Search tips
Search criteria

Results 1-25 (39)

Clipboard (0)

Select a Filter Below

Year of Publication
1.  Identification of ML251, a Potent Inhibitor of T. brucei and T. cruzi Phosphofructokinase 
Human African Trypanosomiasis (HAT) is a severe, often fatal disease caused by the parasitic protist Trypanosoma brucei. The glycolytic pathway has been identified as the sole mechanism for ATP generation in the infective stage of these organisms, and several glycolytic enzymes, phosphofructokinase (PFK) in particular, have shown promise as potential drug targets. Herein, we describe the discovery of ML251, a novel nanomolar inhibitor of T. brucei PFK, and the structure–activity relationships within the series.
PMCID: PMC4027769  PMID: 24900769
Trypanosoma brucei; Trypanosoma cruzi; phosphofructokinase; inhibitors; glycolysis; high-throughput screening
2.  Composition and applications of focus libraries to phenotypic assays 
The wealth of bioactivity information now available on low-molecular weight compounds has enabled a paradigm shift in chemical biology and early phase drug discovery efforts. Traditionally chemical libraries have been most commonly employed in screening approaches where a bioassay is used to characterize a chemical library in a random search for active samples. However, robust curating of bioassay data, establishment of ontologies enabling mining of large chemical biology datasets, and a wealth of public chemical biology information has made possible the establishment of highly annotated compound collections. Such annotated chemical libraries can now be used to build a pathway/target hypothesis and have led to a new view where chemical libraries are used to characterize a bioassay. In this article we discuss the types of compounds in these annotated libraries composed of tools, probes, and drugs. As well, we provide rationale and a few examples for how such libraries can enable phenotypic/forward chemical genomic approaches. As with any approach, there are several pitfalls that need to be considered and we also outline some strategies to avoid these.
PMCID: PMC4109565  PMID: 25104937
phenotypic assays; chemical libraries; high-throughput screening; chemical probes; focused library
3.  Kinetic characterization of ebselen, chelerythrine and apomorphine as glutaminase inhibitors 
Glutaminase catalyzes the hydrolysis of glutamine to glutamate and plays a central role in the proliferation of neoplastic cells via glutaminolysis, as well as in the generation of excitotoxic glutamate in central nervous system disorders such as HIV-associated dementia (HAD) and multiple sclerosis. Both glutaminase siRNA and glutaminase inhibition have been shown to be effective in in vitro models of cancer and HAD, suggesting a potential role for small molecule glutaminase inhibitors. However, there are no potent, selective inhibitors of glutaminase currently available. The two prototypical glutaminase inhibitors, BPTES and DON, are either insoluble or non-specific. In a search for more drug-like glutaminase inhibitors, we conducted a screen of 1280 in vivo active drugs (Library of Pharmacologically Active Compounds (LOPAC1280)) and identified ebselen, chelerythrine and (R)-apomorphine. The newly identified inhibitors exhibited 10 to 1500-fold greater affinities than DON and BPTES and over 100-fold increased efficiency of inhibition. Although non-selective, it is noteworthy that the affinity of ebselen for glutaminase is more potent than any other activity yet described. It is possible that the previously reported biological activity seen with these compounds is due, in part, to glutaminase inhibition. Ebselen, chelerythrine and apomorphine complement the armamentarium of compounds to explore the role of glutaminase in disease.
PMCID: PMC4094369  PMID: 23850693
Cancer; HIV-associated dementia (HAD); Glutamate; Glutamine; Glutaminase; Kinetics
4.  Small-molecule pyrimidine inhibitors of the cdc2-like (Clk) and dual specificity tyrosine phosphorylation-regulated (Dyrk) kinases: Development of chemical probe ML315 
Substituted pyrimidine inhibitors of the Clk and Dyrk kinases have been developed, exploring structure-activity relationships around four different chemotypes. The most potent compounds have low-nanomolar inhibitory activity against Clk1, Clk2, Clk4, Dyrk1A and Dyrk1B. Kinome scans with 442 kinases using agents representing three of the chemotypes show these inhibitors to be highly selective for the Clk and Dyrk families. Further off-target pharmacological evaluation with ML315, the most selective agent, supports this conclusion.
PMCID: PMC3664191  PMID: 23642479
Clk; Dyrk; Kinase inhibitor; Splicing; Pyrimidine
5.  Correction: Identification of Therapeutic Candidates for Chronic Lymphocytic Leukemia from a Library of Approved Drugs 
PLoS ONE  2013;8(11):10.1371/annotation/e2536fcb-3ab3-44a0-8eab-91aaeb8e49b6.
PMCID: PMC3815351
6.  Identification of Therapeutic Candidates for Chronic Lymphocytic Leukemia from a Library of Approved Drugs 
PLoS ONE  2013;8(9):e75252.
Chronic lymphocytic leukemia (CLL) is an adult lymphoid malignancy with a variable clinical course. There is considerable interest in the identification of new treatments, as most current approaches are not curative. While most patients respond to initial chemotherapy, relapsed disease is often resistant to the drugs commonly used in CLL and patients are left with limited therapeutic options. In this study, we used a luminescent cell viability assay based on ATP levels to find compounds that were potent and efficacious in killing CLL cells. We employed an in-house process of quantitative high throughput screening (qHTS) to assess 8 concentrations of each member of a 2,816 compound library (including FDA-approved drugs and those known to be bio-active from commercial suppliers). Using qHTS we generated potency values on each compound in lymphocytes donated from each of six individuals with CLL and five unaffected individuals. We found 102 compounds efficacious against cells from all six individuals with CLL (“consensus” drugs) with five of these showing low or no activity on lymphocytes from a majority of normal donors, suggesting some degree of specificity for the leukemic cells. To our knowledge, this is the first study to screen a drug library against primary CLL cells to identify candidate agents for anti-cancer therapy. The results presented here offer possibilities for the development of novel drug candidates for therapeutic uses to treat CLL and other diseases.
PMCID: PMC3779154  PMID: 24073257
7.  Firefly luciferase in chemical biology: A compendium of inhibitors, mechanistic evaluation of chemotypes, and suggested use as a reporter 
Chemistry & biology  2012;19(8):1060-1072.
Firefly luciferase (FLuc) is frequently used as a reporter in high-throughput screening assays owing to the exceptional sensitivity, dynamic range, and rapid measurement that bioluminescence affords. However, interaction of small molecules with FLuc has, to some extent, confounded its use in chemical biology and drug discovery. To identify and characterize chemotypes interacting with FLuc, we determined potency values for 360,864 compounds, found in the NIH Molecular Libraries Small Molecule Repository, available in PubChem. FLuc inhibitory activity was observed for 12% of this library with discernible SAR. Characterization of 151 inhibitors demonstrated a variety of inhibition modes including FLuc-catalyzed formation of multisubstrate-adduct enzyme inhibitor complexes. As in some cell-based FLuc reporter assays compounds acting as FLuc inhibitors yield paradoxical luminescence increases, data on compounds acquired from FLuc-dependent assays requires careful analysis as described in this report.
PMCID: PMC3449281  PMID: 22921073
profiling; PubChem; luciferase; quantitative high-throughput screening; qHTS; firefly luciferase; reporter-gene assays; adenylate forming enzymes
8.  Pyruvate kinase M2 activators promote tetramer formation and suppress tumorigenesis 
Nature chemical biology  2012;8(10):839-847.
Cancer cells engage in a metabolic program to enhance biosynthesis and support cell proliferation. The regulatory properties of pyruvate kinase M2 (PKM2) influence altered glucose metabolism in cancer. PKM2 interaction with phosphotyrosine-containing proteins inhibits enzyme activity and increases availability of glycolytic metabolites to support cell proliferation. This suggests that high pyruvate kinase activity may suppress tumor growth. We show that expression of PKM1, the pyruvate kinase isoform with high constitutive activity, or exposure to published small molecule PKM2 activators inhibit growth of xenograft tumors. Structural studies reveal that small molecule activators bind PKM2 at the subunit interaction interface, a site distinct from that of the endogenous activator fructose-1,6-bisphosphate (FBP). However, unlike FBP, binding of activators to PKM2 promotes a constitutively active enzyme state that is resistant to inhibition by tyrosine-phosphorylated proteins. These data support the notion that small molecule activation of PKM2 can interfere with anabolic metabolism.
PMCID: PMC3711671  PMID: 22922757
9.  Physicochemical Characterization of a Thermostable Alcohol Dehydrogenase from Pyrobaculum aerophilum 
PLoS ONE  2013;8(6):e63828.
In this work we characterize an alcohol dehydrogenase (ADH) from the hyperthermophilic archaeon Pyrobaculum aerophilum (PyAeADHII). We have previously found that PyAeADHII has no activity when standard ADH substrates are used but is active when α-tetralone is used as substrate. Here, to gain insights into enzyme function, we screened several chemical libraries for enzymatic modulators using an assay employing α-tetralone. The results indicate that PyAeADHII activity in the presence of α-tetralone was inhibited by compounds such as flunarizine. We also examined metal coordination of the enzyme in solution by performing metal substitution of the enzyme-bound zinc (Zn2+) with cobalt. The solution-based absorption spectra for cobalt substituted PyAeADHII supports substitution at the structural Zn2+ site. To gain structural insight, we obtained the crystal structure of both wild-type and cobalt-substituted PyAeADHII at 1.75 Å and 2.20 Å resolution, respectively. The X-ray data confirmed one metal ion per monomer present only at the structural site with otherwise close conservation to other ADH enzymes. We next determined the co-crystal structure of the NADPH-bound form of the enzyme at 2.35 Å resolution to help define the active site region of the enzyme and this data shows close structural conservation with horse ADH, despite the lack of a catalytic Zn2+ ion in PyAeADHII. Modeling of α-tetralone into the NADPH bound structure suggests an arginine as a possible catalytic residue. The data presented here can yield a better understanding of alcohol dehydrogenases lacking the catalytic zinc as well as the structural features inherent to thermostable enzymes.
PMCID: PMC3673990  PMID: 23755111
10.  Profile of the GSK Published Protein Kinase Inhibitor Set Across ATP-Dependent and-Independent Luciferases: Implications for Reporter-Gene Assays 
PLoS ONE  2013;8(3):e57888.
A library of 367 protein kinase inhibitors, the GSK Published Kinase Inhibitor Set (PKIS), which has been annotated for protein kinase family activity and is available for public screening efforts, was assayed against the commonly used luciferase reporter enzymes from the firefly, Photinus pyralis (FLuc) and marine sea pansy, Renilla reniformis (RLuc). A total of 22 compounds (∼6% of the library) were found to inhibit FLuc with 10 compounds showing potencies ≤1 µM. Only two compounds were found to inhibit RLuc, and these showed relatively weak potency values (∼10 µM). An inhibitor series of the VEGFR2/TIE2 protein kinase family containing either an aryl oxazole or benzimidazole-urea core illustrate the different structure activity relationship profiles FLuc inhibitors can display for kinase inhibitor chemotypes. Several FLuc inhibitors were broadly active toward the tyrosine kinase and CDK families. These data should aid in interpreting the results derived from screens employing the GSK PKIS in cell-based assays using the FLuc reporter. The study also underscores the general need for strategies such as the use of orthogonal reporters to identify kinase or non-kinase mediated cellular responses.
PMCID: PMC3591448  PMID: 23505445
11.  A Homogeneous, High-Throughput Assay for Phosphatidylinositol 5-Phosphate 4-Kinase with a Novel, Rapid Substrate Preparation 
PLoS ONE  2013;8(1):e54127.
Phosphoinositide kinases regulate diverse cellular functions and are important targets for therapeutic development for diseases, such as diabetes and cancer. Preparation of the lipid substrate is crucial for the development of a robust and miniaturizable lipid kinase assay. Enzymatic assays for phosphoinositide kinases often use lipid substrates prepared from lyophilized lipid preparations by sonication, which result in variability in the liposome size from preparation to preparation. Herein, we report a homogeneous 1536-well luciferase-coupled bioluminescence assay for PI5P4Kα. The substrate preparation is novel and allows the rapid production of a DMSO-containing substrate solution without the need for lengthy liposome preparation protocols, thus enabling the scale-up of this traditionally difficult type of assay. The Z’-factor value was greater than 0.7 for the PI5P4Kα assay, indicating its suitability for high-throughput screening applications. Tyrphostin AG-82 had been identified as an inhibitor of PI5P4Kα by assessing the degree of phospho transfer of γ-32P-ATP to PI5P; its inhibitory activity against PI5P4Kα was confirmed in the present miniaturized assay. From a pilot screen of a library of bioactive compounds, another tyrphostin, I-OMe tyrphostin AG-538 (I-OMe-AG-538), was identified as an ATP-competitive inhibitor of PI5P4Kα with an IC50 of 1 µM, affirming the suitability of the assay for inhibitor discovery campaigns. This homogeneous assay may apply to other lipid kinases and should help in the identification of leads for this class of enzymes by enabling high-throughput screening efforts.
PMCID: PMC3542272  PMID: 23326584
12.  Titration-based screening for evaluation of natural product extracts: identification of an aspulvinone family of luciferase inhibitors 
Chemistry & biology  2011;18(11):1442-1452.
The chemical diversity of nature has tremendous potential for discovery of new molecular probes and medicinal agents. However, sensitivity of HTS assays to interfering components of crude extracts derived from plants, macro- and microorganisms has curtailed their use in lead discovery efforts. Here we describe a process for leveraging the concentration-response curves (CRCs) obtained from quantitative HTS to improve the initial selection of “actives” from a library of partially fractionated natural product extracts derived from marine actinomycetes and fungi. By using pharmacological activity, the first-pass CRC paradigm aims to improve the probability that labor-intensive subsequent steps of re-culturing, extraction and bioassay-guided isolation of active component(s) target the most promising strains and growth conditions. We illustrate how this process identified a family of fungal metabolites as potent inhibitors of firefly luciferase, subsequently resolved in molecular detail by x-ray crystallography.
PMCID: PMC3225805  PMID: 22118678
13.  A new family of covalent inhibitors block nucleotide binding to the active site of pyruvate kinase 
The Biochemical journal  2012;448(1):67-72.
Pyruvate kinase (PYK) plays a central role in the metabolism of many organisms and cell types, but the elucidation of the details of its function in a systems biology context has been hampered by the lack of specific high-affinity small molecule inhibitors. High-throughput screening has been used to identify a family of saccharin derivatives which inhibit Leishmania mexicana PYK (LmPYK) activity in a time- (and dose-) dependent manner; a characteristic of irreversible inhibition. The crystal structure of 4-[(1,1-dioxo-1,2-benzothiazol-3-yl)sulfanyl]benzoic acid (DBS) complexed with LmPYK shows that the saccharin moiety reacts with an active-site lysine residue (Lys335), forming a covalent bond and sterically hindering the binding of ADP/ATP. Mutation of the lysine residue to an arginine residue eliminated the effect of the inhibitor molecule, providing confirmation of the proposed inhibitor mechanism. This lysine residue is conserved in the active sites of the four human PYK isoenzymes, which were also found to be irreversibly inhibited by DBS. X-ray structures of PYK isoforms show structural differences at the DBS binding pocket, and this covalent inhibitor of PYK provides a chemical scaffold for the design of new families of potentially isoform-specific irreversible inhibitors.
PMCID: PMC3498827  PMID: 22906073
Leishmania mexicana; lysine covalent modification; nucleotide binding; pyruvate kinase; saccharin analogues; covalent inhibitor
14.  Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses 
Science (New York, N.Y.)  2011;334(6060):1278-1283.
Control of intracellular reactive oxygen species (ROS) concentrations is critical for cancer cell survival. We show that, in human lung cancer cells, acute increases in intracellular concentrations of ROS caused inhibition of the glycolytic enzyme pyruvate kinase M2 (PKM2) through oxidation of Cys358. This inhibition of PKM2 is required to divert glucose flux into the pentose phosphate pathway and thereby generate sufficient reducing potential for detoxification of ROS. Lung cancer cells in which endogenous PKM2 was replaced with the Cys358 to Ser358 oxidation-resistant mutant exhibited increased sensitivity to oxidative stress and impaired tumor formation in a xenograft model. Besides promoting metabolic changes required for proliferation, the regulatory properties of PKM2 may confer an additional advantage to cancer cells by allowing them to withstand oxidative stress.
PMCID: PMC3471535  PMID: 22052977
15.  Monitoring compound integrity with cytochrome P450 assays and qHTS 
Journal of biomolecular screening  2009;14(5):538-546.
We describe how room temperature storage of a 1,120 member compound library prepared in either DMSO or in a hydrated DMSO/water (67/33) mixture affects the reproducibility of potency values as monitored using cytochrome P450 1A2 and 2D6 isozyme assays. The bioluminescent assays showed Z′-factors of 0.71 and 0.62, with 18% and 32% of the library found as active against the CYP 1A2 and 2D6 isozymes respectively. We tested the library using quantitative high-throughput screening to generate potency values for every library member which was measured at seven time intervals spanning 37 weeks. We calculated the minimum significant ratio (MSR) from these potency values at each time interval and we found that for the library stored in DMSO, the CYP 1A2 and 2D6 assay MSRs progressed from approximately 2.0 to 5.0. The hydrated conditions showed similar performance in both MSR progression and analytical QC results. Based on this study we recommend that DMSO samples be stored in 1,536-well plates for < 4 months at room temperature. Further, the study shows the magnitude of potency changes that can occur in a robust bioassay due to compound sample storage.
PMCID: PMC3430136  PMID: 19483146
HTS; compound storage; DMSO; quantitative HTS
16.  A Basis for Reduced Chemical Library Inhibition of Firefly Luciferase Obtained from Directed Evolution 
Journal of medicinal chemistry  2009;52(5):1450-1458.
We measured the “druggability” of the ATP-dependent luciferase derived from the firefly Photuris pennsylvanica that was optimized using directed evolution (Ultra-Glo™, Promega). Quantitative high throughput screening (qHTS) was used to determine IC50’s of 198,899 samples against a formulation of Ultra-Glo luciferase (Kinase-Glo™). We found that only 0.1% of the Kinase-Glo inhibitors showed an IC50 < 10 μM compared to 0.9% found from a previous qHTS against the firefly luciferase from Photinus pyralis (lucPpy). Further, the maximum affinity identified in the lucPpy qHTS was 50 nM while for Kinase-Glo this value increased to 600 nM. Compounds with interactions stretching outside the luciferin binding pocket were largely lost with Ultra-Glo luciferase. Therefore, Ultra-Glo luciferase will show less compound interference when used as an ATP sensor compared to lucPpy. This study demonstrates the power of large-scale quantitative analysis of structure-activity relationships (>100K compounds) in addressing important questions such as a target's druggability.
PMCID: PMC3430137  PMID: 19215089
chemical profiling; enzyme assay; PubChem; luciferase; quantitative high-throughput screening
17.  Potent and Selective Small Molecule Inhibitors of Specific Isoforms of Cdc2-like Kinases (Clk) and Dual Specificity Tyrosine-Phosphorylation-Regulated Kinases (Dyrk) 
Continued examination of substituted 6-arylquinazolin-4-amines as Clk4 inhibitors resulted in selective inhibitors of Clk1, Clk4, Dyrk1A and Dyrk1B. Several of the most potent inhibitors were validated as being highly selective within a comprehensive kinome scan.
PMCID: PMC3085634  PMID: 21450467
Clk1; Clk2; Clk3; Clk4; Dyrk1A; Dyrk1B; Pre-mRNA splicing; kinase inhibition; quinazoline
18.  2-oxo-N-aryl-1,2,3,4-tetrahydroquinoline-6-sulfonamides as activators of the tumor cell specific M2 isoform of pyruvate kinase 
Compared to normal differentiated cells, cancer cells have altered metabolic regulation to support biosynthesis and the expression of the M2 isozyme of pyruvate kinase (PKM2) plays an important role in this anabolic metabolism. While the M1 isoform is a highly active enzyme, the alternatively spliced M2 variant is considerably less active and expressed in tumors. While the exact mechanism by which decreased pyruvate kinase activity contributes to anabolic metabolism remains unclear, it is hypothesized that activation of PKM2 to levels seen with PKM1 may promote a metabolic program that is not conducive to cell proliferation. Here we report the third chemotype in a series of PKM2 activators based on the 2-oxo-N-aryl-1,2,3,4-tetrahydroquinoline-6-sulfonamide scaffold. The synthesis, structure activity relationships, selectivity and notable physiochemical properties are described.
PMCID: PMC3224553  PMID: 21958545
PKM2; pyruvate kinase; cellular metabolism; anti-cancer strategies; small molecule activators
19.  Illuminating insights into firefly luciferase and other bioluminescent reporters used in chemical biology 
Chemistry & biology  2010;17(6):646-657.
Understanding luciferase enzymology and the structure of compounds that modulate luciferase activity can be used to improve the design of luminescence-based assays. This review provides an overview of these popular reporters with an emphasis on the commonly used firefly luciferase from Photinus pyralis (FLuc). Large-scale chemical profile studies have identified a variety of scaffolds that inhibit FLuc. In some cell-based assays these inhibitors can act in a counter-intuitive way –leading to a gain in luminescent signal. Although formerly attributed to transcriptional activation, intracellular stabilization of FLuc is the primary mechanism underlying this observation. FLuc inhibition/stabilization can be complex, as illustrated by the compound PTC124, which is converted by FLuc in the presence of ATP to a high affinity multi-substrate-adduct inhibitor, PTC124-AMP. The potential influence these findings can have on drug discovery efforts is provided here.
PMCID: PMC2925662  PMID: 20609414
20.  Evaluation of Thieno[3,2-b]pyrrole[3,2-d]pyridazinones as Activators of the Tumor Cell Specific M2 Isoform of Pyruvate Kinase 
Cancer cells have distinct metabolic needs that are different from normal cells and can be exploited for development of anti-cancer therapeutics. Activation of the tumor specific M2 form of pyruvate kinase (PKM2) is a potential strategy for returning cancer cells to a metabolic state characteristic of normal cells. Here, we describe activators of PKM2 based upon a substituted thieno[3,2-b]pyrrole[3,2-d]pyridazinone scaffold. The synthesis of these agents, structure activity relationships, analysis of activity at related targets (PKM1, PKR and PKL) and examination of aqueous solubility are investigated. These agents represent the second reported chemotype for activation of PKM2.
PMCID: PMC2874658  PMID: 20451379
Warburg effect; pyruvate kinase; cellular metabolism; anti-cancer strategies; small molecule activators
21.  Apparent Activity in High-Throughput Screening: Origins of Compound-Dependent Assay Interference 
Summary of recent advances
Expansive compound collections made up of structurally heterogeneous chemicals, the activities of which are largely undefined, present challenging problems for high-throughput screening (HTS). Foremost is differentiating whether the activity for a given compound in an assay is directed against the targeted biology, or is the result of surreptitious compound activity involving the assay detection system. Such compound interference can be especially difficult to identify if it is reproducible and concentration-dependent – characteristics generally attributed to compounds with genuine activity. While reactive chemical groups on compounds were once thought to be the primary source of compound interference in assays used in HTS, recent work suggests that other factors, such as compound aggregation, may play a more significant role in many assay formats. Considerable progress has been made to profile representative compound libraries in an effort to identify chemical classes susceptible to producing compound interference, such as compounds commonly found to inhibit the reporter enzyme firefly luciferase. Such work has also led to the development of practices that have the potential to significantly reduce compound interference, for example, through the addition of non-ionic detergent to assay buffer to reduce aggregation-based inhibition.
PMCID: PMC2878863  PMID: 20417149
22.  A Highly Potent and Selective Caspase 1 Inhibitor that Utilizes a Key 3-Cyanopropanoic Acid Moiety 
ChemMedChem  2010;5(5):730-738.
Herein we examine the potential of a nitrile-containing proprionic acid moiety as an electrophile for covalent attack by the active site cysteine residue of caspase 1. The syntheses of several cyanopropanate containing small molecules based upon the optimized peptidic scaffold of the prodrug VX-765 were accomplished and found to be potent inhibitors of caspase 1 (IC50s ≤ 1 nM). Examination of these novel small molecules versus a caspase panel demonstrated an impressive degree of selectivity for caspase 1 inhibition. Assessment of hydrolytic stability and selected ADME properties highlighted these agents as potentially useful tools for studying caspase 1 down-regulation in various settings including in vivo analyses.
PMCID: PMC3062473  PMID: 20229566
Inhibitor; enzymes; prodrugs; peptides; caspase 1 inhibitor; Cysteine proteases; Caspase 1; VX-765; VRT-043198; covalent modifiers,; nitrile caspase inhibitors
23.  Evaluation of Substituted N,N′-Diarylsulfonamides as Activators of the Tumor Cell Specific M2 Isoform of Pyruvate Kinase 
The metabolism of cancer cells is altered to support rapid proliferation. Pharmacological activators of a tumor cell specific pyruvate kinase isozyme (PKM2) may be an approach for altering the classic Warburg effect characteristic of aberrant metabolism in cancer cells yielding a novel anti-proliferation strategy. In this manuscript we detail the discovery of a series of substituted N,N′-diarylsulfonamides as activators of PKM2. The synthesis of numerous analogues and the evaluation of structure activity relationships are presented as well as assessments of mechanism and selectivity. Several agents are found that have good potencies and appropriate solubility for use as chemical probes of PKM2 including 55 (AC50 = 43 nM, maximum response = 84%; solubility = 7.3 μg/mL), 56 (AC50 = 99 nM, maximum response = 84%; solubility = 5.7 μg/mL) and 58 (AC50 = 38 nM, maximum response = 82%; solubility = 51.2 μg/mL). The small molecules described here represent first-in-class activators of PKM2
PMCID: PMC2818804  PMID: 20017496
Warburg effect; pyruvate kinase; cellular metabolism; high-throughput screening; small molecule activators
24.  Evaluation of substituted 6-arylquinazolin-4-amines as potent and selective inhibitors of cdc2-like kinases (Clk) 
A series of substituted 6-arylquinazolin-4-amines were prepared and analyzed as inhibitors of Clk4. Synthesis, structure activity-relationships and the selectivity of a potent analogue against a panel of 402 kinases are presented. Inhibition of Clk4 by these agents at varied concentrations of assay substrates (ATP and receptor peptide) highly suggests that this chemotype is an ATP competitive inhibitor. Molecular docking provides further evidence that inhibition is the result of binding at the kinase hinge region. Selected compounds represent novel tools capable of potent and selective inhibition of Clk1, Clk4 and Dyrk1A.
PMCID: PMC2807730  PMID: 19837585
kinase inhibition; pre-mRNA splicing; Clk; Dyrk1A
25.  Comparison of Bioluminescent Kinase Assays Using Substrate Depletion and Product Formation 
Assays for ATPases have been enabled for high-throughput screening (HTS) by employing firefly luciferase to detect the remaining ATP in the assay. However, for any enzyme assay, measurement of product formation is a more sensitive assay design. Recently, technologies that allow detection of the ADP product from ATPase reactions have been described using fluorescent methods of detection. We describe here the characterization of a bioluminescent assay that employs firefly luciferase in a coupled-enzyme assay format to enable detection of ADP levels from ATPase assays (ADP-Glo®, Promega Corp.). We determined the performance of the ADP-Glo assay in 1,536-well microtiter plates using the protein kinase Clk4 and a 1,352 member kinase focused combinatorial library. The ADP-Glo assay was compared to the Clk4 assay performed using a bioluminescence ATP-depletion format (Kinase-Glo™, Promega Corp). We performed this analysis using quantitative HTS (qHTS) where we determined potency values for all library members and identified ∼300 compounds with potencies ranging from as low as 50 nM to >10 µM, yielding a robust dataset for the comparison. Both assay formats showed high performance (Z′-factors ∼0.9) and showed a similar potency distribution for the actives. We conclude that the bioluminescence ADP detection assay system is a viable generic alternative to the widely used ATP-depletion assay for ATPases and discuss the advantages and disadvantages of both approaches.
PMCID: PMC3096547  PMID: 20059377

Results 1-25 (39)