Search tips
Search criteria

Results 1-25 (105)

Clipboard (0)

Select a Filter Below

Year of Publication
more »
1.  Ribonuclease 4 protects neuron degeneration by promoting angiogenesis, neurogenesis, and neuronal survival under stress 
Angiogenesis  2012;16(2):387-404.
Altered RNA processing is an underlying mechanism of amyotrophic lateral sclerosis (ALS). Missense mutations in a number of genes involved in RNA function and metabolisms are associated with ALS. Among these genes is angiogenin (ANG), the fifth member of the vertebrate-specific, secreted ribonuclease superfamily. ANG is an angiogenic ribonuclease, and both its angiogenic and ribonucleolytic activities are important for motor neuron health. Ribonuclease 4 (RNASE4), the fourth member of this superfamily, shares the same promoters with ANG and is co-expressed with ANG. However, the biological role of RNASE4 is unknown. To determine whether RNASE4 is involved in ALS pathogenesis, we sequenced the coding region of RNASE4 in ALS and control subjects and characterized the angiogenic, neurogenic, and neuroprotective activities of RNASE4 protein. We identified an allelic association of SNP rs3748338 with ALS and demonstrated that RNASE4 protein is able to induce angiogenesis in in vitro, ex vivo, and in vivo assays. RNASE4 also induces neural differentiation of P19 mouse embryonal carcinoma cells and mouse embryonic stem (ES) cells. Moreover, RNASE4 not only stimulates the formation of neurofilaments from mouse embryonic cortical neurons, but also protects hypothermia-induced degeneration. Importantly, systemic treatment with RNASE4 protein slowed weight loss and enhanced neuromuscular function of SOD1G93A mice.
PMCID: PMC3582744  PMID: 23143660
Ribonuclease 4; Angiogenin; Angiogenesis; Neurogenesis; Neuroprotection; Amyotrophic lateral sclerosis (ALS)
2.  PET/SPECT Imaging of Hindlimb Ischemia: Focusing on Angiogenesis and Blood Flow 
Angiogenesis  2012;16(2):279-287.
Peripheral artery disease (PAD) is a result of the atherosclerotic narrowing of blood vessels to the extremities, and the subsequent tissue ischemia can lead to the up-regulation of angiogenic growth factors and formation of new vessels as a recovery mechanism. Such formation of new vessels can be evaluated with various non-invasive molecular imaging techniques, where serial images from the same subjects can be obtained to allow the documentation of disease progression and therapeutic response. The most commonly used animal model for preclinical studies of PAD is the murine hindlimb ischemia model, and a number of radiotracers have been investigated for positron emission tomography (PET) and single photon emission computed tomography (SPECT) imaging of PAD. In this review article, we summarize the PET/SPECT tracers that have been tested in the murine hindlimb ischemia model as well as those used clinically to assess the extremity blood flow.
PMCID: PMC3596452  PMID: 23117521
hindlimb ischemia; peripheral artery disease (PAD); angiogenesis; positron emission tomography (PET); single photon emission computed tomography (SPECT); molecular imaging
Angiogenesis  2012;16(2):309-327.
Sprouting of angiogenic perivascular cells is thought to be highly dependent upon autocrine and paracrine growth factor stimulation. Accordingly, we report that corneal angiogenesis induced by ectopic FGF implantation is strongly impaired in NG2/CSPG4 proteoglycan (PG) null mice known to harbour a putative deficit in pericyte proliferation/mobilization. Conversely, no significant differences were seen between wild type and knockout corneas when VEGF was used as an angiocrine factor. Perturbed responsiveness of NG2-deficient pericytes to paracrine and autocrine stimulation by several FGFs could be confirmed in cells isolated from NG2 null mice, while proliferation induced by other growth factors was equivalent in wild type and knockout cells. Identical results were obtained after siRNA-mediated knock-down of NG2 in human smooth muscle-like cell lines, as also demonstrated by the decreased levels of FGF receptor phosphorylation detected in these NG2 deprived cells. Binding assays with recombinant proteins and molecular interactions examined on live cells asserted that FGF-2 bound to NG2 in a glycosaminoglycan-independent, core protein-mediated manner and that the PG was alone capable of retaining FGF-2 on the cell membrane for subsequent receptor presentation. The use of dominant-negative mutant cells, engineered by combined transduction of NG2 deletion constructs and siRNA knock-down of the endogenous PG, allowed us to establish that the FGF co-receptor activity of NG2 is entirely mediated by its extracellular portion. In fact, forced overexpression of the NG2 ectodomain in human smooth muscle-like cells increased their FGF-2-induced mitosis and compensated for low levels of FGF receptor surface expression, in a manner equivalent to that produced by overexpression of the full-length NG2. Upon FGF binding, the cytoplasmic domain of NG2 is phosphorylated, but there is no evidence that this event elicits signal transductions that could bypass the FGFR-mediated ones. Pull-down experiments, protein-protein binding assays and flow cytometry FRET coherently revealed an elective ligand-independent association of NG2 with FGFR1 and FGFR3. The NG2 cooperation with these receptors was also corroborated functionally by the outcome of FGF-2 treatments of cells engineered to express diverse NG2/FGFR combinations. Comprehensively, the findings suggest that perivascular NG2 may serve as a dual modulator of the availability/accessibility of FGF at the cell membrane, as well as the resulting FGFR transducing activity.
PMCID: PMC3656602  PMID: 23124902
Proteoglycan; angiogenesis; FGF signalling; NG2/CSPG4; pericytes
4.  Chronic hypoxia impairs extracellular nucleotide metabolism and barrier function in pulmonary artery vasa vasorum endothelial cells 
Angiogenesis  2011;14(4):503-513.
Vascular remodeling plays a pivotal role in a variety of pathophysiological conditions where hypoxia and inflammation are prominent features. Intravascular ATP, ADP and adenosine are known as important regulators of vascular tone, permeability and homeostasis, however contribution of purinergic signalling to endothelial cell growth and angiogenesis remains poorly understood. By using vasa vasorum endothelial cells (VVEC) isolated from pulmonary artery adventitia of control and chronically hypoxic neonatal calves, these studies were aimed to evaluate the effect of hypoxia on biochemical and functional properties of microvascular endothelial network at the sites of angiogenesis. In comparison with normoxic controls, VVEC from hypoxic animals are characterized by (1) drastically impaired nucleoside triphosphate diphos-phohydrolase-1 (NTPDase-1/CD39) and ecto-5′-nucleotidase/CD73 activities with respective increases in basal extracellular ATP and ADP levels (2) higher proliferative responses to low micromolar concentrations of ATP and ADP; and (3) enhanced permeability and disordered adenosinergic control of vascular barrier function (measured as a paracellular flux of 70 kDa fluorescein isothiocyanate-dextran). Together, these results suggest that unique pattern of purine-mediated angiogenic activation and enhanced leakiness of VVEC from chronically hypoxic vessels may be defined by disordered endothelial nucleotide homeostasis at sites of active neovascularization.
PMCID: PMC3940057  PMID: 21922294
Purinergic signaling; Endothelial cells; Vasa vasorum; Hypoxia; NTPDase; Ecto-5′-nucleotidase
5.  Chloride intracellular channel 4 is involved in endothelial proliferation and morphogenesis in vitro 
Angiogenesis  2009;12(3):209-220.
New capillaries are formed through angiogenesis and an integral step in this process is endothelial tubulogenesis. The molecular mechanisms driving tube formation during angiogenesis are not yet delineated. Recently, the chloride intracellular channel 4 (CLIC4)-orthologue EXC-4 was found to be necessary for proper development and maintenance of the Caenorhabditis elegans excretory canal, implicating CLIC4 as a regulator of tubulogenesis. Here, we studied the role of CLIC4 in angiogenesis and endothelial tubulogenesis. We report the effects of inhibiting or inducing CLIC4 expression on distinct aspects of endothelial cell behavior in vitro. Our experiments utilized RNA interference to establish cultured human endothelial cell lines with significant reduction of CLIC4 expression, and a CLIC4-expressing lentiviral plasmid was used to establish CLIC4 overexpression in endothelial cells. We observed no effect on cell migration and a modest effect on cell survival. Reduced CLIC4 expression decreased cell proliferation, capillary network formation, capillary-like sprouting, and lumen formation. This suggests that normal endogenous CLIC4 expression is required for angiogenesis and tubulogenesis. Accordingly, increased CLIC4 expression promoted proliferation, network formation, capillary-like sprouting, and lumen formation. We conclude that CLIC4 functions to promote endothelial cell proliferation and to regulate endothelial morphogenesis, and is thus involved in multiple steps of in vitro angiogenesis.
PMCID: PMC3893792  PMID: 19247789
Angiogenesis; CLIC4; Endothelial cells; Proliferation; Tubulogenesis
6.  Notch signaling regulates tumor-induced angiogenesis in SPARC-overexpressed neuroblastoma 
Angiogenesis  2012;16(1):85-100.
Despite existing aggressive treatment modalities, the prognosis for advanced stage neuroblastoma remains poor with significant long-term illness in disease survivors. Advance stage disease features are associated with tumor vascularity, and as such, angiogenesis inhibitors may prove useful along with current therapies. The matricellular protein, secreted protein acidic and rich in cysteine (SPARC), is known to inhibit proliferation and migration of endothelial cells stimulated by growth factors. Here, we sought to determine the effect of SPARC on neuroblastoma tumor cell-induced angiogenesis and to decipher the molecular mechanisms involved in angiogenesis inhibition. Conditioned medium from SPARC-overexpressed neuroblastoma cells (pSPARC-CM) inhibited endothelial tube formation, cell proliferation, induced programmed cell death and suppressed expression of pro-angiogenic molecules such as VEGF, FGF, PDGF, and MMP-9 in endothelial cells. Further analyses revealed that pSPARC-CM-suppressed expression of growth factors was mediated by inhibition of the Notch signaling pathway, and cells cultured on conditioned medium from tumor cells that overexpress both Notch intracellular domain (NICD-CM) and SPARC resumed the pSPARC-CM-suppressed capillary tube formation and growth factor expression in vitro. Further, SPARC overexpression in neuroblastoma cells inhibited neo-vascularization in vivo in a mouse dorsal air sac model. Furthermore, SPARC overexpression-induced endothelial cell death was observed by co-localization studies with TUNEL assay and an endothelial marker, CD31, in xenograft tumor sections from SPARC-overexpressed mice. Our data collectively suggest that SPARC overexpression induces endothelial cell apoptosis and inhibits angiogenesis both in vitro and in vivo.
PMCID: PMC3527677  PMID: 22956186
Neuroblastoma; SPARC; Angiogenesis; Apoptosis
7.  A novel regulator of angiogenesis in endothelial cells: 5-hydroxytriptamine 4 receptor 
Angiogenesis  2012;16(1):15-28.
The 5-hydroxytryptamine type 4 receptor (5-HT4R) regulates many physiological processes, including learning and memory, cognition, and gastrointestinal motility. Little is known about its role in angiogenesis. Using mouse hindlimb ischemia model of angiogenesis, we observed a significant reduction of limb blood flow recovery 14 days after ischemia and a decrease in density of CD31-positive vessels in adductor muscles in 5-HT4R−/− mice compared to wild type littermates. Our in vitro data indicated that 5-HT4R endogenously expressed in endothelial cells (ECs) may promote angiogenesis. Inhibition of the receptor with 5-HT4R antagonist RS 39604 reduced EC capillary tube formation in the reconstituted basement membrane. Using Boyden chamber migration assay and wound healing “scratch” assay, we demonstrated that RS 39604 treatment significantly suppressed EC migration. Transendothelial resistance measurement and immunofluorescence analysis showed that a 5-HT4R agonist RS 67333 led to an increase in endothelial permeability, actin stress fiber and interendothelial gap formation. Importantly, we provided the evidence that 5-HT4R-regulated EC migration may be mediated by Gα13 and RhoA. Our results suggest a prominent role of 5-HT4R in promoting angiogenesis and identify 5-HT4R as a potential therapeutic target for modulating angiogenesis under pathological conditions.
PMCID: PMC3656662  PMID: 22903372
angiogenesis; 5-hydroxytriptamine 4 receptor; endothelial cell migration; hindlimb ischemia model
8.  Synergy between a collagen IV mimetic peptide and a somatotropin-domain derived peptide as angiogenesis and lymphangiogenesis inhibitors 
Angiogenesis  2012;16(1):10.1007/s10456-012-9308-7.
Angiogenesis is central to many physiological and pathological processes. Here we show two potent bioinformatically-identified peptides, one derived from collagen IV and translationally optimized, and one from a somatotropin domain-containing protein, synergize in angiogenesis and lymphangiogenesis assays including cell adhesion, migration and in vivo Matrigel plugs. Peptide-peptide combination therapies have recently been applied to diseases such as human immunodeficiency virus (HIV), but remain uncommon thus far in cancer, age-related macular degeneration and other angiogenesis-dependent diseases. Previous work from our group has shown that the collagen IV-derived peptide primarily binds β1 integrins, while the receptor for the somatotropin-derived peptide remains unknown. We investigate these peptides’ mechanisms of action and find both peptides affect the vascular endothelial growth factor (VEGF) pathway as well as focal adhesion kinase (FAK) by changes in phosphorylation level and total protein content. Blocking of FAK both through binding of β1 integrins and through inhibition of VEGFR2 accounts for the synergy we observe. Since resistance through activation of multiple signaling pathways is a central problem of anti-angiogenic therapies in diseases such as cancer, we suggest that peptide combinations such as these are an approach that should be considered as a means to sustain anti-angiogenic and anti-lymphangiogenic therapy and improve efficacy of treatment.
PMCID: PMC3867130  PMID: 23053781
Angiogenesis; Synergy; Combination therapy; Peptide; Inhibitor
9.  Estradiol promotes neural stem cell differentiation into endothelial lineage and angiogenesis in injured peripheral nerve 
Angiogenesis  2012;16(1):45-58.
Neural stem cells (NSCs) differentiate into endothelial cells (ECs) and neuronal cells. Estradiol (E2) is known to exhibit proangiogenic effects on ischemic tissues via EC activation. Therefore, we hypothesized that E2 can promote the therapeutic potential of NSC transplantation for injured nerve repair via the differentiation of NSCs into ECs during neovascularization. NSCs isolated from newborn mouse brains were transplanted into injured sciatic nerves with (NSC/E2 group) or without E2-conjugated gelatin hydrogel (E2 group). The NSC/E2 group exhibited the greatest recovery in motor nerve conduction velocity, voltage amplitude, and exercise tolerance. Histological analyses revealed increased intraneural vascularity and blood perfusion as well as striking NSC recruitment to the neovasculature in the injured nerves in the NSC/E2 group. In vitro, E2 enhanced the NSC migration and proliferation inhibiting apoptosis. Fluorescence-activated cell sorting analysis also revealed that E2 significantly increased the percentage of CD31 in NSCs, and the effect of E2 was completely neutralized by the estrogen receptor antagonist ICI. The combination of E2 administration and NSC transplantation cooperatively improved the functional recovery of injured peripheral nerves, at least in part, via E2-associated NSC differentiation into ECs. These findings provide a novel mechanistic insight into both NSC biology and the biological effects of endogenous E2.
PMCID: PMC3806485  PMID: 22941227
Estrogen; Neural stem cell; Cell transplantation; Angiogenesis; Endothelial differentiation; Nervous system
10.  A peptide derived from TIMP-3 inhibits multiple angiogenic growth factor receptors and tumour growth and inflammatory arthritis in mice 
Angiogenesis  2013;17:207-219.
The binding of vascular endothelial growth factor (VEGF) to VEGF receptor-2 (VEGFR-2) on the surface of vascular endothelial cells stimulates many steps in the angiogenic pathway. Inhibition of this interaction is proving of value in moderating the neovascularization accompanying age-related macular degeneration and in the treatment of cancer. Tissue inhibitor of metalloproteinases-3 (TIMP-3) has been shown to be a natural VEGFR-2 specific antagonist—an activity that is independent of its ability to inhibit metalloproteinases. In this investigation we localize this activity to the C-terminal domain of the TIMP-3 molecule and characterize a short peptide, corresponding to part of this domain, that not only inhibits all three VEGF-family receptors, but also fibroblast growth factor and platelet-derived growth factor receptors. This multiple-receptor inhibition may explain why the peptide was also seen to be a powerful inhibitor of tumour growth and also a partial inhibitor of arthritic joint inflammation in vivo.
PMCID: PMC3898417  PMID: 24129822
TIMP-3; VEGFR2; Receptor; Angiogenesis; Arthritis; Tumour
11.  Distinct roles of DKK1 and DKK2 in tumor angiogenesis 
Angiogenesis  2013;17:221-234.
Tumor angiogenesis is essential for tumor invasive growth and metastasis, and generates abnormal vascular structures unlike developmental neovessel formation. To reduce tumor vascular abnormalities such as leakage and perivascular cell coverage deficiency that limit cancer therapy effectiveness, novel therapeutic approaches focus on vessel normalization. We have previously shown that Dickkopf-1 (DKK1), a Wnt antagonist, inhibits and its homolog DKK2 enhances, angiogenesis in normal tissues. In the present study, we investigated the effects of DKK1 and DKK2 on tumor growth and angiogenesis. Treatment of B16F10 melanoma-bearing mice with adenovirus expressing DKK1 significantly reduced tumor growth but DKK2 increased growth compared with controls. Similar pattern of tumor growth was observed in endothelial-specific DKK1 and DKK2 transgenic mice. Interestingly, tumor vascular density and perfusion were significantly decreased by DKK1 but increased by DKK2. Moreover, coverage of blood vessels by pericytes was reduced by DKK1, while DKK2 increased it. We further observed that DKK1 diminished retinal vessel density and increased avascular area in an in vivo murine model of oxygen-induced retinopathy, whereas DKK2 showed opposite results. These findings demonstrate that DKK1 and DKK2 have differential roles in normalization and functionality of tumor blood vessels, in addition to angiogenesis.
Electronic supplementary material
The online version of this article (doi:10.1007/s10456-013-9390-5) contains supplementary material, which is available to authorized users.
PMCID: PMC3898121  PMID: 24091497
DKK1; DKK2; Tumor angiogenesis; Perivascular coverage; Vessel normalization
12.  Equal modulation of endothelial cell function by four distinct tissue-specific mesenchymal stem cells 
Angiogenesis  2012;15(3):443-455.
Mesenchymal stem cells (MSCs) can generate multiple end-stage mesenchymal cell types and constitute a promising population of cells for regenerative therapies. Additionally, there is increasing evidence supporting other trophic activities of MSCs, including the ability to enable formation of vasculature in vivo. Although MSCs were originally isolated from the bone marrow, the presence of these cells in the stromal vascular fraction of multiple adult tissues has been recently recognized. However, it is unknown whether the capacity to modulate vasculogenesis is ubiquitous to all MSCs regardless of their tissue of origin. Here, we demonstrated that tissue-resident MSCs isolated from four distinct tissues have equal capacity to modulate endothelial cell function, including formation of vascular networks in vivo. MSCs were isolated from four murine tissues, including bone marrow, white adipose tissue, skeletal muscle, and myocardium. In culture, all four MSC populations secreted a plethora of pro-angiogenic factors that unequivocally induced proliferation, migration, and tube formation of endothelial colony-forming cells (ECFCs). In vivo, co-implantation of MSCs with ECFCs into mice generated an extensive network of blood vessels with ECFCs specifically lining the lumens and MSCs occupying perivascular positions. Importantly, there were no differences among all four MSCs evaluated. Our studies suggest that the capacity to modulate the formation of vasculature is a ubiquitous property of all MSCs, irrespective of their original anatomical location. These results validate multiple tissues as potential sources of MSCs for future cell-based vascular therapies.
PMCID: PMC3409933  PMID: 22527199
Mesenchymal stem cells; Endothelial cell; Vasculogenesis; Pericytes; Endothelial progenitor cells
13.  BMP9 induces EphrinB2 expression in endothelial cells through an Alk1-BMPRII/ActRII-ID1/ID3-dependent pathway: Implications for Hereditary Hemorrhagic Telangiectasia Type II 
Angiogenesis  2012;15(3):497-509.
ALK1 (ACVRL1) is a member of the TGFβ receptor family and is expressed predominantly by arterial endothelial cells (EC). Mutations in ACVRL1 are responsible for Hereditary Hemorrhagic Telangiectasia Type 2 (HHT2), a disease manifesting as fragile vessels, capillary overgrowth, and numerous arterio-venous malformations (AVMs). Arterial EC also express EphrinB2, which has multiple roles in vascular development and angiogenesis and is known to be reduced in ACVRL1 knockout mice. Using an in vitro angiogenesis model we find that the Alk1 ligand BMP9 induces EphrinB2 in EC, and this is entirely dependent on expression of Alk1 and at least one of the co-receptors BMPRII or ActRII. BMP9 induces both ID1 and ID3, and both are necessary for full induction of EphrinB2. Loss of Alk1 or EphrinB2 results in increased arterial-venous anastomosis, while loss of Alk1 but not EphrinB2 results in increased VEGFR2 expression and enhanced capillary sprouting. Conversely, BMP9 blocks EC sprouting and this is dependent on Alk1, BMPRII/ActRII and ID1/ID3. Finally, notch signaling overcomes the loss of Alk1 – restoring EphrinB2 expression in EC, and curbing excess sprouting. Thus, in an in vitro model of HHT2, loss of Alk1 blocks BMP9 signaling, resulting in reduced EphrinB2 expression, enhanced VEGFR2 expression, and misregulated EC sprouting and anastomosis.
PMCID: PMC3423339  PMID: 22622516
14.  Inhibition of ARNT severely compromises endothelial cell viability and function in response to moderate hypoxia 
Angiogenesis  2012;15(3):409-420.
Hypoxia Inducible Factor (HIF) is a master heterodimeric transcriptional regulator of oxygen (O2) homeostasis critical to proper angiogenic responses. Due to the distinctive coexpression of HIF-1α and HIF-2α subunits in endothelial cells, our goal was to examine the genetic elimination of HIF transcriptional activity in response to physiological hypoxic conditions by using a genetic model in which the required HIF-β subunit (ARNT, Aryl hydrocarbon Receptor Nuclear Translocator) to HIF transcriptional responses was depleted. Endothelial cells (ECs) and aortic explants were isolated from ArntloxP/loxP mice and infected with Adenovirus -Cre/GFP or control -GFP. We observed that moderate levels of 2.5% O2 promoted vessel sprouting, growth, and branching in control aortic ring assays while growth from Adenovirus -Cre infected explants was compromised. Primary Adenovirus -Cre infected EC cultures featured adverse migration and tube formation phenotypes. Primary pulmonary or cardiac ARNT-deleted ECs also failed to proliferate and survive in response to 8 or 2.5% O2 and hydrogen peroxide treatment. Our data demonstrates that ARNT promotes EC migration and vessel outgrowth and indispensible for the proliferation and preservation of ECs in response to the physiological environmental cue of hypoxia. Thus, these results demonstrate that ARNT plays a critical intrinsic role in ECs and support a critical role for the collaboration of HIF-1 and HIF-2 transcriptional activity in these cells.
PMCID: PMC3661274  PMID: 22484908
Angiogenesis; ARNT; HIF; physiological hypoxia; endothelium
15.  Matrix Composition Regulates Three-Dimensional Network Formation by Endothelial Cells and Mesenchymal Stem Cells in Collagen/Fibrin Materials 
Angiogenesis  2012;15(2):253-264.
Co-cultures of endothelial cells (EC) and mesenchymal stem cells (MSC) in three-dimensional (3D) protein hydrogels can be used to recapitulate aspects of vasculogenesis in vitro. MSC provide paracrine signals that stimulate EC to form vessel-like structures, which mature as the MSC transition to the role of mural cells. In this study, vessel-like network formation was studied using 3D collagen/fibrin (COL/FIB) matrices seeded with embedded EC and MSC and cultured for 7 days. The EC:MSC ratio was varied from 5:1, 3:2, 1:1, 2:3 and 1:5. The matrix composition was varied at COL/FIB compositions of 100/0 (pure COL), 60/40, 50/50, 40/60 and 0/100 (pure FIB). Vasculogenesis was markedly decreased in the highest EC:MSC ratio, relative to the other cell ratios. Network formation increased with increasing fibrin content in composite materials, although the 40/60 COL/FIB and pure fibrin materials exhibited the same degree of vasculogenesis. EC and MSC were co-localized in vessel-like structures after 7 days and total cell number increased by approximately 70%. Mechanical property measurements showed an inverse correlation between matrix stiffness and network formation. The effect of matrix stiffness was further investigated using gels made with varying total protein content and by crosslinking the matrix using the dialdehyde glyoxal. This systematic series of studies demonstrates that matrix composition regulates vasculogenesis in 3D protein hydrogels, and further suggests that this effect may be caused by matrix mechanical properties. These findings have relevance to the study of neovessel formation and the development of strategies to promote vascularization in transplanted tissues.
PMCID: PMC3756314  PMID: 22382584
collagen; fibrin; vasculogenesis; stiffness; mesenchymal stem cells; endothelial cells
16.  αB-crystallin/HspB5 regulates endothelial–leukocyte interactions by enhancing NF-κB-induced up-regulation of adhesion molecules ICAM-1, VCAM-1 and E-selectin 
Angiogenesis  2013;16:975-983.
αB-crystallin is a small heat shock protein, which has pro-angiogenic properties by increasing survival of endothelial cells and secretion of vascular endothelial growth factor A. Here we demonstrate an additional role of αB-crystallin in regulating vascular function, through enhancing tumor necrosis factor α (TNF-α) induced expression of endothelial adhesion molecules involved in leukocyte recruitment. Ectopic expression of αB-crystallin in endothelial cells increases the level of E-selectin expression in response to TNF-α, and enhances leukocyte–endothelial interaction in vitro. Conversely, TNF-α-induced expression of intercellular adhesion molecule 1, vascular cell adhesion molecule 1 and E-selectin is markedly inhibited in endothelial cells isolated from αB-crystallin-deficient mice. This is associated with elevated levels of IκB in αB-crystallin deficient cells and incomplete degradation upon TNF-α stimulation. Consistent with this, endothelial adhesion molecule expression is reduced in inflamed vessels of αB-crystallin deficient mice, and leukocyte rolling velocity is increased. Our data identify αB-crystallin as a new regulator of leukocyte recruitment, by enhancing pro-inflammatory nuclear factor κ B-signaling and endothelial adhesion molecule expression during endothelial activation.
Electronic supplementary material
The online version of this article (doi:10.1007/s10456-013-9367-4) contains supplementary material, which is available to authorized users.
PMCID: PMC3779083  PMID: 23929007
αB-crystallin; Chaperone; ICAM-1; VCAM-1; E-selectin; NF-κB
17.  Silencing of S100A4, a metastasis-associated protein, in endothelial cells inhibits tumor angiogenesis and growth 
Angiogenesis  2013;17:17-26.
Endothelial cells express S100A4, a metastasis-associated protein, but its role in angiogenesis remains to be elucidated. Here we show that knockdown of S100A4 in mouse endothelial MSS31 cells by murine specific small interference RNA (mS100A4 siRNA) markedly suppressed capillary-like tube formation in vitro, in early stage after the treatment, along with down- and up-regulation of some of the pro-angiogenic and anti-angiogenic gene expression, respectively. Of particular note is that intra-tumor administration of the mS100A4 siRNA in a human prostate cancer xenograft significantly reduced tumor vascularity and resulted in the inhibition of tumor growth. These findings show that S100A4 in endothelial cells is involved in tube formation, and suggest its potential as a molecular target for inhibiting tumor angiogenesis, which warrants further development of endothelial S100A4-based strategies for cancer treatment.
Electronic supplementary material
The online version of this article (doi:10.1007/s10456-013-9372-7) contains supplementary material, which is available to authorized users.
PMCID: PMC3898373  PMID: 23929008
Angiogenesis; S100A4; siRNA; Endothelial cells; Tumor; Therapy
18.  NG2 proteoglycan promotes tumor vascularization via integrin-dependent effects on pericyte function 
Angiogenesis  2013;17:61-76.
The NG2 proteoglycan stimulates the proliferation and migration of various immature cell types, including pericytes. However, the role of NG2 in mediating pericyte/endothelial cell interaction has been less clear. In this study, we show that pericyte-specific NG2 ablation causes several structural deficits in blood vessels in intracranial B16F10 melanomas, including decreased pericyte ensheathment of endothelial cells, diminished formation of endothelial junctions, and reduced assembly of the vascular basal lamina. These deficits result in decreased tumor vessel patency, increased vessel leakiness, and increased intratumoral hypoxia. NG2-dependent mechanisms of pericyte interaction with endothelial cells are further explored in pericyte/endothelial cell co-cultures. siRNA-mediated NG2 knockdown in pericytes leads to reduced formation of pericyte/endothelial networks, reduced formation of ZO-1 positive endothelial cell junctions, and increased permeability of endothelial cell monolayers. We also show that NG2 knockdown results in loss of β1 integrin activation in endothelial cells, revealing a mechanism for NG2-dependent cross talk between pericytes and endothelial cells.
Electronic supplementary material
The online version of this article (doi:10.1007/s10456-013-9378-1) contains supplementary material, which is available to authorized users.
PMCID: PMC3898355  PMID: 23925489
Blood vessels; Co-culture systems; Endothelial cells; NG2 proteoglycan; Pericytes; β1 integrins
19.  Semaphorin 4D cooperates with VEGF to promote angiogenesis and tumor progression 
Angiogenesis  2012;15(3):391-407.
The semaphorins and plexins comprise a family of cysteine-rich proteins implicated in control of nerve growth and development and regulation of the immune response. Our group and others have found that Semaphorin 4D (SEMA4D) and its receptor, Plexin-B1, play an important role in tumor-induced angiogenesis, with some neoplasms producing SEMA4D in a manner analogous to vascular endothelial growth factor (VEGF) in order to attract Plexin-B1-expressing endothelial cells into the tumor for the purpose of promoting growth and vascularity. While anti-VEGF strategies have been the focus of most angiogenesis inhibition research, such treatment can lead to upregulation of pro-angiogenic factors that can compensate for the loss of VEGF, eventually leading to failure of therapy. Here, we demonstrate that SEMA4D cooperates with VEGF to promote angiogenesis in malignancies and can perform the same function in a setting of VEGF blockade. We also show the potential value of inhibiting SEMA4D/Plexin-B1 signaling as a complementary mechanism to anti-VEGF treatment, particularly in VEGF inhibitor–resistant tumors, suggesting that this may represent a novel treatment for some cancers.
PMCID: PMC3733222  PMID: 22476930
Semaphorin 4D; Plexin-B1; VEGF; Head and neck squamous cell carcinoma; Tumor-induced angiogenesis
20.  Pro-angiogenic Hematopoietic Progenitor Cells and Endothelial Colony Forming Cells in Pathological Angiogenesis of Bronchial and Pulmonary Circulation 
Angiogenesis  2011;14(4):411-422.
Dysregulation of angiogenesis is a common feature of many disease processes. Vascular remodeling is believed to depend on the participation of endothelial progenitor cells, but the identification of endothelial progenitors in postnatal neovascularization remains elusive. Current understanding posits a role for circulating pro-angiogenic hematopoietic cells, which interact with local endothelial cells to establish an environment that favors angiogenesis in physiologic and pathophysiologic responses. In the lung, increased and dysregulated angiogenesis is a hallmark of diseases of the bronchial and pulmonary circulations, manifested by asthma and pulmonary arterial hypertension (PAH), respectively. In asthma THelper-2 immune cells produce angiogenic factors that mobilize and recruit pro-inflammatory and pro-angiogenic precursors from the bone marrow into the airway wall where they induce angiogenesis and fuel inflammation. In contrast, in PAH, upregulation of hypoxia-inducible factor (HIF) in vascular cells leads to the production of bone marrow-mobilizing factors that recruit pro-angiogenic progenitor cells to the pulmonary circulation where they contribute to angiogenic remodeling of the vessel wall. This review focuses on current knowledge of pro-angiogenic progenitor cells in the pathogenesis of asthma and PAH.
PMCID: PMC3725463  PMID: 21796417
angiogenesis; progenitors; endothelium; lung; asthma; pulmonary arterial hypertension
21.  Monitoring Antivascular Therapy in Head and Neck Cancer Xenografts using Contrast-enhanced MR and US Imaging 
Angiogenesis  2011;14(4):491-501.
The overall goal of this study was to non-invasively monitor changes in blood flow of squamous cell carcinoma of the head and neck (SCCHN) xenografts using contrast-enhanced magnetic resonance (MR) and ultrasound (US) imaging.
Experimental studies were performed on mice bearing FaDu tumors and SCCHN xenografts derived from human surgical tissue. MR examinations were performed using gadofosveset trisodium at 4.7T. Change in T1-relaxation rate of tumors (ΔR1) and tumor enhancement parameters (amplitude, area under the curve - AUC) were measured at baseline and 24 hours after treatment with a tumor-vascular disrupting agent (tumor-VDA), 5,6-dimethylxanthenone-4-acetic acid (DMXAA; ASA404) and correlated with tumor necrosis and treatment outcome. CE-US was performed using microbubbles (Vevo MicroMarker®) to assess the change in relative tumor blood volume following VDA treatment.
A marked decrease (up to 68% of baseline) in T1-enhancement of FaDu tumors was observed one day after VDA therapy indicative of a reduction in blood flow. Early (24h) vascular response of individual tumors to VDA therapy detected by MRI correlated with tumor necrosis and volume estimates at 10 days post treatment. VDA treatment also resulted in a significant reduction in AUC and amplitude of patient tumor-derived SCCHN xenografts. Consistent with MRI observations, CE-US revealed a significant reduction in tumor blood volume of patient tumor-derived SCCHN xenografts after VDA therapy. Treatment with VDA resulted in a significant tumor growth inhibition of patient tumor derived SCCHN xenografts.
These findings demonstrate that both CE-MRI and CE-US allow monitoring of early changes in vascular function following VDA therapy. The results also demonstrate, for the first time, potent vascular disruptive and antitumor activity of DMXAA against patient tumor-derived head and neck carcinoma xenografts.
PMCID: PMC3702176  PMID: 21901534
Angiogenesis; SCCHN; VDAs; MRI; US
22.  Neutrophil granulocyte derived MMP-9 is a VEGF independent functional component of the angiogenic switch in pancreatic ductal adenocarcinoma 
Angiogenesis  2011;14(3):235-243.
Vascular endothelial growth factor (VEGF) that is secreted by tumor cells plays a key role in angiogenesis. Matrix metalloproteinase 9 (MMP-9) is produced by inflammatory cells, such as stromal granulocytes (PMN), remodels the extracellular matrix and is known to promote angiogenesis indirectly by interacting with VEGF. The aim of this study was to determine the role of PMN-derived MMP-9, its interaction with VEGF, and the efficacy of anti-angiogenic therapy targeting MMP-9 with oral Doxycycline and VEGF with Bevacizumab in pancreatic cancer (PDAC).
Methodology/principal findings
Inhibitors to MMP-9 (Doxycycline) and VEGF (Bevacizumab) were used alone or in combination in an in vitro angiogenesis assay to test their effect on angiogenesis caused by MMP-9, VEGF, PMN and PDAC cells. In an in vivo model of xenografted PDAC, treatment effects after 14 days under monotherapy with oral Doxycycline or Bevacizumab and a combination of both were evaluated.
In vitro, PMN-derived MMP-9 had a direct and strong proangiogenic effect that was independent and additive to PDAC-derived VEGF. Complete inhibition of angiogenesis required the inhibition of VEGF and MMP-9. In vivo, co-localization of MMP-9, PMN and vasculature was observed. MMP inhibition with oral Doxycycline alone resulted in a significant decrease in PDAC growth and mean vascular density comparable to VEGF inhibition alone.
PMN derived MMP-9 acts as a potent, direct and VEGF independent angiogenic factor in the context of PDAC. MMP-9 inhibition is as effective as VEGF inhibition. Targeting MMP-9 in addition to VEGF is therefore likely to be important for successful anti-angiogenic treatment in pancreatic cancer.
PMCID: PMC3688040  PMID: 21442180
VEGF; MMP-9; Neutrophil granulocyte; Pancreatic cancer
23.  Over-expression of BMP4 inhibits experimental choroidal neovascularization by modulating VEGF and MMP-9 
Angiogenesis  2012;15(2):213-227.
Bone morphorgenetic protein (BMP)-4 has been shown to play a pivotal role in eye development; however, its role in mature retina or ocular angiogenic diseases is unclear. Activating downstream Smad signaling, BMP4 can be either pro-angiogenic or anti-angiogenic, depending on the context of cell types and associated microenvironment. In this study, we generated transgenic mice over-expressing BMP4 in retinal pigment epithelial (RPE) cells (Bmp4-Vmd2 Tg mice), and used the laser-induced choroidal neovascularization (CNV) model to study the angiogenic properties of BMP4 in adult eyes. Bmp4-Vmd2 Tg mice displayed normal retinal histology at 10 weeks of age when compared with age-matched wildtype mice. Over-expression of BMP4 in RPE in the transgenic mice was confirmed by real-time PCR and immunostaining. Elevated levels of Smad1,5 phosphorylation were found in BMP4 transgenic mice compared to wildype mice. Over-expression of BMP4 was associated with less severe CNV as characterized by fluorescein angiography, CNV volume measurement and histology. While control mice showed increased levels of vascular endothelial growth factor (VEGF) and matrix metalloproteinase (MMP)-9 after laser injury, Bmp4-Vmd2 Tg showed no increase in either VEGF or MMP-9. Further, we found that TNF-induced MMP-9 secretion in vitro was reduced by pretreatment of RPE cells with BMP4. The inhibition of MMP-9 was Smad-dependent because BMP4 failed to repress TNF-induced MMP-9 expression when Smad1,5 was silenced by siRNA. In summary, our studies identified an anti-angiogenic role for BMP4 in laser-induced CNV, mediated by direct inhibition of MMP-9 and indirect inhibition of VEGF.
PMCID: PMC3413482  PMID: 22392094
BMP4; MMP-9; VEGF; Choroidal neovascularization (CNV); Retinal pigment epithelium (RPE)
24.  Inhibition of apelin expression switches endothelial cells from proliferative to mature state in pathological retinal angiogenesis 
Angiogenesis  2013;16(3):723-734.
The recruitment of mural cells such as pericytes to patent vessels with an endothelial lumen is a key factor for the maturation of blood vessels and the prevention of hemorrhage in pathological angiogenesis. To date, our understanding of the specific trigger underlying the transition from cell growth to the maturation phase remains incomplete. Since rapid endothelial cell growth causes pericyte loss, we hypothesized that suppression of endothelial growth factors would both promote pericyte recruitment, in addition to inhibiting pathological angiogenesis. Here, we demonstrate that targeted knockdown of apelin in endothelial cells using siRNA induced the expression of monocyte chemoattractant protein-1 (MCP-1) through activation of Smad3, via suppression of the PI3K/Akt pathway. The conditioned medium of endothelial cells treated with apelin siRNA enhanced the migration of vascular smooth muscle cells, through MCP-1 and its receptor pathway. Moreover, in vivo delivery of siRNA targeting apelin, which causes exuberant endothelial cell proliferation and pathological angiogenesis through its receptor APJ, led to increased pericyte coverage and suppressed pathological angiogenesis in an oxygen-induced retinopathy model. These data demonstrate that apelin is not only a potent endothelial growth factor, but also restricts pericyte recruitment, establishing a new connection between endothelial cell proliferation signaling and a trigger of mural recruitment.
Electronic supplementary material
The online version of this article (doi:10.1007/s10456-013-9349-6) contains supplementary material, which is available to authorized users.
PMCID: PMC3682100  PMID: 23640575
Apelin; Angiogenesis; MCP-1; Pericytes; Vascular endothelial cells; Smad
25.  Inflamed tumor-associated adipose tissue is a depot for macrophages that stimulate tumor growth and angiogenesis 
Angiogenesis  2012;15(3):481-495.
Tumor-associated stroma is typified by a persistent, non-resolving inflammatory response that enhances tumor angiogenesis, growth and metastasis. Inflammation in tumors is instigated by heterotypic interactions between malignant tumor cells, vascular endothelium, fibroblasts, immune and inflammatory cells. We found that tumor-associated adipocytes also contribute to inflammation. We have analyzed peritumoral adipose tissue in a syngeneic mouse melanoma model. Compared to control adipose tissue, adipose tissue juxtaposed to implanted tumors exhibited reduced adipocyte size, extensive fibrosis, increased angiogenesis and a dense macrophage infiltrate. A mouse cytokine protein array revealed up-regulation of inflammatory mediators including IL-6, CXCL1, MCP-1, MIP-2 and TIMP-1 in peritumoral versus counterpart adipose tissues. CD11b+ macrophages contributed strongly to the inflammatory activity. These macrophages were isolated from peritumoral adipose tissue and found to overexpress ARG1, NOS2, CD301, CD163, MCP-1 and VEGF, which are indicative of both M1 and M2 polarization. Tumors implanted at a site distant from subcutaneous, anterior adipose tissue were strongly growth-delayed, had fewer blood vessels and were less populated by CD11b+ macrophages. In contrast to normal adipose tissue, micro-dissected peritumoral adipose tissue explants launched numerous vascular sprouts when cultured in an ex vivo model. Thus, inflamed tumor-associated adipose tissue fuels the growth of malignant cells by acting as a proximate source for vascular endothelium and activated pro-inflammatory cells, in particular macrophages.
PMCID: PMC3619408  PMID: 22614697
Angiogenesis; Adipose tissue; Tumor-associated macrophage; Fibrosis; Tumor microenvironment; Tumor stroma; Inflammation

Results 1-25 (105)