been shown. We assessed the impact and comparative predictive performance of a multi-biomarker panel on this association.
Data from 4,261 individuals aged 20-79 years recruited for the population-based Study of Health in Pomerania was used. During an average 9.7 year follow-up, 456 deaths (10.7%) occurred. Subjective health was assessed by SF-12 derived physical (PCS-12) and mental component summaries (MCS-12), and a single-item self-rated health (SRH) question. We implemented Cox proportional-hazards regression models to investigate the association of subjective health with mortality and to assess the impact of a combination of 10 biomarkers on this association. Variable selection procedures were used to identify a parsimonious set of subjective health measures and biomarkers, whose predictive ability was compared using receiver operating characteristic (ROC) curves, C-statistics, and reclassification methods.
In age- and gender-adjusted Cox models, poor SRH (hazard ratio (HR), 2.07; 95% CI, 1.34-3.20) and low PCS-12 scores (lowest vs. highest quartile: HR, 1.75; 95% CI, 1.31-2.33) were significantly associated with increased risk of all-cause mortality; an association independent of various covariates and biomarkers. Furthermore, selected subjective health measures yielded a significantly higher C-statistic (0.883) compared to the selected biomarker panel (0.872), whereas a combined assessment showed the highest C-statistic (0.887) with a highly significant integrated discrimination improvement of 1.5% (p < 0.01).
Adding biomarker information did not affect the association of subjective health measures with mortality, but significantly improved risk stratification. Thus, a combined assessment of self-reported subjective health and measured biomarkers may be useful to identify high-risk individuals for intensified monitoring.
PMCID: PMC3152941  PMID: 21749697
Health-related quality of life; multiple biomarker panel; all-cause mortality; SF-12; population-based cohort
6.  Silencing of IQGAP1 by shRNA inhibits the invasion of ovarian carcinoma HO-8910PM cells in vitro 
IQGAP1 is a scaffolding protein and overexpressed in many human tumors, including ovarian cancer. However, the contribution of IQGAP1 to invasive properties of ovarian cancer cells remains unknown. Here, we investigated the effect of IQGAP1-specific short hairpin RNA (shRNA) expressing plasmids on metastatic potential of ovarian cancer HO-8910PM cells.
We used RT-PCR and Western blot analysis to characterize expression of IQGAP1 in three human ovarian cancer-derived cell lines SK-OV-3, HO-8910 and HO-8910PM. We then determined whether expression of endogenous IQGAP1 correlated with invasive and migratory ability by using an in vitro Matrigel assay and cell migration assay. We further knocked down IQGAP1 using shRNA expressing plasmids controlled by U1 promoter in HO-8910PM cells and examined the proliferation activity, invasive and migration potential of IQGAP1 shRNA transfectants using MTT assay, in vitro Matrigel-coated invasion assay and migration assay.
IQGAP1 expression level seemed to be closely associated with the enhanced invasion and migration in ovarian cancer cell lines. Levels of both IQGAP1 mRNA and protein were significantly reduced in HO-8910PM cells transfected with plasmid-based IQGAP1-specific shRNAs. RNAi-mediated knockdown of IQGAP1 expression in HO-8910PM cells resulted in a significant decrease in cell invasion and migration.
Our findings support the hypothesis that IQGAP1 promotes tumor progression and identify IQGAP1 as a potential therapeutic strategy for ovarian cancer and some other tumors with over-expression of the IQGAP1 gene.
PMCID: PMC2626583  PMID: 19036171

Results 1-6 (6)