Search tips
Search criteria

Results 1-4 (4)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Complementary Cell-Based High Throughput Screens Identify Novel Modulators of the Unfolded Protein Response 
Journal of Biomolecular Screening  2011;16(8):825-835.
Despite advances toward understanding the prevention and treatment of many cancers, patients who suffer from oral squamous cell carcinoma (OSCC) confront a survival rate that has remained unimproved for more than two decades indicating our ability to treat them pharmacologically has reached a plateau. In an ongoing effort to improve the clinical outlook for this disease, we previously reported that an essential component of the mechanism by which the proteasome inhibitor bortezomib (PS-341, Velcade) induced apoptosis in OSCC required the activation of a terminal unfolded protein response (UPR). Predicated on these studies, we hypothesized that high throughput screening (HTS) of large diverse chemical libraries might identify more potent or selective small molecule activators of the apoptotic arm of the UPR to control or kill OSCC. We have developed complementary cell-based assays using stably transfected CHO-K1 cell lines that individually assess the PERK/eIF2α/CHOP (apoptotic) or the IRE1/XBP1 (adaptive) UPR sub-pathways. A ~66K compound collection was screened at the University of Michigan Center for Chemical Genomics that included a unique library of pre-fractionated natural product extracts. The mycotoxin methoxycitrinin was isolated from a natural extract and found to selectively activate the CHOP-luciferase reporter at 80μM. A series of citrinin derivatives were isolated from these extracts, including a unique congener that has not been previously described. In an effort to identify more potent compounds we examined the ability of citrinin and the structurally related mycotoxins ochratoxin A and patulin to activate the UPR. Strikingly, we found that patulin at 2.5 – 10μM induced a terminal UPR in a panel of OSCC cells that was characterized by an increase in CHOP, GADD34 and ATF3 gene expression and XBP1 splicing. A luminescent caspase assay and the induction of several BH3-only genes indicated that patulin could induce apoptosis in OSCC cells. These data support the use of this complementary HTS strategy to identify novel modulators of UPR signaling and tumor cell death.
PMCID: PMC3374590  PMID: 21844328
unfolded protein response; endoplasmic reticulum stress; cell-based assay; luciferase reporter; natural products
2.  Tirandamycin biosynthesis is mediated by co-dependent oxidative enzymes 
Nature chemistry  2011;3(8):628-633.
Elucidation of natural product biosynthetic pathways provides important insights about the assembly of potent bioactive molecules, and expands access to unique enzymes able to selectively modify complex substrates. Here we show full reconstitution in vitro of an unusual multi-step oxidative cascade for post-assembly line tailoring of tirandamycin antibiotics. This pathway involves a remarkably versatile and iterative cytochrome P450 monooxygenase (TamI) and an FAD-dependent oxidase (TamL), which act co-dependently through repeated exchange of substrates. TamI hydroxylates tirandamycin C (TirC) to generate tirandamycin E (TirE), a heretofore unidentified tirandamycin intermediate. TirE is subsequently oxidized by TamL, giving rise to the ketone of tirandamycin D (TirD), after which a unique exchange back to TamI enables successive epoxidation and hydroxylation to afford, respectively, the final products tirandamycin A (TirA) and tirandamycin B (TirB). Ligand-free, substrate- and product-bound crystal structures of bicovalently flavinylated TamL oxidase reveal a likely mechanism for the C-10 oxidation of TirE.
PMCID: PMC3154026  PMID: 21778983
3.  Identification of the Tirandamycin Biosynthetic Gene Cluster From Streptomyces sp. 307-9 
The structurally intriguing bicyclic ketal moiety of tirandamycin is common to several acyl-tetramic acid antibiotics, and is a key determinant of biological activity. We have identified the tirandamycin biosynthetic gene cluster from the environmental marine isolate Streptomyces sp. 307-9, thus providing the first genetic insight into the biosynthesis of this natural product scaffold. Sequence analysis revealed a hybrid-polyketide synthase-nonribosomal peptide synthetase gene cluster with a colinear domain organization entirely consistent with the core structure of the tirandamycins. We also identified genes within the cluster that encode candidate tailoring enzymes for elaboration and modification of the bicyclic ketal system. Disruption of tamI, which encodes a presumed cytochrome P450, led to a mutant strain deficient in production of late stage tirandamycins that instead accumulated tirandamycin C, an intermediate devoid of any post-assembly line oxidative modifications.
PMCID: PMC3019614  PMID: 20127927
biosynthesis; natural products; polyketide
4.  Isolation and Characterization of Tirandamycins from a Marine-Derived Streptomyces sp. 
Journal of natural products  2009;72(11):2076-2079.
The novel dienoyl tetramic acids tirandamycin C (1) and tirandamycin D (2) with activity against vancomycin-resistant Enterococcus faecalis (VRE) were isolated from the marine environmental isolate Streptomyces sp. 307-9, which also produces the previously identified compounds tirandamycin A (3) and B (4). Spectroscopic analysis of 1 and 2 indicated structural similarity to 3 and 4, with differences only in the pattern of pendant oxygenation on the bicyclic ketal system. The isolation of these putative biosynthetic intermediates was enabled by their sequestration on an adsorbent resin during early stationary-phase fermentation.
PMCID: PMC2873692  PMID: 19883065

Results 1-4 (4)