PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (717)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
more »
1.  Cellular Reprogramming Allows Generation of Autologous Hematopoietic Progenitors From AML Patients That Are Devoid of Patient-Specific Genomic Aberrations 
Stem Cells (Dayton, Ohio)  2015;33(6):1839-1849.
Current treatments that use hematopoietic progenitor cell (HPC) transplantation in acute myeloid leukemia (AML) patients substantially reduce the risk of relapse, but are limited by the availability of immune compatible healthy HPCs. Although cellular reprogramming has the potential to provide a novel autologous source of HPCs for transplantation, the applicability of this technology toward the derivation of healthy autologous hematopoietic cells devoid of patient-specific leukemic aberrations from AML patients must first be evaluated. Here, we report the generation of human AML patient-specific hematopoietic progenitors that are capable of normal in vitro differentiation to myeloid lineages and are devoid of leukemia-associated aberration found in matched patient bone marrow. Skin fibroblasts were obtained from AML patients whose leukemic cells possessed a distinct, leukemia-associated aberration, and used to create AML patient-specific induced pluripotent stem cells (iPSCs). Through hematopoietic differentiation of AML patient iPSCs, coupled with cytogenetic interrogation, we reveal that AML patient-specific HPCs possess normal progenitor capacity and are devoid of leukemia-associated mutations. Importantly, in rare patient skin samples that give rise to mosaic fibroblast cultures that continue to carry leukemia-associated mutations; healthy hematopoietic progenitors can also be generated via reprogramming selection. Our findings provide the proof of principle that cellular reprogramming can be applied on a personalized basis to generate healthy HPCs from AML patients, and should further motivate advances toward creating transplantable hematopoietic stem cells for autologous AML therapy. Stem Cells 2013;33:1839–1849
doi:10.1002/stem.1994
PMCID: PMC4691325  PMID: 25764124
Acute myeloid leukemia; Chromosome aberrations; Human induced pluripotent stem cells; Hematopoietic progenitor cells; Reprogramming
2.  Are Clinical Trials with Mesenchymal Stem/Progenitor Cells (MSCs) too Far Ahead of the Science? Lessons from Experimental Hematology 
Stem cells (Dayton, Ohio)  2014;32(12):3055-3061.
The cells referred to as mesenchymal stem/progenitor cells (MSCs) are currently being used to treat thousands of patients with diseases of essentially all the organs and tissues of the body. Strikingly positive results have been reported in some patients but there have been few prospective controlled studies. Also, the reasons for the beneficial effects are frequently unclear. As a result there has been a heated debate as to whether the clinical trials with these new cell therapies are too far ahead of the science. The debate is not easily resolved, but important insights are provided by the 60 year history that was required to develop the first successful stem cell therapy, the transplantation of hematopoietic stem cells. The history indicates that development of a dramatically new therapy usually requires patience and a constant dialogue between basic scientists and physicians carrying out carefully designed clinical trials. It also suggests that the field can be moved forward by establishing better records of how MSCs are prepared, by establishing a large supply of reference MSCs that can be used to validate assays and compare MSCs prepared in different laboratories, and by continuing efforts to establish in vivo assays for the efficacy of MSCs.
doi:10.1002/stem.1806
PMCID: PMC4245369  PMID: 25100155
hematopoietic stem cells; new clinical therapies; need for scientific dialogue
3.  Acute Loss of Cited2 Impairs Nanog Expression and Decreases Self-Renewal of Mouse Embryonic Stem Cells 
Stem Cells (Dayton, Ohio)  2014;33(3):699-712.
Identifying novel players of the pluripotency gene regulatory network centered on Oct4, Sox2, and Nanog as well as delineating the interactions within the complex network is key to understanding self-renewal and early cell fate commitment of embryonic stem cells (ESC). While overexpression of the transcriptional regulator Cited2 sustains ESC pluripotency, its role in ESC functions remains unclear. Here, we show that Cited2 is important for proliferation, survival, and self-renewal of mouse ESC. We position Cited2 within the pluripotency gene regulatory network by defining Nanog, Tbx3, and Klf4 as its direct targets. We also demonstrate that the defects caused by Cited2 depletion are, at least in part, rescued by Nanog constitutive expression. Finally, we demonstrate that Cited2 is required for and enhances reprogramming of mouse embryonic fibroblasts to induced pluripotent stem cells. Stem Cells 2015;33:699–712
doi:10.1002/stem.1889
PMCID: PMC4583779  PMID: 25377420
Transcriptional regulation; Self-renewal; Pluripotency; Cited2; Nanog
4.  Genetically Induced Cell Death in Bulge Stem Cells Reveals Their Redundancy for Hair and Epidermal Regeneration 
Stem Cells (Dayton, Ohio)  2014;33(3):988-998.
Adult mammalian epidermis contains multiple stem cell populations in which quiescent and more proliferative stem and progenitor populations coexist. However, the precise interrelation of these populations in homeostasis remains unclear. Here, we blocked the contribution of quiescent keratin 19 (K19)-expressing bulge stem cells to hair follicle formation through genetic ablation of the essential histone methyltransferase Setd8 that is required for the maintenance of adult skin. Deletion of Setd8 eliminated the contribution of bulge cells to hair follicle regeneration through inhibition of cell division and induction of cell death, but the growth and morphology of hair follicles were unaffected. Furthermore, ablation of Setd8 in the hair follicle bulge blocked the contribution of K19-postive stem cells to wounded epidermis, but the wound healing process was unaltered. Our data indicate that quiescent bulge stem cells are dispensable for hair follicle regeneration and epidermal injury in the short term and support the hypothesis that quiescent and cycling stem cell populations are equipotent. Stem Cells 2015;33:988–998
doi:10.1002/stem.1910
PMCID: PMC4583782  PMID: 25447755
Adult stem cells; Epidermis; Stem cell plasticity; Targeted gene disruption
5.  Defining the localization and molecular characteristic of minor salivary gland label retaining cells 
Stem cells (Dayton, Ohio)  2014;32(8):2267-2277.
Summary
Adult stem cells (SCs) are important to maintain homeostasis of tissues including several mini-organs like hair follicles and sweat glands. However, the existence of stem cells in minor salivary glands (SGs) is largely unexplored. In vivo histone2B GFP (H2BGFP) pulse chase strategy has allowed us to identify slow cycling, label retaining cells (LRC) of minor salivary glands that preferentially localize in the basal layer of the lower excretory duct with a few in the acini. Engraftment of isolated SG LRC in vivo demonstrated their potential to differentiate into keratin 5 (basal layer marker) and keratin 8 (luminal layer marker) positive structures. Transcriptional analysis revealed activation of TGFβ1 target genes in SG LRC and BMP signaling in SG progenitors. We also provide evidence that minor SGSCs are sensitive to tobacco derived tumor inducing agent and give rise to tumors resembling low grade adenoma. Our data highlight for the first time the existence of minor salivary gland LRCs with stem cells characteristic and emphasize the role of TGFβ pathway in their maintenance.
doi:10.1002/stem.1715
PMCID: PMC4106972  PMID: 24715701
6.  Retinoic acid suppresses the canonical Wnt signaling pathway in embryonic stem cells and activates the noncanonical Wnt signaling pathway 
Stem cells (Dayton, Ohio)  2014;32(8):2061-2071.
Embryonic stem cells (ESCs) have both the ability to self-renew and to differentiate into various cell lineages. Retinoic acid (RA), a metabolite of Vitamin A, has a critical function in initiating lineage differentiation of ESCs through binding to the retinoic acid receptors (RARs). Additionally, the Wnt signaling pathway plays a role in pluripotency and differentiation, depending on the activation status of the canonical and noncanonical pathways. The activation of the canonical Wnt signaling pathway, which requires the nuclear accumulation of β-catenin and its interaction with Tcf1/Lef at Wnt response elements, is involved in ESC stemness maintenance. The noncanonical Wnt signaling pathway, through actions of Tcf3, can antagonize the canonical pathway. We show that RA activates the noncanonical Wnt signaling pathway, while concomitantly inhibiting the canonical pathway. RA increases the expression of ligands and receptors of the noncanonical Wnt pathway (Wnt 5a, 7a, Fzd2 and Fzd6), downstream signaling, and Tcf3 expression. RA reduces the phosphorylated β-catenin level by 4-fold, though total β-catenin levels don't change. We show that RA signaling increases the dissociation of Tcf1 and the association of Tcf3 at promoters of genes that regulate stemness (e.g. NR5A2,Lrh-1) or differentiation (eg. Cyr61, Zic5). Knockdown of Tcf3 increases Lrh-1 transcript levels in mESCs and prevents the RA-associated, ∼4-fold increase in Zic5, indicating that RA requires Tcf3 to effect changes in Zic5 levels. We demonstrate a novel role for RA in altering the activation of these two Wnt signaling pathways and show that Tcf3 mediates some actions of RA during differentiation.
doi:10.1002/stem.1706
PMCID: PMC4106995  PMID: 24648413
Retinoic acid; Canonical Wnt signaling; Noncanonical Wnt signaling; embryonic stem cell differentiation; Transcription factor 7 (Tcf1); Transcription factor 7-like 1 (Tcf3)
7.  Pax3 and Tbx5 specify whether PDGFRα+ cells assume skeletal or cardiac muscle fate in differentiating ES cells 
Stem cells (Dayton, Ohio)  2014;32(8):2072-2083.
Embryonic stem (ES) cells represent an ideal model to study how lineage decisions are established during embryonic development. Using a doxycycline-inducible mouse ES cell line, we have previously shown that expression of the transcriptional activator Pax3 in early mesodermal cells leads to the robust generation of paraxial mesoderm progenitors that ultimately differentiate into skeletal muscle precursors. Here we show that the ability of this transcription factor to induce the skeletal myogenic cell fate occurs at the expenses of the cardiac lineage. Our results show that the PDGFRα+FLK1− sub-fraction represents the main population affected by Pax3, through down-regulation of several transcripts encoding for proteins involved in cardiac development. We demonstrate that although Nkx2-5, Tbx5 and Gata4 negatively affect Pax3 skeletal myogenic activity, the cardiac potential of embryoid body (EB)-derived cultures is restored solely by forced expression of Tbx5. Taking advantage of this model, we employed an unbiased genome wide approach to identify genes whose expression is rescued by Tbx5, and which could represent important regulators of cardiac development. These findings elucidate mechanisms regulating the commitment of mesodermal cells in the early embryo and identify the Tbx5 cardiac transcriptome.
doi:10.1002/stem.1713
PMCID: PMC4107161  PMID: 24677751
Embryoid bodies; myogenesis; mesoderm; cardiac; stem cell plasticity
8.  Mir-335 Correlates with Senescence/Aging in Human Mesenchymal Stem Cells and Inhibits their Therapeutic Actions through Inhibition of AP-1 Activity 
Stem cells (Dayton, Ohio)  2014;32(8):2229-2244.
MicroRNAs (miRNAs), small non-coding RNAs, regulate gene expression primarily at the posttranscriptional level. We previously found that miR-335 is critically involved in the regulation and differentiation capacity of human mesenchymal stem cells (hMSCs) in vitro. In this study, we investigated the significance of miR-335 for the therapeutic potential of hMSCs. Analysis of hMSCs in ex vivo culture demonstrated a significant and progressive increase in miR-335 that is prevented by telomerase. Expression levels of miR-335 were also positively correlated with donor age of hMSCs, and were increased by stimuli that induce cell senescence, such as γ-irradiation and standard O2 concentration. Forced expression of miR-335 resulted in early senescence-like alterations in hMSCs, including: increased SA-β-gal activity and cell size, reduced cell proliferation capacity, augmented levels of p16 protein, and the development of a senescent-associated secretory phenotype (SASP). Furthermore, overexpression of miR-335 abolished the in vivo chondro-osseous potential of hMSCs, and disabled their immunomodulatory capacity in a murine experimental model of lethal endotoxemia. These effects were accompanied by a severely reduced capacity for cell migration in response to pro-inflammatory signals and a marked reduction in Protein Kinase D1 (PRKD1) phosphorylation, resulting in a pronounced decrease of AP-1 activity. Our results demonstrate that miR-335 plays a key role in the regulation of reparative activities of hMSCs and suggests that it might be considered a marker for the therapeutic potency of these cells in clinical applications.
doi:10.1002/stem.1699
PMCID: PMC4207125  PMID: 24648336
Mesenchymal stem cells; miRNA; Immunotherapy; Aging
9.  Synovial Mesenchymal Stem Cells Promote Meniscus Regeneration Augmented by an Autologous Achilles Tendon Graft in a Rat Partial Meniscus Defect Model 
Stem Cells (Dayton, Ohio)  2015;33(6):1927-1938.
Although meniscus defects and degeneration are strongly correlated with the later development of osteoarthritis, the promise of regenerative medicine strategies is to prevent and/or delay the disease's progression. Meniscal reconstruction has been shown in animal models with tendon grafting and transplantation of mesenchymal stem cells (MSCs); however, these procedures have not shown the same efficacy in clinical studies. Here, our aim was to investigate the ability of tendon grafts pretreated with exogenous synovial-derived MSCs to prevent cartilage degeneration in a rat partial meniscus defect model. We removed the anterior half of the medial meniscus and grafted autologous Achilles tendons with or without a 10-minute pretreatment of the tendon with synovial MSCs. The meniscus and surrounding cartilage were evaluated at 2, 4, and 8 weeks (n = 5). Tendon grafts increased meniscus size irrespective of synovial MSCs. Histological scores for regenerated menisci were better in the tendon + MSC group than in the other two groups at 4 and 8 weeks. Both macroscopic and histological scores for articular cartilage were significantly better in the tendon + MSC group at 8 weeks. Implanted synovial MSCs survived around the grafted tendon and native meniscus integration site by cell tracking assays with luciferase+, LacZ+, DiI+, and/or GFP+ synovial MSCs and/or GFP+ tendons. Flow cytometric analysis showed that transplanted synovial MSCs retained their MSC properties at 7 days and host synovial tissue also contained cells with MSC characteristics. Synovial MSCs promoted meniscus regeneration augmented by autologous Achilles tendon grafts and prevented cartilage degeneration in rats. Stem Cells 2015;33:1927–1938
doi:10.1002/stem.2030
PMCID: PMC4497612  PMID: 25993981
Stem cell transplantation; Mesenchymal stem cells; Arthritis; Cellular therapy
10.  Human adipose derived stromal/stem cells (hASCs) protect against STZ-induced hyperglycemia; analysis of hASC-derived paracrine effectors 
Stem cells (Dayton, Ohio)  2014;32(7):1831-1842.
Adipose-derived stromal/stem cells (ASCs) ameliorate hyperglycemia in rodent models of islet transplantation and autoimmune diabetes, yet the precise human ASC (hASC)-derived factors responsible for these effects remain largely unexplored. Here, we show that systemic administration of hASCs improved glucose tolerance, preserved β cell mass, and increased β cell proliferation in STZ-treated NOD-SCID mice. Co-culture experiments combining mouse or human islets with hASCs demonstrated that islet viability and function were improved by hASCs following prolonged culture or treatment with pro-inflammatory cytokines. Analysis of hASC-derived factors revealed VEGF and TIMP-1 to be highly abundant factors secreted by hASCs. Notably, TIMP-1 secretion increased in the presence of islet stress from cytokine treatment, while TIMP-1 blockade was able to abrogate in vitro pro-survival effects of hASCs. Following systemic administration by tail vein injection, hASCs were detected in the pancreas and human TIMP-1 was increased in the serum of injected mice, while recombinant TIMP-1 increased viability in INS-1 cells treated with IL-1β, IFN-γ and TNF-α. In aggregate, our data support a model whereby factors secreted by hASCs, such as TIMP-1, are able to mitigate against β cell death in rodent and in vitro models of Type 1 diabetes through a combination of local paracrine as well as systemic effects.
doi:10.1002/stem.1676
PMCID: PMC4063872  PMID: 24519994
diabetes; adipose stem cells; pancreas; caspase; cellular proliferation; tissue regeneration
11.  Cancer stem cell-specific scavenger receptor CD36 drives glioblastoma progression 
Stem cells (Dayton, Ohio)  2014;32(7):1746-1758.
Glioblastoma (GBM) contains a self-renewing, tumorigenic cancer stem cell (CSC) population which contributes to tumor propagation and therapeutic resistance. While the tumor microenvironment is essential to CSC self-renewal, the mechanisms by which CSCs sense and respond to microenvironmental conditions are poorly understood. Scavenger receptors are a broad class of membrane receptors that are well characterized on immune cells and instrumental in sensing apoptotic cellular debris and modified lipids. Here we provide evidence that CSCs selectively utilize the scavenger receptor CD36 to promote their maintenance using patient-derived CSCs and in vivo xenograft models. We detected CD36 expression in GBM cells in addition to previously described cell types including endothelial cells, macrophages and microglia. CD36 was enriched in CSCs and was able to functionally distinguish self-renewing cells. CD36 was co-expressed with integrin alpha 6 and CD133, previously described CSC markers, and CD36 reduction resulted in concomitant loss of integrin alpha 6 expression, self-renewal and tumor initiation capacity. We confirmed that oxidized phospholipids, ligands of CD36, were present in GBM and found that the proliferation of CSCs, but not non-CSCs, increased with exposure to oxidized low-density lipoprotein. CD36 was an informative biomarker of malignancy and negatively correlated to patient prognosis. These results provide a paradigm for CSCs to thrive by the selective enhanced expression of scavenger receptors, providing survival and metabolic advantages.
doi:10.1002/stem.1716
PMCID: PMC4063873  PMID: 24737733
cancer stem cells; glioma; stem cell-microenvironment interactions; self-renewal
12.  PRL2/PTP4A2 phosphatase is important for hematopoietic stem cell self-renewal 
Stem cells (Dayton, Ohio)  2014;32(7):1956-1967.
Hematopoietic stem cell (HSC) self-renewal is tightly controlled by cytokines and other signals in the microenvironment. While stem cell factor (SCF) is an early acting cytokine that activates the receptor tyrosine kinase KIT and promotes HSC maintenance, how SCF/KIT signaling is regulated in hematopoietic stem cells is poorly understood. The protein tyrosine phosphatase 4A (PTP4A) family [aka PRL (phosphatase of regenerating liver) phosphatases], consisting of PTP4A1/PRL1, PTP4A2/PRL2 and PTP4A3/PRL3, represents an intriguing group of phosphatases implicated in cell proliferation and tumorigenesis. However, the role of PTP4A in hematopoiesis remains elusive. To define the role of PTP4A in hematopoiesis, we analyzed HSC behavior in Ptp4a2 (Prl2) deficient mice. We found that Ptp4a2 deficiency impairs HSC self-renewal as revealed by serial bone marrow transplantation assays. Moreover, we observed that Ptp4a2 null hematopoietic stem and progenitor cells (HSPCs) are more quiescent and show reduced activation of the AKT and ERK signaling. Importantly, we discovered that the ability of PTP4A2 to enhance HSPC proliferation and activation of AKT and ERK signaling depends on its phosphatase activity. Furthermore, we found that PTP4A2 is important for SCF-mediated HSPC proliferation and loss of Ptp4a2 decreased the ability of oncogenic KIT/D814V mutant in promoting hematopoietic progenitor cell proliferation. Thus, PTP4A2 plays critical roles in regulating HSC self-renewal and mediating SCF/KIT signaling.
doi:10.1002/stem.1672
PMCID: PMC4063874  PMID: 24753135
PRL2; PTP4A2; hematopoietic stem cell; self-renewal; cytokine signaling; SCF; KIT; KIT/D814V
13.  Critical Role of Jak2 in the Maintenance and Function of Adult Hematopoietic Stem Cells 
Stem cells (Dayton, Ohio)  2014;32(7):1878-1889.
Jak2, a member of the Janus kinase family of non-receptor protein tyrosine kinases, is activated in response to a variety of cytokines, and functions in survival and proliferation of cells. An activating JAK2V617F mutation has been found in most patients with myeloproliferative neoplasms, and patients treated with Jak2 inhibitors show significant hematopoietic toxicities. However, the role of Jak2 in adult hematopoietic stem cells (HSCs) has not been clearly elucidated. Using a conditional Jak2 knockout allele, we have found that Jak2 deletion results in rapid loss of HSCs/progenitors leading to bone marrow failure and early lethality in adult mice. Jak2 deficiency causes marked impairment in HSC function, and the mutant HSCs are severely defective in reconstituting hematopoiesis in recipient animals. Jak2 deficiency also causes significant apoptosis and loss of quiescence in HSC-enriched LSK (Lin−Sca-1+c-kit+) cells. Jak2-deficient LSK cells exhibit elevated reactive oxygen species levels and enhanced p38 MAPK activation. Mutant LSK cells also show defective Stat5, Erk and Akt activation in response to thrombopoietin and stem cell factor. Gene expression analysis reveals significant downregulation of genes related to HSC quiescence and self-renewal in Jak2-deficient LSK cells. These data suggest that Jak2 plays a critical role in the maintenance and function of adult HSCs.
doi:10.1002/stem.1711
PMCID: PMC4063883  PMID: 24677703
14.  Gremlin 2 promotes differentiation of embryonic stem cells to atrial fate by activation of the JNK signaling pathway 
Stem cells (Dayton, Ohio)  2014;32(7):1774-1788.
The Bone Morphogenetic Protein antagonist Gremlin 2 (Grem2) is required for atrial differentiation and establishment of cardiac rhythm during embryonic development. A human Grem2 variant has been associated with familial atrial fibrillation, suggesting that abnormal Grem2 activity causes arrhythmias. However, it is not known how Grem2 integrates into signaling pathways to direct atrial cardiomyocyte differentiation. Here, we demonstrate that Grem2 expression is induced concurrently with the emergence of cardiovascular progenitor cells during differentiation of mouse embryonic (ES) stem cells. Grem2 exposure enhances the cardiogenic potential of ES cells by ~20–120 fold, preferentially inducing genes expressed in atrial myocytes such as Myl7, Nppa and Sarcolipin. We show that Grem2 acts upstream to upregulate pro-atrial transcriptional factors CoupTFII and Hey1 and downregulate atrial fate repressors Irx4 and Hey2. The molecular phenotype of Grem2-induced atrial cardiomyocytes was further supported by induction of ion channels encoded by Kcnj3, Kcnj5, and Cacna1D genes and establishment of atrial-like action potentials shown by electrophysiological recordings. We show that promotion of atrial-like cardiomyocyte is specific to the Gremlin subfamily of BMP antagonists. Grem2 pro-atrial differentiation activity is conveyed by non-canonical BMP signaling through phosphorylation of JNK and can be reversed by specific JNK inhibitors, but not by dorsomorphin, an inhibitor of canonical BMP signaling. Taken together, our data provide novel mechanistic insights into atrial cardiomyocyte differentiation from pluripotent stem cells and will assist the development of future approaches to study and treat arrhythmias.
doi:10.1002/stem.1703
PMCID: PMC4123739  PMID: 24648383
15.  Targeting Unique Metabolic Properties of Breast Tumor Initiating Cells 
Stem cells (Dayton, Ohio)  2014;32(7):1734-1745.
Normal stem cells from a variety of tissues display unique metabolic properties compared to their more differentiated progeny. However, relatively little is known about heterogeneity of metabolic properties cancer stem cells, also called tumor initiating cells (TICs). In this study we show that, analogous to some normal stem cells, breast TICs have distinct metabolic properties compared to non-tumorigenic cancer cells (NTCs). Transcriptome profiling using RNA-Seq revealed TICs under-express genes involved in mitochondrial biology and mitochondrial oxidative phosphorylation and metabolic analyses revealed TICs preferentially perform glycolysis over oxidative phosphorylation compared to NTCs. Mechanistic analyses demonstrated that decreased expression and activity of pyruvate dehydrogenase (Pdh), a key regulator of oxidative phosphorylation, play a critical role in promoting the pro-glycolytic phenotype of TICs. Metabolic reprogramming via forced activation of Pdh preferentially eliminates TICs both in vitro and in vivo. Our findings reveal unique metabolic properties of TICs and demonstrate that metabolic reprogramming represents a promising strategy for targeting these cells.
doi:10.1002/stem.1662
PMCID: PMC4144791  PMID: 24497069
Breast tumor initiating cells or cancer stem cells; Metabolic reprogramming; Warburg effect; DCA; glycolysis; oxidative phosphorylation
16.  Efficient specification of interneurons from human Pluripotent stem cells by dorsoventral and rostrocaudal modulation 
Stem cells (Dayton, Ohio)  2014;32(7):1789-1804.
GABAergic interneurons regulate cortical neural networks by providing inhibitory inputs, and their malfunction, resulting in failure to intricately regulate neural circuit balance, is implicated in brain diseases such as Schizophrenia, Autism and Epilepsy. During early development, GABAergic interneuron progenitors arise from the ventral telencephalic area such as Medial Ganglionic Eminence (MGE) and caudal ganglionic eminence (CGE) by the actions of secreted signaling molecules from nearby organizers, and migrate to their target sites where they form local synaptic connections. In this study, using combinatorial and temporal modulation of developmentally relevant dorsoventral and rostrocaudal signaling pathways (SHH, Wnt and FGF8), we efficiently generated MGE cells from multiple human pluripotent stem cells. Especially, modulation of FGF8/FGF19 signaling efficiently modultated MGE vs CGE differentiation. Human MGE cells spontaneously differentiated into Lhx6-expressing GABAergic interneurons and showed migratory properties. These human MGE-derived neurons generated GABA, fired action potential and displayed robust GABAergic postsynaptic activity. Transplantation into rodent brains results in well-contained neural grafts enriched with GABAergic interneurons that migrate in the host and mature to express somatostatin or parvalbumin. Thus, we propose that signaling modulation recapitulating normal developmental patterns efficiently generates human GABAergic interneurons. This strategy represents a novel tool in regenerative medicine, developmental studies, disease modeling, bioassay, and drug screening.
doi:10.1002/stem.1704
PMCID: PMC4147720  PMID: 24648391
Pluripotent stem cells; Medial ganglionic eminence; interneurons; differentiation
17.  Cell Senescence Abrogates the Therapeutic Potential of Human Mesenchymal Stem Cells in the Lethal Endotoxemia Model 
Stem cells (Dayton, Ohio)  2014;32(7):1865-1877.
Mesenchymal stem cells (MSCs) possess unique paracrine and immunosuppressive properties, which make them useful candidates for cellular therapy. Here, we address how cellular senescence influences the therapeutic potential of human MSCs (hMSCs). Senescence was induced in bone marrow-derived hMSC cultures with gamma irradiation. Control and senescent cells were tested for their immunoregulatory activity in vitro and in vivo, and an extensive molecular characterization of the phenotypic changes induced by senescence was performed. We also compared the gene expression profiles of senescent hMSCs with a collection of hMSCs used in an ongoing clinical study of Graft Versus Host disease (GVHD). Our results show that senescence induces extensive phenotypic changes in hMSCs and abrogates their protective activity in a murine model of LPS-induced lethal endotoxemia. Although senescent hMSCs retain an ability to regulate the inflammatory response on macrophages in vitro, and, in part retain their capacity to significantly inhibit lymphocyte proliferation, they have a severely impaired migratory capacity in response to proinflammatory signals, which is associated with an inhibition of the AP-1 pathway. Additionally, expression analysis identified PLEC, C8orf48, TRPC4, and ZNF14, as differentially regulated genes in senescent hMSCs that were similarly regulated in those hMSCs which failed to produce a therapeutic effect in a GVHD trial. All the observed phenotypic alterations were confirmed in replicative-senescent hMSCs. In conclusion, this study highlights important changes in the immunomodulatory phenotype of senescent hMSCs and provides candidate gene signatures which may be useful to evaluate the therapeutic potential of hMSCs used in future clinical studies.
doi:10.1002/stem.1654
PMCID: PMC4209016  PMID: 24496748
Mesenchymal stem cells; Senescence; Cellular therapy; Immunotherapy
18.  Fragile X proteins in stem cell maintenance and differentiation 
Stem cells (Dayton, Ohio)  2014;32(7):1724-1733.
Fragile X syndrome (FXS), the most common genetic form of autism spectrum disorder, is caused by deficiency of the fragile X mental retardation protein (FMRP). Despite extensive research and scientific progress, understanding how FMRP regulates brain development and function remains a major challenge. FMRP is a neuronal RNA-binding protein that binds about a third of messenger RNAs in the brain and controls their translation, stability, and cellular localization. The absence of FMRP results in increased protein synthesis, leading to enhanced signaling in a number of intracellular pathways, including the mTOR, mGLuR5, ERK, Gsk3β, PI3K, and insulin pathways. Until recently, FXS was largely considered a deficit of mature neurons; however, a number of new studies have shown that FMRP may also play important roles in stem cells, among them neural stem cells, germ line stem cells, and pluripotent stem cells. In this review, we will cover these newly discovered functions of FMRP, as well as the other two fragile X-related proteins, in stem cells. We will also discuss the literature on the use of stem cells, particularly neural stem cells and induced pluripotent stem cells, as model systems for studying the functions of FMRP in neuronal development.
doi:10.1002/stem.1698
PMCID: PMC4255947  PMID: 24648324
19.  Cell Mechanosensitivity to Extremely Low Magnitude Signals is Enabled by a LINCed Nucleus 
Stem cells (Dayton, Ohio)  2015;33(6):2063-2076.
A cell’s ability to recognize and adapt to the physical environment is central to its survival and function, but how mechanical cues are perceived and transduced into intracellular signals remains unclear. In mesenchymal stem cells (MSC), high magnitude substrate strain (HMS, ≥2%) effectively suppresses adipogenesis via induction of FAK/mTORC2/Akt signaling generated at focal adhesions [1]. Physiologic systems also rely on a persistent barrage of low level signals to regulate behavior [2]. Exposing MSC to extremely low magnitude mechanical signals (LMS) suppresses adipocyte formation [3] despite the virtual absence of substrate strain (<0.001%) [2], suggesting that LMS-induced dynamic accelerations can generate force within the cell. Here we show that MSC response to LMS is enabled through mechanical coupling between the cytoskeleton and the nucleus, in turn activating focal adhesion kinase (FAK) and Akt signaling followed by FAK-dependent induction of RhoA. While LMS and HMS synergistically regulated FAK activity at the focal adhesions, LMS-induced actin remodeling was concentrated at the perinuclear domain. Preventing nuclear-actin cytoskeleton mechanocoupling by disrupting LINC (Linker of Nucleoskeleton and Cytoskeleton) complexes inhibited these LMS-induced signals as well as prevented LMS repression of adipogenic differentiation, highlighting that LINC connections are critical for sensing LMS. In contrast, FAK activation by high magnitude strain (HMS) was unaffected by LINC decoupling, consistent with signal initiation at the focal adhesion (FA) mechanosome. These results indicate that the MSC responds to its dynamic physical environment not only with “outside-in” signaling initiated by substrate strain, but vibratory signals enacted through the LINC complex enable matrix independent “inside-inside” signaling.
doi:10.1002/stem.2004
PMCID: PMC4458857  PMID: 25787126
Mesenchymal stem cells; Vibration; Strain; Nucleus; Nesprin; FAK; Akt; RhoA
20.  Systemic Anticancer Neural Stem Cells in Combination with a Cardiac Glycoside for Glioblastoma Therapy 
Stem cells (Dayton, Ohio)  2014;32(8):2021-2032.
The tumor-tropic properties of neural stem cells (NSCs) have been shown to serve as a novel strategy to deliver therapeutic genes to tumors. Recently, we have reported that the cardiac glycoside lanatoside C (Lan C) sensitizes glioma cells to the anticancer agent tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). Here, we engineered an FDA-approved human NSC line to synthesize and secrete TRAIL and the Gaussia luciferase (Gluc) blood reporter. We showed that upon systemic injection, these cells selectively migrate toward tumors in the mice brain across the blood-brain barrier, target invasive glioma stem-like cells, and induce tumor regression when combined with Lan C. Gluc blood assay revealed that 30% of NSCs survived 1 day postsystemic injection and around 0.5% of these cells remained viable after 5 weeks in glioma-bearing mice. This study demonstrates the potential of systemic injection of NSCs to deliver anticancer agents, such as TRAIL, which yields glioma regression when combined with Lan C.
doi:10.1002/stem.1727
PMCID: PMC4454401  PMID: 24801379
Glioblastoma; Neural stem cells; Tumor-tropic; Tumor necrosis factor-related apoptosis-inducing ligand; Cardiac glycoside
21.  IGF promotes Cardiac Lineage Induction In Vitro by Selective Expansion of Early Mesoderm 
Stem cells (Dayton, Ohio)  2014;32(6):1493-1502.
A thorough understanding of the developmental signals that direct pluripotent stem cells (PSCs) towards a cardiac fate is essential for translational applications in disease modeling and therapy. We screened a panel of 44 cytokines/signaling molecules for their ability to enhance Nkx2.5+ cardiac progenitor cell (CPC) formation during in vitro embryonic stem cell (ESC) differentiation. Treatment of murine ESCs with insulin or insulin-like growth factors (IGF1/2) during early differentiation increased mesodermal cell proliferation and, consequently, CPC formation. Furthermore, we show that downstream mediators of IGF signaling (e.g. phospho-Akt and mTOR) are required for this effect. These data support a novel role for IGF family ligands to expand the developing mesoderm and promote cardiac differentiation. Insulin or IGF treatment could provide an effective strategy to increase the PSC-based generation of CPCs and cardiomyocytes for applications in regenerative medicine.
doi:10.1002/stem.1660
PMCID: PMC4037352  PMID: 24496962
embryonic stem cell; development; mesoderm; cardiac progenitor cell; cardiomyocyte; cardiac differentiation; in vitro screening; insulin; insulin-like growth factor; Akt
22.  Modeling human retinal development with patient-specific iPS cells reveals multiple roles for VSX2 
Stem cells (Dayton, Ohio)  2014;32(6):1480-1492.
Human induced pluripotent stem cells (hiPSCs) have been shown to differentiate along the retinal lineage in a manner that mimics normal mammalian development. Under certain culture conditions hiPSCs form optic vesicle-like structures (OVs), which contain proliferating progenitors capable of yielding all neural retina (NR) cell types over time. Such observations imply conserved roles for regulators of retinogenesis in hiPSC-derived cultures and the developing embryo. However, whether and to what extent this assumption holds true has remained largely uninvestigated. We examined the role of a key NR transcription factor, Visual System Homeobox 2 (VSX2), using hiPSCs derived from a patient with microphthalmia caused by an R200Q mutation in the VSX2 homeodomain region. No differences were noted between (R200Q)VSX2 and sibling control hiPSCs prior to OV generation. Thereafter, (R200Q)VSX2 hiPSC-OVs displayed a significant growth deficit compared to control hiPSC-OVs, as well as increased production of retinal pigmented epithelium (RPE) at the expense of NR cell derivatives. Furthermore, (R200Q)VSX2 hiPSC-OVs failed to produce bipolar cells, a distinctive feature previously observed in Vsx2 mutant mice. (R200Q)VSX2 hiPSC-OVs also demonstrated delayed photoreceptor maturation, which could be overcome via exogenous expression of wildtype VSX2 at early stages of retinal differentiation. Finally, RNAseq analysis on isolated hiPSC-OVs implicated key transcription factors and extracellular signaling pathways as potential downstream effectors of VSX2-mediated gene regulation. Our results establish hiPSC-OVs as versatile model systems to study retinal development at stages not previously accessible in humans, and support the bona fide nature of hiPSC-OV-derived retinal progeny.
doi:10.1002/stem.1667
PMCID: PMC4037340  PMID: 24532057
retina; transcription factors; homeobox; genes; neurogenesis; VSX2 protein; human; human induced pluripotent stem cells
23.  CD13 Regulates Anchorage and Differentiation of the Skeletal Muscle Satellite Stem Cell Population in Ischemic Injury 
Stem cells (Dayton, Ohio)  2014;32(6):1564-1577.
CD13 is a multifunctional cell surface molecule that regulates inflammatory and angiogenic mechanisms in vitro, but its contribution to these processes in vivo or potential roles in stem cell biology remains unexplored. We investigated the impact of loss of CD13 on a model of ischemic skeletal muscle injury that involves angiogenesis, inflammation and stem cell mobilization. Consistent with its role as an inflammatory adhesion molecule, lack of CD13 altered myeloid trafficking in the injured muscle, resulting in cytokine profiles skewed toward a pro-healing environment. Despite this healing-favorable context, CD13KO animals showed significantly impaired limb perfusion with increased necrosis, fibrosis and lipid accumulation. Capillary density was correspondingly decreased, implicating CD13 in skeletal muscle angiogenesis. The number of CD45−/Sca1−/α7-integrin+/β1-integrin+ satellite cells was markedly diminished in injured CD13KO muscles and adhesion of isolated CD13KO satellite cells was impaired while their differentiation was accelerated. Bone marrow transplantation studies showed contributions from both host and donor cells to wound healing. Importantly, CD13 was co-expressed with Pax7 on isolated muscle-resident satellite cells. Finally, phosphorylated-FAK and ERK levels were reduced in injured CD13KO muscles, consistent with CD13 regulating satellite cell adhesion, potentially contributing to the maintenance and renewal of the satellite stem cell pool and facilitating skeletal muscle regeneration.
doi:10.1002/stem.1610
PMCID: PMC4037355  PMID: 24307555
24.  Switch from canonical to noncanonical Wnt signaling mediates high glucose-induced adipogenesis 
Stem cells (Dayton, Ohio)  2014;32(6):1649-1660.
Human bone marrow mesenchymal progenitor cells (MPCs) are multipotent cells that play an essential role in endogenous repair and the maintenance of stem cell niche. We have recently shown that high levels of glucose, conditions mimicking diabetes, cause impairment of MPCs, resulting in enhanced adipogenesis and suppression of osteogenesis. This implies that diabetes may lead to reduced endogenous repair mechanisms through altering the differentiation potential of MPCs and, consequently, disrupting the stem cell niche. Phenotypic alterations in the bone marrow of long-term diabetic patients closely resemble this observation. Here, we show that high levels of glucose selectively enhance autogenous Wnt11 expression in MPCs to stimulate adipogenesis through the Wnt/protein kinase C non-canonical pathway. This novel mechanism may account for increased bone marrow adipogenesis, severe bone loss, and reduced vascular stem cells leading to chronic secondary complications of diabetes.
doi:10.1002/stem.1659
PMCID: PMC4037346  PMID: 24496952
Adipogenesis; diabetes; wnt signaling; protein kinase C; non-canonical signaling; cell-autogenous regulation
25.  Discovery of consensus gene signature and intermodular connectivity defining self-renewal of human embryonic stem cells 
Stem cells (Dayton, Ohio)  2014;32(6):1468-1479.
Molecular markers defining self-renewing pluripotent embryonic stem cells (ESCs) have been identified by relative comparisons between undifferentiated and differentiated cells. Most of analysis has been done under a specific differentiation condition that may present significantly different molecular changes over others. Therefore, it is currently unclear if there are true consensus markers defining undifferentiated hESCs. To identify a set of key genes consistently altered during differentiation of hESCs regardless of differentiation conditions we have performed microarray analysis on undifferentiated hESCs (H1 and H9) and differentiated EB’s and validated our results using publicly available expression array data sets. We constructed consensus modules by Weighted Gene Correlation Analysis (WGCNA) and discovered novel markers that are consistently present in undifferentiated hESCs under various differentiation conditions. We have validated top markers (downregulated: LCK, KLKB1 and SLC7A3; upregulated: RhoJ, Zeb2 and Adam12) upon differentiation. Functional validation analysis of LCK in self-renewal of hESCs by using LCK inhibitor or gene silencing with siLCK resulted in a loss of undifferentiation characteristics- morphological change, reduced alkaline phosphatase activity and pluripotency gene expression, demonstrating a potential functional role of LCK in self-renewal of hESCs. We have designated hESC markers to interactive networks in the genome, identifying possible interacting partners and showing how new markers relate to each other. Furthermore, comparison of these data sets with available datasets from iPSCs revealed that the level of these newly identified markers were correlated to the establishment of iPSCs, which may imply a potential role of these markers in gaining of cellular potency.
doi:10.1002/stem.1675
PMCID: PMC4037450  PMID: 24519983
self-renewal; human embryonic stem cells; WGCNA; interactive molecular network; LCK

Results 1-25 (717)