PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-4 (4)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Self-Association of Okadaic Acid: Structural and Pharmacological Significance 
Marine Drugs  2013;11(6):1866-1877.
Okadaic acid (OA) has been an invaluable pharmacological tool in the study of cellular signaling. The great affinity of this polyether for its targets together with its high specificity to inhibit certain protein phosphatases enables the differential study of these proteins. Crystallographic structures of protein phosphatases in complex with OA show a 1:1 protein to toxin ratio. Nevertheless, it has been found that OA is able to self-associate under certain conditions although very little is known about the importance of this phenomenon. Here we review the available knowledge on the latter topic and we report on the existence of an unusual self-associated tetrameric form. The structure of these oligomers is proposed based on spectroscopic data and molecular modeling calculations.
doi:10.3390/md11061866
PMCID: PMC3721210  PMID: 23760016
okadaic acid; protein phosphatase; nuclear magnetic resonance; scanning tunneling microscopy
2.  Titration-based screening for evaluation of natural product extracts: identification of an aspulvinone family of luciferase inhibitors 
Chemistry & biology  2011;18(11):1442-1452.
The chemical diversity of nature has tremendous potential for discovery of new molecular probes and medicinal agents. However, sensitivity of HTS assays to interfering components of crude extracts derived from plants, macro- and microorganisms has curtailed their use in lead discovery efforts. Here we describe a process for leveraging the concentration-response curves (CRCs) obtained from quantitative HTS to improve the initial selection of “actives” from a library of partially fractionated natural product extracts derived from marine actinomycetes and fungi. By using pharmacological activity, the first-pass CRC paradigm aims to improve the probability that labor-intensive subsequent steps of re-culturing, extraction and bioassay-guided isolation of active component(s) target the most promising strains and growth conditions. We illustrate how this process identified a family of fungal metabolites as potent inhibitors of firefly luciferase, subsequently resolved in molecular detail by x-ray crystallography.
doi:10.1016/j.chembiol.2011.08.011
PMCID: PMC3225805  PMID: 22118678
3.  Complementary Cell-Based High Throughput Screens Identify Novel Modulators of the Unfolded Protein Response 
Journal of Biomolecular Screening  2011;16(8):825-835.
Despite advances toward understanding the prevention and treatment of many cancers, patients who suffer from oral squamous cell carcinoma (OSCC) confront a survival rate that has remained unimproved for more than two decades indicating our ability to treat them pharmacologically has reached a plateau. In an ongoing effort to improve the clinical outlook for this disease, we previously reported that an essential component of the mechanism by which the proteasome inhibitor bortezomib (PS-341, Velcade) induced apoptosis in OSCC required the activation of a terminal unfolded protein response (UPR). Predicated on these studies, we hypothesized that high throughput screening (HTS) of large diverse chemical libraries might identify more potent or selective small molecule activators of the apoptotic arm of the UPR to control or kill OSCC. We have developed complementary cell-based assays using stably transfected CHO-K1 cell lines that individually assess the PERK/eIF2α/CHOP (apoptotic) or the IRE1/XBP1 (adaptive) UPR sub-pathways. A ~66K compound collection was screened at the University of Michigan Center for Chemical Genomics that included a unique library of pre-fractionated natural product extracts. The mycotoxin methoxycitrinin was isolated from a natural extract and found to selectively activate the CHOP-luciferase reporter at 80μM. A series of citrinin derivatives were isolated from these extracts, including a unique congener that has not been previously described. In an effort to identify more potent compounds we examined the ability of citrinin and the structurally related mycotoxins ochratoxin A and patulin to activate the UPR. Strikingly, we found that patulin at 2.5 – 10μM induced a terminal UPR in a panel of OSCC cells that was characterized by an increase in CHOP, GADD34 and ATF3 gene expression and XBP1 splicing. A luminescent caspase assay and the induction of several BH3-only genes indicated that patulin could induce apoptosis in OSCC cells. These data support the use of this complementary HTS strategy to identify novel modulators of UPR signaling and tumor cell death.
doi:10.1177/1087057111414893
PMCID: PMC3374590  PMID: 21844328
unfolded protein response; endoplasmic reticulum stress; cell-based assay; luciferase reporter; natural products
4.  Identification of 19-epi-okadaic Acid, a New Diarrhetic Shellfish Poisoning Toxin, by Liquid Chromatography with Mass Spectrometry Detection 
Marine Drugs  2008;6(3):489-495.
Okadaic acid (1) (OA) and its congeners are mainly responsible for diarrhetic shellfish poisoning (DSP) syndrome. The presence of several OA derivatives have already been confirmed in Prorocentrum and Dinophysis spp. In this paper, we report on the detection and identification of a new DSP toxin, the OA isomer 19-epi-okadaic acid (2) (19-epi-OA), isolated from cultures of Prorocentrum belizeanum, by determining its retention time (RT) and fragmentation pattern using liquid chromatography coupled with mass spectrometry (LC–MS/MS).
doi:10.3390/md20080024
PMCID: PMC2579738  PMID: 19005581
Marine toxins; DSP; 19-epi-okadaic acid; Prorocentrum belizeanum; LC-MS

Results 1-4 (4)