PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-4 (4)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Induction and Reversal of Myotonic Dystrophy Type 1 Pre-mRNA Splicing Defects by Small Molecules 
Nature communications  2013;4:2044.
The ability to control pre-mRNA splicing with small molecules could facilitate the development of therapeutics or cell-based circuits that control gene function. Myotonic dystrophy type 1 (DM1) is caused by the dysregulation of alternative pre-mRNA splicing due to sequestration of muscleblind-like 1 protein (MBNL1) by expanded, non-coding r(CUG) repeats (r(CUG)exp). Here we report two small molecules that induce or ameliorate alternative splicing dysregulation. The thiophene-containing small molecule (1) inhibits the interaction of MBNL1 with its natural pre-mRNA substrates. Compound (2), a substituted naphthyridine, binds r(CUG)exp and displaces MBNL1. Structural models show that 1 binds MBNL1 in the Zn-finger domain and that 2 interacts with UU loops in r(CUG)exp. This study provides a structural framework for small molecules that target MBNL1 by mimicking r(CUG)exp and shows that targeting MBNL1 causes dysregulation of alternative splicing, suggesting that MBNL1 is thus not a suitable therapeutic target for the treatment of DM1.
doi:10.1038/ncomms3044
PMCID: PMC3710115  PMID: 23806903
2.  A call for transparent reporting to optimize the predictive value of preclinical research 
Nature  2012;490(7419):187-191.
The US National Institute of Neurological Disorders and Stroke convened major stakeholders in June 2012 to discuss how to improve the methodological reporting of animal studies in grant applications and publications. The main workshop recommendation is that at a minimum studies should report on sample-size estimation, whether and how animals were randomized, whether investigators were blind to the treatment, and the handling of data. We recognize that achieving a meaningful improvement in the quality of reporting will require a concerted effort by investigators, reviewers, funding agencies and journal editors. Requiring better reporting of animal studies will raise awareness of the importance of rigorous study design to accelerate scientific progress.
doi:10.1038/nature11556
PMCID: PMC3511845  PMID: 23060188
3.  Dose-Response Modeling of High-Throughput Screening Data 
Journal of biomolecular screening  2009;14(10):1216-1227.
The National Toxicology Program is developing a high throughput screening (HTS) program to set testing priorities for compounds of interest, to identify mechanisms of action, and potentially to develop predictive models for human toxicity. This program will generate extensive data on the activity of large numbers of chemicals in a wide variety of biochemical-and cell-based assays. The first step in relating patterns of response among batteries of HTS assays to in vivo toxicity is to distinguish between positive and negative compounds in individual assays. Here, we report on a statistical approach developed to identify compounds positive or negative in a HTS cytotoxicity assay based on data collected from screening 1353 compounds for concentration-response effects in nine human and four rodent cell types. In this approach, we develop methods to normalize the data (removing bias due to the location of the compound on the 1536-well plates used in the assay) and to analyze for concentration-response relationships. Various statistical tests for identifying significant concentration-response relationships and for addressing reproducibility are developed and presented.
doi:10.1177/1087057109349355
PMCID: PMC3471146  PMID: 19828774
high-throughput screening; dose-response; statistical modeling; viability assay
4.  Identification of Rays through DNA Barcoding: An Application for Ecologists 
PLoS ONE  2012;7(6):e36479.
DNA barcoding potentially offers scientists who are not expert taxonomists a powerful tool to support the accuracy of field studies involving taxa that are diverse and difficult to identify. The taxonomy of rays has received reasonable attention in Australia, although the fauna in remote locations such as Ningaloo Reef, Western Australia is poorly studied and the identification of some species in the field is problematic. Here, we report an application of DNA-barcoding to the identification of 16 species (from 10 genera) of tropical rays as part of an ecological study. Analysis of the dataset combined across all samples grouped sequences into clearly defined operational taxonomic units, with two conspicuous exceptions: the Neotrygon kuhlii species complex and the Aetobatus species complex. In the field, the group that presented the most difficulties for identification was the spotted whiptail rays, referred to as the ‘uarnak’ complex. Two sets of problems limited the successful application of DNA barcoding: (1) the presence of cryptic species, species complexes with unresolved taxonomic status and intra-specific geographical variation, and (2) insufficient numbers of entries in online databases that have been verified taxonomically, and the presence of lodged sequences in databases with inconsistent names. Nevertheless, we demonstrate the potential of the DNA barcoding approach to confirm field identifications and to highlight species complexes where taxonomic uncertainty might confound ecological data.
doi:10.1371/journal.pone.0036479
PMCID: PMC3372520  PMID: 22701556

Results 1-4 (4)