Search tips
Search criteria

Results 1-25 (119)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
1.  Innovation in Therapeutics Development at the NCATS 
Neuropsychopharmacology  2013;39(1):230-232.
PMCID: PMC3857672  PMID: 24317308
2.  Profiling of the Tox21 Chemical Collection for Mitochondrial Function to Identify Compounds that Acutely Decrease Mitochondrial Membrane Potential 
Background: Mitochondrial dysfunction has been implicated in the pathogenesis of a variety of disorders including cancer, diabetes, and neurodegenerative and cardiovascular diseases. Understanding whether different environmental chemicals and druglike molecules impact mitochondrial function represents an initial step in predicting exposure-related toxicity and defining a possible role for such compounds in the onset of various diseases.
Objectives: We sought to identify individual chemicals and general structural features associated with changes in mitochondrial membrane potential (MMP).
Methods: We used a multiplexed [two end points in one screen; MMP and adenosine triphosphate (ATP) content] quantitative high throughput screening (qHTS) approach combined with informatics tools to screen the Tox21 library of 10,000 compounds (~ 8,300 unique chemicals) at 15 concentrations each in triplicate to identify chemicals and structural features that are associated with changes in MMP in HepG2 cells.
Results: Approximately 11% of the compounds (913 unique compounds) decreased MMP after 1 hr of treatment without affecting cell viability (ATP content). In addition, 309 compounds decreased MMP over a concentration range that also produced measurable cytotoxicity [half maximal inhibitory concentration (IC50) in MMP assay/IC50 in viability assay ≤ 3; p < 0.05]. More than 11% of the structural clusters that constitute the Tox21 library (76 of 651 clusters) were significantly enriched for compounds that decreased the MMP.
Conclusions: Our multiplexed qHTS approach allowed us to generate a robust and reliable data set to evaluate the ability of thousands of drugs and environmental compounds to decrease MMP. The use of structure-based clustering analysis allowed us to identify molecular features that are likely responsible for the observed activity.
Citation: Attene-Ramos MS, Huang R, Michael S, Witt KL, Richard A, Tice RR, Simeonov A, Austin CP, Xia M. 2015. Profiling of the Tox21 chemical collection for mitochondrial function to identify compounds that acutely decrease mitochondrial membrane potential. Environ Health Perspect 123:49–56;
PMCID: PMC4286281  PMID: 25302578
3.  A systematic study of mitochondrial toxicity of environmental chemicals using quantitative high throughput screening 
Chemical research in toxicology  2013;26(9):1323-1332.
A goal of the Tox21 program is to transit toxicity testing from traditional in vivo models to in vitro assays that assess how chemicals affect cellular responses and toxicity pathways. A critical contribution of the NIH Chemical Genomics center (NCGC) to the Tox21 program is the implementation of a quantitative high throughput screening (qHTS) approach, using cell- and biochemical-based assays to generate toxicological profiles for thousands of environmental compounds. Here, we evaluated the effect of chemical compounds on mitochondrial membrane potential in HepG2 cells by screening a library of 1,408 compounds provided by the National Toxicology Program (NTP) in a qHTS platform. Compounds were screened over 14 concentrations, and results showed that 91 and 88 compounds disrupted mitochondrial membrane potential after treatment for one or five h, respectively. Seventy-six compounds active at both time points were clustered by structural similarity, producing 11 clusters and 23 singletons. Thirty-eight compounds covering most of the active chemical space were more extensively evaluated. Thirty-six of the 38 compounds were confirmed to disrupt mitochondrial membrane potential using a fluorescence plate reader and 35 were confirmed using a high content imaging approach. Among the 38 compounds, 4 and 6 induced LDH release, a measure of cytotoxicity, at 1 or 5 h, respectively. Compounds were further assessed for mechanism of action (MOA) by measuring changes in oxygen consumption rate, which enabled identification of 20 compounds as uncouplers. This comprehensive approach allows for evaluation of thousands of environmental chemicals for mitochondrial toxicity and identification of possible MOAs.
PMCID: PMC4154066  PMID: 23895456
mitochondrial membrane potential assay; mitochondrial toxicity; NTP 1408 compound library; oxygen consumption rate; qHTS; Tox21 collaboration
4.  A High-throughput Screening Assay for Determining Cellular Levels of Total Tau Protein 
Current Alzheimer research  2013;10(7):679-687.
The microtubule-associated protein (MAP) tau has been implicated in the pathology of numerous neurodegenerative diseases. In the past decade, the hyperphosphorylated and aggregated states of tau protein have been important targets in the drug discovery field for the potential treatment of Alzheimer’s disease. Although several compounds have been reported to reduce the hyperphosphorylated state of tau or impact the stabilization of tau, their therapeutic activities are still to be validated. Recently, reduction of total cellular tau protein has emerged as an alternate intervention point for drug development and a potential treatment of tauopathies. We have developed and optimized a homogenous assay, using the AlphaLISA and HTRF assay technologies, for the quantification of total cellular tau protein levels in the SH-SY5Y neuroblastoma cell line. The signal-to-basal ratios were 375 and 5.3, and the Z’ factors were 0.67 and 0.60 for the AlphaLISA and HTRF tau assays, respectively. The clear advantages of this homogeneous tau assay over conventional total tau assays, such as ELISA and Western blot, are the elimination of plate wash steps and miniaturization of the assay into 1536-well plate format for the ultra–high-throughput screening of large compound libraries.
PMCID: PMC4010324  PMID: 23905996
Alzheimer’s disease; FRET-based assay; high throughput screening assay; prions; neurodegenerative diseases; Tau protein
5.  Are hERG Channel Blockers Also Phospholipidosis Inducers? 
Both pharmacophore models of the human ether-à-go-go-related gene (hERG) channel blockers and phospholipidosis (PLD) inducers contain a hydrophobic moiety and a hydrophilic motif / positively charged center, so it is interesting to investigate the overlap between the ligand chemical spaces of both targets. We have assayed over 4,000 non-redundant drug-like compounds for both their hERG inhibitory activity and PLD inducing potential in a quantitative high throughput screening (qHTS) format. Seventy-seven percent of PLD inducing compounds identified from the screening were also found to be hERG channel blockers, and 96.9% of the dually active compounds were positively charged. Among the 48 compounds that induced PLD without inhibiting hERG channel, 24 compounds (50.0%) carried steroidal structures. According to our results, hERG channel blockers and PLD inducers share a large chemical space. In addition, a positively charged hERG channel blocker will most likely induce PLD, while a steroid PLD inducer is less likely a hERG channel blocker.
PMCID: PMC3736554  PMID: 23856051
hERG; phospholipidosis; qHTS
6.  The Tox21 robotic platform for assessment of environmental chemicals - from vision to reality 
Drug discovery today  2013;18(0):716-723.
Since its establishment in 2008, the US Tox21 inter-agency collaboration has made great progress in developing and evaluating cellular models for the evaluation of environmental chemicals as a proof of principle. Currently, the program has entered its production phase (Tox21 Phase II) focusing initially on the areas of modulation of nuclear receptors and stress response pathways. During Tox21 Phase II, the set of chemicals to be tested has been expanded to nearly 10,000 (10K) compounds and a fully automated screening platform has been implemented. The Tox21 robotic system combined with informatics efforts is capable of screening and profiling the collection of 10K environmental chemicals in triplicate in a week. In this article, we describe the Tox21 screening process, compound library preparation, data processing, and robotic system validation.
PMCID: PMC3771082  PMID: 23732176
10K compound library; in vitro assays; quantitative high-throughput screening; robotic platform; Tox21 collaboration; toxicity testing
7.  Profiling of the Tox21 10K compound library for agonists and antagonists of the estrogen receptor alpha signaling pathway 
Scientific Reports  2014;4:5664.
The U.S. Tox21 program has screened a library of approximately 10,000 (10K) environmental chemicals and drugs in three independent runs for estrogen receptor alpha (ERα) agonist and antagonist activity using two types of ER reporter gene cell lines, one with an endogenous full length ERα (ER-luc; BG1 cell line) and the other with a transfected partial receptor consisting of the ligand binding domain (ER-bla; ERα β-lactamase cell line), in a quantitative high-throughput screening (qHTS) format. The ability of the two assays to correctly identify ERα agonists and antagonists was evaluated using a set of 39 reference compounds with known ERα activity. Although both assays demonstrated adequate (i.e. >80%) predictivity, the ER-luc assay was more sensitive and the ER-bla assay more specific. The qHTS assay results were compared with results from previously published ERα binding assay data and showed >80% consistency. Actives identified from both the ER-bla and ER-luc assays were analyzed for structure-activity relationships (SARs) revealing known and potentially novel ERα active structure classes. The results demonstrate the feasibility of qHTS to identify environmental chemicals with the potential to interact with the ERα signaling pathway and the two different assay formats improve the confidence in correctly identifying these chemicals.
PMCID: PMC4092345  PMID: 25012808
8.  Collaborative Development of 2-Hydroxypropyl-β-Cyclodextrin for the Treatment of Niemann-Pick Type C1 Disease 
In 2010, the National Institutes of Health (NIH) established the Therapeutics for Rare and Neglected Diseases (TRND) program within the National Center for Advancing Translational Science (NCATS), which was created to stimulate drug discovery and development for rare and neglected tropical diseases through a collaborative model between the NIH, academic scientists, nonprofit organizations, and pharmaceutical and biotechnology companies. This paper describes one of the first TRND programs, the development of 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) for the treatment of Niemann-Pick disease type C1 (NPC1). NPC is a neurodegenerative, autosomal recessive rare disease caused by a mutation in either the NPC1 (about 95% of cases) or the NPC2 gene (about 5% of cases). These mutations affect the intracellular trafficking of cholesterol and other lipids, which leads to a progressive accumulation of unesterified cholesterol and glycosphingolipids in the CNS and visceral organs. Affected individuals typically exhibit ataxia, swallowing problems, seizures, and progressive impairment of motor and intellectual function in early childhood, and usually die in adolescence. There is no disease modifying therapy currently approved for NPC1 in the US. A collaborative drug development program has been established between TRND, public and private partners that has completed the pre-clinical development of HP-β-CD through IND filing for the current Phase I clinical trial that is underway. Here we discuss how this collaborative effort helped to overcome scientific, clinical and financial challenges facing the development of new drug treatments for rare and neglected diseases, and how it will incentivize the commercialization of HP-β-CD for the benefit of the NPC patient community.
PMCID: PMC4048128  PMID: 24283970
2-hydroxypropyl-β-cyclodextrin; Niemann-Pick disease type C1; neurodegenerative rare disease; translational research
9.  Bisphenol A affects androgen receptor function via multiple mechanisms 
Chemico-biological interactions  2013;203(3):556-564.
Bisphenol A (BPA), is a well-known endocrine disruptor compound (EDC) that affects the normal development and function of the female and male reproductive system, however the mechanisms of action remain unclear. To investigate the molecular mechanisms of how BPA may affect ten different nuclear receptors, stable cell lines containing individual nuclear receptor ligand binding domain (LBD)-linked to the β-Gal reporter were examined by a quantitative high throughput screening (qHTS) format in the Tox21 Screening Program of the NIH. The results showed that two receptors, estrogen receptor alpha (ERα) and androgen receptor (AR), are affected by BPA in opposite direction. To confirm the observed effects of BPA on ERα and AR, we performed transient transfection experiments with full-length receptors and their corresponding response elements linked to luciferase reporters. We also included in this study two BPA analogs, bisphenol AF (BPAF) and bisphenol S (BPS). As seen in African green monkey kidney CV1 cells, the present study confirmed that BPA and BPAF act as ERα agonists (half maximal effective concentration EC50 of 10-100 nM) and as AR antagonists (half maximal inhibitory concentration IC50 of 1-2 μM). Both BPA and BPAF antagonized AR function via competitive inhibition of the action of synthetic androgen R1881. BPS with lower estrogenic activity (EC50 of 2.2 μM), did not compete with R1881 for AR binding, when tested at 30 μM. Finally, the effects of BPA were also evaluated in a nuclear translocation assays using EGPF-tagged receptors. Similar to 17β-estradiol (E2) which was used as control, BPA was able to enhance ERα nuclear foci formation but at a 100-fold higher concentration. Although BPA was able to bind AR, the nuclear translocation was reduced. Furthermore, BPA was unable to induce functional foci in the nuclei and is consistent with the transient transfection study that BPA is unable to activate AR.
PMCID: PMC3722857  PMID: 23562765
Bisphenol A and related compounds; androgen receptor; qHTS; transfection; imaging analysis
10.  Lomofungin and dilomofungin: inhibitors of MBNL1-CUG RNA binding with distinct cellular effects 
Nucleic Acids Research  2014;42(10):6591-6602.
Myotonic dystrophy type 1 (DM1) is a dominantly inherited neuromuscular disorder resulting from expression of RNA containing an expanded CUG repeat (CUGexp). The pathogenic RNA is retained in nuclear foci. Poly-(CUG) binding proteins in the Muscleblind-like (MBNL) family are sequestered in foci, causing misregulated alternative splicing of specific pre-mRNAs. Inhibitors of MBNL1-CUGexp binding have been shown to restore splicing regulation and correct phenotypes in DM1 models. We therefore conducted a high-throughput screen to identify novel inhibitors of MBNL1-(CUG)12 binding. The most active compound was lomofungin, a natural antimicrobial agent. We found that lomofungin undergoes spontaneous dimerization in DMSO, producing dilomofungin, whose inhibition of MBNL1–(CUG)12 binding was 17-fold more potent than lomofungin itself. However, while dilomofungin displayed the desired binding characteristics in vitro, when applied to cells it produced a large increase of CUGexp RNA in nuclear foci, owing to reduced turnover of the CUGexp transcript. By comparison, the monomer did not induce CUGexp accumulation in cells and was more effective at rescuing a CUGexp-induced splicing defect. These results support the feasibility of high-throughput screens to identify compounds targeting toxic RNA, but also demonstrate that ligands for repetitive sequences may have unexpected effects on RNA decay.
PMCID: PMC4041448  PMID: 24799433
11.  A High Throughput Screening Assay System for the Identification of Small Molecule Inhibitors of gsp 
PLoS ONE  2014;9(3):e90766.
Mis-sense mutations in the α-subunit of the G-protein, Gsα, cause fibrous dysplasia of bone/McCune-Albright syndrome. The biochemical outcome of these mutations is constitutively active Gsα and increased levels of cAMP. The aim of this study was to develop an assay system that would allow the identification of small molecule inhibitors specific for the mutant Gsα protein, the so-called gsp oncogene. Commercially available Chinese hamster ovary cells were stably transfected with either wild-type (WT) or mutant Gsα proteins (R201C and R201H). Stable cell lines with equivalent transfected Gsα protein expression that had relatively lower (WT) or higher (R201C and R201H) cAMP levels were generated. These cell lines were used to develop a fluorescence resonance energy transfer (FRET)–based cAMP assay in 1536-well microplate format for high throughput screening of small molecule libraries. A small molecule library of 343,768 compounds was screened to identify modulators of gsp activity. A total of 1,356 compounds with inhibitory activity were initially identified and reconfirmed when tested in concentration dose responses. Six hundred eighty-six molecules were selected for further analysis after removing cytotoxic compounds and those that were active in forskolin-induced WT cells. These molecules were grouped by potency, efficacy, and structural similarities to yield 22 clusters with more than 5 of structurally similar members and 144 singleton molecules. Seven chemotypes of the major clusters were identified for further testing and analyses.
PMCID: PMC3965391  PMID: 24667240
12.  Identification of Potent and Selective Diphenylpropanamide RORγ Inhibitors 
Retinoic acid-related orphan receptor RORγt plays a pivotal role in the differentiation of TH17 cells. Antagonizing RORγt transcriptional activity is a potential means to treat TH17-related autoimmune diseases. Herein, we describe the identification of a series of diphenylpropanamides as novel and selective RORγ antagonists. Diphenylpropanamide 4n inhibited transcriptional activity of RORγt, but not RORα, in cells. In addition, it suppressed human TH17 cell differentiation at sub-micromolar concentrations.
PMCID: PMC3770298  PMID: 24040486
Retinoic acid-related orphan receptor; RORγ antagonist; diphenylpropanamide; TH17-related autoimmune diseases
13.  Identification of Potent and Selective Diphenylpropanamide RORγ Inhibitors 
Retinoic acid-related orphan receptor RORγt plays a pivotal role in the differentiation of TH17 cells. Antagonizing RORγt transcriptional activity is a potential means to treat TH17-related autoimmune diseases. Herein, we describe the identification of a series of diphenylpropanamides as novel and selective RORγ antagonists. Diphenylpropanamide 4n inhibited the transcriptional activity of RORγt, but not RORα, in cells. In addition, it suppressed human TH17 cell differentiation at submicromolar concentrations.
PMCID: PMC3770298  PMID: 24040486
retinoic acid-related orphan receptor; RORγ antagonist; diphenylpropanamide; TH17-related autoimmune diseases
14.  The NCGC Pharmaceutical Collection: A comprehensive resource of clinically approved drugs enabling repurposing and chemical genomics 
Science translational medicine  2011;3(80):80ps16.
Small-molecule compounds approved for use as drugs may be “repurposed” for new indications and studied to determine the mechanisms of their beneficial and adverse effects. A comprehensive collection of all small-molecule drugs approved for human use would be invaluable for systematic repurposing across human diseases, particularly for rare and neglected diseases, for which the cost and time required for development of a new chemical entity are often prohibitive. Previous efforts to build such a comprehensive collection have been limited by the complexities, redundancies, and semantic inconsistencies of drug naming within and among regulatory agencies worldwide; a lack of clear conceptualization of what constitutes a drug; and a lack of access to physical samples. We report here the creation of a definitive, complete, and nonredundant list of all approved molecular entities as a freely available electronic resource and a physical collection of small molecules amenable to high-throughput screening.
PMCID: PMC3098042  PMID: 21525397
15.  A Novel Brain Penetrant NPS Receptor Antagonist, NCGC00185684, Blocks Alcohol-Induced ERK-Phosphorylation in the Central Amygdala and Decreases Operant Alcohol Self-Administration in Rats 
The Journal of Neuroscience  2013;33(24):10132-10142.
The Neuropeptide S receptor, a Gs/Gq-coupled GPCR expressed in brain regions involved in mediating drug reward, has recently emerged as a candidate therapeutic target in addictive disorders. Here, we describe the in vitro and in vivo pharmacology of a novel, selective and brain penetrant NPSR antagonist with nanomolar affinity for the NPSR, NCGC00185684. In vitro, NCGC00185684 shows biased antagonist properties, and preferentially blocks ERK-phosphorylation over intracellular cAMP or calcium responses to NPS. In vivo, systemic NCGC00185684 blocks alcohol-induced ERK-phosphorylation in the rat central amygdala, a region involved in regulation of alcohol intake. NCGC00185684 also decreases operant alcohol self-administration, and lowers motivation for alcohol reward as measured using progressive ratio responding. These effects are behaviorally specific, in that they are observed at doses that do not influence locomotor activity or reinstatement responding following extinction. Together, these data provide an initial validation of the NPSR as a therapeutic target in alcoholism.
PMCID: PMC3682378  PMID: 23761908
16.  A Novel Chordoma Xenograft Allows In Vivo Drug Testing and Reveals the Importance of NF-κB Signaling in Chordoma Biology 
PLoS ONE  2013;8(11):e79950.
Chordoma is a rare primary bone malignancy that arises in the skull base, spine and sacrum and originates from remnants of the notochord. These tumors are typically resistant to conventional chemotherapy, and to date there are no FDA-approved agents to treat chordoma. The lack of in vivo models of chordoma has impeded the development of new therapies for this tumor. Primary tumor from a sacral chordoma was xenografted into NOD/SCID/IL-2R γ-null mice. The xenograft is serially transplantable and was characterized by both gene expression analysis and whole genome SNP genotyping. The NIH Chemical Genomics Center performed high-throughput screening of 2,816 compounds using two established chordoma cell lines, U-CH1 and U-CH2B. The screen yielded several compounds that showed activity and two, sunitinib and bortezomib, were tested in the xenograft. Both agents slowed the growth of the xenograft tumor. Sensitivity to an inhibitor of IκB, as well as inhibition of an NF-κB gene expression signature demonstrated the importance of NF-κB signaling for chordoma growth. This serially transplantable chordoma xenograft is thus a practical model to study chordomas and perform in vivo preclinical drug testing.
PMCID: PMC3819300  PMID: 24223206
17.  Prediction of Cytochrome P450 Profiles of Environmental Chemicals with QSAR Models Built from Drug-like Molecules 
Molecular informatics  2012;31(11-12):783-792.
The human cytochrome P450 (CYP) enzyme family is involved in the biotransformation of many xenobiotics. As part of the U.S. Tox21 Phase I effort, we profiled the CYP activity of approximately three thousand compounds, primarily those of environmental concern, against human CYP1A2, CYP2C19, CYP2C9, CYP2D6, and CYP3A4 isoforms in a quantitative high throughput screening (qHTS) format. In order to evaluate the extent to which computational models built from a drug-like library screened in these five CYP assays under the same conditions can accurately predict the outcome of an environmental compound library, five support vector machines (SVM) models built from over 17,000 drug-like compounds were challenged to predict the CYP activities of the Tox21 compound collection. Although a large fraction of the test compounds fall outside of the applicability domain (AD) of the models, as measured by k-nearest neighbor (k-NN) similarities, the predictions were largely accurate for CYP1A2, CYP2C9, and CYP3A4 ioszymes with area under the receiver operator characteristic curves (AUC-ROC) ranging between 0.82 and 0.84. The lower predictive power of the CYP2C19 model (AUC-ROC = 0.76) is caused by experimental errors and that of the CYP2D6 model (AUC-ROC = 0.76) can be rescued by rebalancing the training data. Our results demonstrate that decomposing molecules into atom types enhanced the coverage of the AD and that computational models built from drug-like molecules can be used to predict the ability of non-drug like compounds to interact with these CYPs.
PMCID: PMC3583379  PMID: 23459712
Human CYPs; QSAR models; Predictive Capacity; SVM; Predictive Toxicology
18.  Correction: Identification of Therapeutic Candidates for Chronic Lymphocytic Leukemia from a Library of Approved Drugs 
PLoS ONE  2013;8(11):10.1371/annotation/e2536fcb-3ab3-44a0-8eab-91aaeb8e49b6.
PMCID: PMC3815351
19.  High-content screening identifies small molecules that remove nuclear foci, affect MBNL distribution and CELF1 protein levels via a PKC-independent pathway in myotonic dystrophy cell lines 
Human Molecular Genetics  2013;23(6):1551-1562.
Myotonic dystrophy (DM) is a multi-system neuromuscular disorder for which there is no treatment. We have developed a medium throughput phenotypic assay, based on the identification of nuclear foci in DM patient cell lines using in situ hybridization and high-content imaging to screen for potentially useful therapeutic compounds. A series of further assays based on molecular features of DM have also been employed. Two compounds that reduce and/or remove nuclear foci have been identified, Ro 31-8220 and chromomycin A3. Ro 31-8220 is a PKC inhibitor, previously shown to affect the hyperphosphorylation of CELF1 and ameliorate the cardiac phenotype in a DM1 mouse model. We show that the same compound eliminates nuclear foci, reduces MBNL1 protein in the nucleus, affects ATP2A1 alternative splicing and reduces steady-state levels of CELF1 protein. We demonstrate that this effect is independent of PKC activity and conclude that this compound may be acting on alternative kinase targets within DM pathophysiology. Understanding the activity profile for this compound is key for the development of targeted therapeutics in the treatment of DM.
PMCID: PMC3929092  PMID: 24179176
20.  Identification of Therapeutic Candidates for Chronic Lymphocytic Leukemia from a Library of Approved Drugs 
PLoS ONE  2013;8(9):e75252.
Chronic lymphocytic leukemia (CLL) is an adult lymphoid malignancy with a variable clinical course. There is considerable interest in the identification of new treatments, as most current approaches are not curative. While most patients respond to initial chemotherapy, relapsed disease is often resistant to the drugs commonly used in CLL and patients are left with limited therapeutic options. In this study, we used a luminescent cell viability assay based on ATP levels to find compounds that were potent and efficacious in killing CLL cells. We employed an in-house process of quantitative high throughput screening (qHTS) to assess 8 concentrations of each member of a 2,816 compound library (including FDA-approved drugs and those known to be bio-active from commercial suppliers). Using qHTS we generated potency values on each compound in lymphocytes donated from each of six individuals with CLL and five unaffected individuals. We found 102 compounds efficacious against cells from all six individuals with CLL (“consensus” drugs) with five of these showing low or no activity on lymphocytes from a majority of normal donors, suggesting some degree of specificity for the leukemic cells. To our knowledge, this is the first study to screen a drug library against primary CLL cells to identify candidate agents for anti-cancer therapy. The results presented here offer possibilities for the development of novel drug candidates for therapeutic uses to treat CLL and other diseases.
PMCID: PMC3779154  PMID: 24073257
21.  A Structure Based Model for the Prediction of Phospholipidosis Induction Potential of Small Molecules 
Drug-induced phospholipidosis (PLD), characterized by an intracellular accumulation of phospholipids and formation of concentric lamellar bodies, has raised concerns in the drug discovery community, due to its potential adverse effects. To evaluate the PLD induction potential, 4,161 non-redundant drug-like molecules from the National Institutes of Health Chemical Genomics Center (NCGC) Pharmaceutical Collection (NPC), the Library of Pharmacologically Active Compounds (LOPAC) and the Tocris Biosciences collection were screened in a quantitative high-throughput screening (qHTS) format. The potential of drug-lipid complex formation can be linked directly to the structures of drug molecules, and many PLD inducing drugs were found to share common structural features. Support vector machine (SVM) models were constructed by using customized atom types or Molecular Operating Environment (MOE) 2D descriptors as structural descriptors. Either the compounds from LOPAC or randomly selected from the entire dataset were used as the training set. The impact of training data with biased structural features and the impact of molecule descriptors emphasizing whole-molecule properties or detailed functional groups at the atom level on model performance were analyzed and discussed. Rebalancing strategies were applied to improve the predictive power of the SVM models. Using the under-sampling method, the consensus model using one third of the compounds randomly selected from the data set as the training set achieved high accuracy of 0.90 in predicting the remaining two thirds of the compounds constituting the test set, as measured by the area under the receiver operator characteristic curve (AUC-ROC).
PMCID: PMC3484221  PMID: 22725677
phospholipidosis; computation toxicology; QSAR; SVM; qHTS
22.  Pyruvate kinase M2 activators promote tetramer formation and suppress tumorigenesis 
Nature chemical biology  2012;8(10):839-847.
Cancer cells engage in a metabolic program to enhance biosynthesis and support cell proliferation. The regulatory properties of pyruvate kinase M2 (PKM2) influence altered glucose metabolism in cancer. PKM2 interaction with phosphotyrosine-containing proteins inhibits enzyme activity and increases availability of glycolytic metabolites to support cell proliferation. This suggests that high pyruvate kinase activity may suppress tumor growth. We show that expression of PKM1, the pyruvate kinase isoform with high constitutive activity, or exposure to published small molecule PKM2 activators inhibit growth of xenograft tumors. Structural studies reveal that small molecule activators bind PKM2 at the subunit interaction interface, a site distinct from that of the endogenous activator fructose-1,6-bisphosphate (FBP). However, unlike FBP, binding of activators to PKM2 promotes a constitutively active enzyme state that is resistant to inhibition by tyrosine-phosphorylated proteins. These data support the notion that small molecule activation of PKM2 can interfere with anabolic metabolism.
PMCID: PMC3711671  PMID: 22922757
23.  Improving the Human Hazard Characterization of Chemicals: A Tox21 Update 
Environmental Health Perspectives  2013;121(7):756-765.
Background: In 2008, the National Institute of Environmental Health Sciences/National Toxicology Program, the U.S. Environmental Protection Agency’s National Center for Computational Toxicology, and the National Human Genome Research Institute/National Institutes of Health Chemical Genomics Center entered into an agreement on “high throughput screening, toxicity pathway profiling, and biological interpretation of findings.” In 2010, the U.S. Food and Drug Administration (FDA) joined the collaboration, known informally as Tox21.
Objectives: The Tox21 partners agreed to develop a vision and devise an implementation strategy to shift the assessment of chemical hazards away from traditional experimental animal toxicology studies to one based on target-specific, mechanism-based, biological observations largely obtained using in vitro assays.
Discussion: Here we outline the efforts of the Tox21 partners up to the time the FDA joined the collaboration, describe the approaches taken to develop the science and technologies that are currently being used, assess the current status, and identify problems that could impede further progress as well as suggest approaches to address those problems.
Conclusion: Tox21 faces some very difficult issues. However, we are making progress in integrating data from diverse technologies and end points into what is effectively a systems-biology approach to toxicology. This can be accomplished only when comprehensive knowledge is obtained with broad coverage of chemical and biological/toxicological space. The efforts thus far reflect the initial stage of an exceedingly complicated program, one that will likely take decades to fully achieve its goals. However, even at this stage, the information obtained has attracted the attention of the international scientific community, and we believe these efforts foretell the future of toxicology.
PMCID: PMC3701992  PMID: 23603828
chemical hazard characterization; computational biology; high throughput testing; in vitro models; systems biology; Tox21
24.  Synthesis and Evaluation of Quinazolin-4-ones as Hypoxia-inducible Factor-1α Inhibitors 
Quinazolin-4-one 1 was identified as an inhibitor of the HIF-1α transcriptional factor from a high-throughput screen. HIF-1α up-regulation is common in many cancer cells. In this paper, we describe an efficient one-pot sequential reaction for the synthesis of quinazolin-4-one 1 analogues. The structure-activity relationship (SAR) study led to the 5-fold more potent analogue, 16.
PMCID: PMC3681418  PMID: 21831635
hypoxia-inducible factor-1α; quinazolin-4-ones; parallel synthesis
25.  Identification of repurposed small molecule drugs for chordoma therapy 
Cancer Biology & Therapy  2013;14(7):638-647.
Chordoma is a rare, slow growing malignant tumor arising from remnants of the fetal notochord. Surgery is the first choice for chordoma treatment, followed by radiotherapy, although postoperative complications remain significant. Recurrence of the disease occurs frequently due to the anatomy of the tumor location and violation of the tumor margins at the initial surgery. Currently, there are no effective drugs available for patients with chordoma. Due to the rarity of the disease, there is limited opportunity to test agents in clinical trials and no concerted effort to develop agents for chordoma in the pharmaceutical industry. To rapidly and efficiently identify small molecules that inhibit chordoma cell growth, we screened the NCGC Pharmaceutical Collection (NPC) containing approximately 2800 clinically approved and investigational drugs at 15 different concentrations in chordoma cell lines, U-CH1 and U-CH2. We identified a group of drugs including bortezomib, 17-AAG, digitoxin, staurosporine, digoxin, rubitecan, and trimetrexate that inhibited chordoma cell growth, with potencies from 10 to 370 nM in U-CH1 cells, but less potently in U-CH2 cells. Most of these drugs also induced caspase 3/7 activity with a similar rank order as the cytotoxic effect on U-CH1 cells. Cantharidin, digoxin, digitoxin, staurosporine, and bortezomib showed similar inhibitory effect on cell lines and 3 primary chordoma cell cultures. The combination treatment of bortezomib with topoisomerase I and II inhibitors increased the therapeutic potency in U-CH2 and patient-derived primary cultures. Our results provide information useful for repurposing currently approved drugs for chordoma and potential approach of combination therapy.
PMCID: PMC3742493  PMID: 23792643
chordoma; NCGC Pharmaceutical Collection; cell viability; caspase 3/7; U-CH1; U-CH2; qHTS

Results 1-25 (119)