Search tips
Search criteria

Results 1-11 (11)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Isoprenylcysteine carboxylmethyltransferase deficiency exacerbates KRAS-driven pancreatic neoplasia via Notch suppression 
The Journal of Clinical Investigation  2013;123(11):4681-4694.
RAS is the most frequently mutated oncogene in human cancers. Despite decades of effort, anti-RAS therapies have remained elusive. Isoprenylcysteine carboxylmethyltransferase (ICMT) methylates RAS and other CaaX-containing proteins, but its potential as a target for cancer therapy has not been fully evaluated. We crossed a Pdx1-Cre;LSL-KrasG12D mouse, which is a model of pancreatic ductal adenocarcinoma (PDA), with a mouse harboring a floxed allele of Icmt. Surprisingly, we found that ICMT deficiency dramatically accelerated the development and progression of neoplasia. ICMT-deficient pancreatic ductal epithelial cells had a slight growth advantage and were resistant to premature senescence by a mechanism that involved suppression of cyclin-dependent kinase inhibitor 2A (p16INK4A) expression. ICMT deficiency precisely phenocopied Notch1 deficiency in the Pdx1-Cre;LSL-KrasG12D model by exacerbating pancreatic intraepithelial neoplasias, promoting facial papillomas, and derepressing Wnt signaling. Silencing ICMT in human osteosarcoma cells decreased Notch1 signaling in response to stimulation with cell-surface ligands. Additionally, targeted silencing of Ste14, the Drosophila homolog of Icmt, resulted in defects in wing development, consistent with Notch loss of function. Our data suggest that ICMT behaves like a tumor suppressor in PDA because it is required for Notch1 signaling.
PMCID: PMC3809775  PMID: 24216479
2.  Regulation of proliferation, cell competition, and cellular growth by the Drosophila JAK-STAT pathway 
JAK-STAT  2013;2(3):e25408.
The JAK-STAT pathway is a key regulator of tissue size in Drosophila melanogaster. Here we provide an overview of its roles in processes that regulate the size of Drosophila imaginal discs, epithelia of diploid cells that proliferate and acquire specific fates in the larvae and that become functional in the adult. Drosophila has a single JAK and a single STAT gene, which has facilitated genetic dissection of this pathway. Moreover, the sophisticated genetic tools available in flies for clonal growth assays have made Drosophila an ideal organism in which to dissect the multiple roles of the JAK-STAT pathway in growth control. Studies in flies have revealed JAK-STAT pathway activity as a central node for diverse signals that control proliferation and mass accumulation. In addition, recent work has establish a new role for the pathway in cell competition, a process thought to be akin to the early stages of transformation in which more robust cells kill and take the place of less robust ones.
PMCID: PMC3772117  PMID: 24069565
Drosophila; Hippo; JAK-STAT; JNK; Myc; Notch; PRC; Wingless; proliferation
3.  Functions of the Drosophila JAK-STAT pathway 
JAK-STAT  2012;1(3):176-183.
JAK-STAT signaling has been proposed to act in numerous stem cells in a variety of organisms. Here we provide an overview of its roles in three well characterized stem cell populations in Drosophila, in the intestine, lymph gland and testis. In flies, there is a single JAK and a single STAT, which has made the genetic dissection of pathway function considerably easier and facilitated the analysis of communication between stem cells, their niches and offspring. Studies in flies have revealed roles for this pathway as diverse as regulating bona fide intrinsic self-renewal, integrating response to environmental cues that control quiescence and promoting mitogenic responses to stress.
PMCID: PMC3670241  PMID: 24058767
Drosophila; STAT92E; testis; hematopoiesis; lymph gland; intestinal stem cell; prohemocyte; CySC
4.  Development of a high-throughput cell-based reporter assay for screening JAK3 inhibitors 
Journal of biomolecular screening  2011;16(4):443-449.
JAK3 has become an ideal target for the therapeutic treatment of immune-related diseases, as well as for the prevention of organ allograft rejection. A number of JAK3 inhibitors have been identified by in vitro biochemical enzymatic assays, but the majority display significant off-target effects on JAK2. Therefore, there is an urgent need to develop new experimental approaches to identify compounds that specifically inhibit JAK3. Here, we showed that in 32D/IL-2Rβ cells, STAT5 becomes phosphorylated by IL-3/JAK2- or IL-2/JAK3-dependent pathway. Importantly, the selective JAK3 inhibitor CP-690,550 blocked the phosphorylation as well as the nuclear translocation of STAT5 following treatment of cells with IL-2, but not with IL-3. In an attempt to use the cells for large-scale chemical screens to identify JAK3 inhibitors, we established a cell line 32D/IL-2Rβ/6×STAT5 stably expressing a well-characterized STAT5 reporter gene. Treatment of this cell line with IL-2 or IL-3 dramatically increased the reporter activity in a high-throughput format. As expected, JAK3 inhibitors, CP-690,550 and JAK3 inhibitor VI, selectively inhibited the activity of the 6×STAT5 reporter following treatment with IL-2. By contrast, the pan-JAK inhibitor Curcumin non-selectively inhibited the activity of this reporter following treatment with either IL-2 or IL-3. Thus, this study indicates that our STAT5 reporter cell line can be used as an efficacious cellular model for chemical screens to identify low-molecular-weight inhibitors specific for JAK3.
PMCID: PMC3237679  PMID: 21393628
Assay development; Cytokine; JAK3 inhibitors; STAT5 reporter; high-throughput chemical screening
5.  Characterization of a dominant-active STAT that promotes tumorigenesis in Drosophila 
Developmental biology  2010;344(2):621-636.
Little is known about the molecular mechanisms by which STAT proteins promote tumorigenesis. Drosophila is an ideal system for investigating this issue, as there is a single STAT (Stat92E), and its hyperactivation causes overgrowths resembling human tumors. Here we report the first identification of a dominant-active Stat92E protein, Stat92EΔNΔC, which lacks both N- and C-termini. Mis-expression of Stat92EΔNΔC in vivo causes melanotic tumors, while in vitro it transactivates a Stat92E-luciferase reporter in the absence of stimulation. These gain-of-function phenotypes require phosphorylation of Y711 and dimer formation with full-length Stat92E. Furthermore, a single point mutation, an R442P substitution in the DNA-binding domain, abolishes Stat92E function. Recombinant Stat92ER442P translocates to the nucleus following activation but fails to function in all assays tested. Interestingly, R442 is conserved in most STATs in higher organisms, suggesting conservation of function. Modeling of Stat92E indicates that R442 may contact the minor groove of DNA via invariant TC bases in the consensus binding element bound by all STAT proteins. We conclude that the N- and C- termini function unexpectedly in negatively regulating Stat92E activity, possibly by decreasing dimer dephosphorylation or increasing stability of DNA interaction, and that Stat92ER442 has a nuclear function by altering dimer:DNA binding.
PMCID: PMC2914209  PMID: 20501334
STAT; JAK; Unpaired; Drosophila; constitutively active; in vitro reporter; in vivo reporter; structure function; signal transduction
6.  Cytosolic Ras Supports Eye Development in Drosophila ▿  
Molecular and Cellular Biology  2010;30(24):5649-5657.
Ras proteins associate with cellular membranes as a consequence of a series of posttranslational modifications of a C-terminal CAAX sequence that include prenylation and are thought to be required for biological activity. In Drosophila melanogaster, Ras1 is required for eye development. We found that Drosophila Ras1 is inefficiently prenylated as a consequence of a lysine in the A1 position of its CAAX sequence such that a significant pool remains soluble in the cytosol. We used mosaic analysis with a repressible cell marker (MARCM) to assess if various Ras1 transgenes could restore photoreceptor fate to eye disc cells that are null for Ras1. Surprisingly, we found that whereas Ras1 with an enhanced efficiency of membrane targeting could not rescue the Ras1 null phenotype, Ras1 that was not at all membrane targeted by virtue of a mutation of the CAAX cysteine was able to fully rescue eye development. In addition, constitutively active Ras112V,C186S not targeted to membranes produced a hypermorphic phenotype and stimulated mitogen-activated protein kinase (MAPK) signaling in S2 cells. We conclude that the membrane association of Drosophila Ras1 is not required for eye development.
PMCID: PMC3004281  PMID: 20937772
7.  chinmo is a functional effector of the JAK/STAT pathway that regulates eye development, tumor formation and stem cell self-renewal in Drosophila 
Developmental cell  2010;18(4):556-568.
The Drosophila STAT transcription factor Stat92E regulates diverse functions, including organ development and stem cell self-renewal. However, the Stat92E functional effectors that mediate these processes are largely unknown. Here we show that chinmo is a cell-autonomous, downstream mediator of Stat92E that shares numerous functions with this protein. Loss of either gene results in malformed eyes and head capsules due to defects in eye progenitor cells. Hyperactivation of Stat92E or misexpression of Chinmo results in blood cell tumors. Both proteins are expressed in germline (GSCs) and cyst stem cells (CySCs) in the testis. While Stat92E is required for the self-renewal of both populations, chinmo is only required in CySCs, indicating that Stat92E regulates self-renewal in different stem cells through independent effectors. Like hyperactivated Stat92E, Chinmo misexpression in CySCs is sufficient to maintain GSCs non-autonomously. Chinmo is therefore a key effector of JAK/STAT signaling in a variety of developmental and pathological contexts.
PMCID: PMC2859208  PMID: 20412771
8.  MS-1020 is a novel small molecule that selectively inhibits JAK3 activity 
British journal of haematology  2009;148(1):132-143.
To identify JAK/STAT signaling inhibitors, we performed a cell-based high throughput screening using a plant extract library and identified Nb-(α-hydroxynaphthoyl)serotonin called MS-1020 as a novel JAK3 inhibitor. MS-1020 potently inhibited persistently-active STAT3 in a cell type-specific manner. Upon further examination, we found that MS-1020 selectively blocks constitutively-active JAK3. MS-1020 consistently suppressed IL-2-induced JAK3/STAT5 signaling but not prolactin-induced JAK2/STAT5 signaling. Furthermore, MS-1020 affected cell viability only in cancer cells harboring persistently-active JAK3/STATs, and in vitro kinase assays showed MS-1020 binds directly with JAK3, blocking its catalytic activity. Therefore, our study suggested that this reagent selectively inhibits JAK3 and subsequently leads to a block in STAT signaling. Finally, we showed MS-1020 decreases cell survival by inducing apoptosis via down-regulating anti-apoptotic gene expression. Our study suggests that MS-1020 may have therapeutic potential in the treatment of cancers harboring aberrant JAK3 signaling.
PMCID: PMC3034357  PMID: 19793252
JAK/STAT; cancer; small molecule inhibitor; plant extracts; cell-based high throughput screening; Drosophila
9.  Genome-wide expression profiling in the Drosophila eye reveals unexpected repression of Notch signaling by the JAK/STAT pathway 
Although the JAK/STAT pathway regulates numerous processes in vertebrates and invertebrates through modulating transcription, its functionally-relevant transcriptional targets remain largely unknown. With one jak and one stat (stat92E), Drosophila provides a powerful system for finding new JAK/STAT target genes. Genome-wide expression profiling on eye discs in which Stat92E is hyperactivated, revealed 584 differentially-regulated genes, including known targets domeless, socs36E and wingless. Other differentially-regulated genes (chinmo, lama, Mo25, Imp-L2, Serrate, Delta) were validated and may represent new Stat92E targets. Genetic experiments revealed that Stat92E cell-autonomously represses Serrate, which encodes a Notch ligand. Loss of Stat92E led to de-repression of Serrate in the dorsal eye, resulting in ectopic Notch signaling and aberrant eye growth there. Thus, our micro-array documents a new Stat92E target gene and a previously-unidentified inhibitory action of Stat92E on Notch signaling. These data suggest that this study will be a useful resource for the identification of additional Stat92E targets.
PMCID: PMC2846647  PMID: 19504457
Unpaired; JAK; STAT; micro-array; target genes; Drosophila; eye disc; Chinmo; Serrate; Delta; Notch; Imp-L2; Lama; Wingless; Pannier; Mo25; Pointed
10.  NSC114792, a novel small molecule identified through structure-based computational database screening, selectively inhibits JAK3 
Molecular Cancer  2010;9:36.
Human or animals lacking either JAK3 or the common gamma chain (γc) expression display severe combined immunodeficiency disease, indicating the crucial role of JAK3 in T-cell development and the homeostasis of the immune system. JAK3 has also been suggested to contribute to the pathogenesis of tumorigenesis. Recent studies identified activating JAK3 mutations in patients with various hematopoietic malignancies, including acute megakaryoblastic leukemia. Importantly, functional analyses of some of those JAK3 mutations have been shown to cause lethal hematopoietic malignancies in animal models. These observations make JAK3 an ideal therapeutic target for the treatment of various human diseases. To identify novel small molecule inhibitors of JAK3, we performed structure-based virtual screen using the 3D structure of JAK3 kinase domain and the NCI diversity set of compounds.
We identified NSC114792 as a lead compound. This compound directly blocked the catalytic activity of JAK3 but not that of other JAK family members in vitro. In addition, treatment of 32D/IL-2Rβ cells with the compound led to a block in IL-2-dependent activation of JAK3/STAT5 but not IL-3-dependent activation of JAK2/STAT5. Consistent with the specificity of NSC114792 for JAK3, it selectively inhibited persistently-activated JAK3, but failed to affect the activity of other JAK family members and other oncogenic kinases in various cancer cell lines. Finally, we showed that NSC114792 decreases cell viability by inducing apoptosis through down-regulating anti-apoptotic gene expression only in cancer cells harboring persistently-active JAK3.
NSC114792 is a lead compound that selectively inhibits JAK3 activity. Therefore, our study suggests that this small molecule inhibitor of JAK3 can be used as a starting point to develop a new class of drugs targeting JAK3 activity, and may have therapeutic potential in various diseases that are caused by aberrant JAK3 activity.
PMCID: PMC2830973  PMID: 20149240
11.  Drosophila C-Terminal Src Kinase Negatively Regulates Organ Growth and Cell Proliferation through Inhibition of the Src, Jun N-Terminal Kinase, and STAT Pathways 
Molecular and Cellular Biology  2004;24(15):6676-6689.
Src family kinases regulate multiple cellular processes including proliferation and oncogenesis. C-terminal Src kinase (Csk) encodes a critical negative regulator of Src family kinases. We demonstrate that the Drosophila melanogaster Csk ortholog, dCsk, functions as a tumor suppressor: dCsk mutants display organ overgrowth and excess cellular proliferation. Genetic analysis indicates that the dCsk−/− overgrowth phenotype results from activation of Src, Jun kinase, and STAT signal transduction pathways. In particular, blockade of STAT function in dCsk mutants severely reduced Src-dependent overgrowth and activated apoptosis of mutant tissue. Our data provide in vivo evidence that Src activity requires JNK and STAT function.
PMCID: PMC444864  PMID: 15254235

Results 1-11 (11)