PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (256)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
more »
1.  Should evolutionary geneticists worry about higher-order epistasis? 
Natural selection drives evolving populations up the fitness landscape, the projection from nucleotide sequence space to organismal reproductive success. While it has long been appreciated that topographic complexities on fitness landscapes can arise only as a consequence of epistatic interactions between mutations, evolutionary genetics has mainly focused on epistasis between pairs of mutations. Here we propose a generalization to the classical population genetic treatment of pairwise epistasis that yields expressions for epistasis among arbitrary subsets of mutations of all orders (pairwise, three-way, etc.). Our approach reveals substantial higher-order epistasis in almost every published fitness landscape. Furthermore we demonstrate that higher-order epistasis is critically important in two systems we know best. We conclude that higher-order epistasis deserves empirical and theoretical attention from evolutionary geneticists.
doi:10.1016/j.gde.2013.10.007
PMCID: PMC4313208  PMID: 24290990
2.  The importance of animal models in tumor immunity and immunotherapy 
The clinical success and US FDA approval of two immunotherapies (sipuleucel-T and ipilimumab) have brought tumor immunology to the forefront of cancer research. It has been long recognized that the immune system can infiltrate and survey the tumor microenvironment. The field of tumor immunology has been actively examining this phenomenon since the 1890s when William Coley first treated patients with live pathogenic bacteria and observed occasional regressions leading to long term survival. Recent progress in understanding mechanisms of immune activation and tolerance has led to the development of novel therapies that aim to either overcome inhibitory pathways (i.e. checkpoint blockade such as anti-CTLA-4 and anti-PD-1) or stimulate immune cell activation (i.e. co-stimulation such as anti-GITR and anti-OX40). A major part of the success of immunotherapy has been the development of appropriate mouse models. This review will outline the history and the major findings leading to the accomplishments of modern day immunology with specific attention to the usefulness of animal models.
doi:10.1016/j.gde.2013.11.008
PMCID: PMC4241684  PMID: 24657536
3.  mRNA localization: assembly of transport complexes and their incorporation into particles 
Localization of mRNAs to subcellular domains can enrich proteins at sites where they function. Coordination with translational control can ensure that the encoded proteins will not appear elsewhere, an important property for factors that control cell fate or body patterning. Here I focus on two aspects of mRNA localization. One is the question of how mRNAs that undergo directed transport by a shared mechanism are bound to the transport machinery, and why localization signals from these mRNAs have very diverse sequences. The second topic concerns the role of particles, in which localized mRNAs often appear. Recent evidence highlights the importance of such assemblies, and the possibility that close association of mRNAs confers community effects and a novel form of regulation.
doi:10.1016/j.gde.2011.04.005
PMCID: PMC4301680  PMID: 21536427
4.  Contemporary, yeast-based approaches to understanding human genetic variation 
Current opinion in genetics & development  2013;23(6):10.1016/j.gde.2013.10.001.
Determining how genetic variation contributes to human health and disease is a critical challenge. As one of the most genetically tractable model organisms, yeast has played a central role in meeting this challenge. The advent of new technologies, including high-throughput DNA sequencing and synthesis, proteomics, and computational methods, has vastly increased the power of yeast-based approaches to determine the consequences of human genetic variation. Recent successes include systematic exploration of the effects of gene dosage, large-scale analysis of the effect of coding variation on gene function, and the use of humanized yeast to model disease. By virtue of its manipulability, small genome size, and genetic tractability, yeast is poised to help us understand human genetic variation.
doi:10.1016/j.gde.2013.10.001
PMCID: PMC3864666  PMID: 24252429
5.  Genotype to phenotype via network analysis 
Current opinion in genetics & development  2013;23(6):10.1016/j.gde.2013.10.003.
A prime objective of genomic medicine is the identification of disease-causing mutations and the mechanisms by which such events result in disease. As most disease phenotypes arise not from single genes and proteins but from a complex network of molecular interactions, a priori knowledge about the molecular network serves as a framework for biological inference and data mining. Here we review recent developments at the interface of biological networks and mutation analysis. We examine how mutations may be treated as a perturbation of the molecular interaction network and what insights may be gained from taking this perspective. We review work that aims to transform static networks into rich context-dependent networks and recent attempts to integrate non-coding RNAs into such analysis. Finally, we conclude with an overview of the many challenges and opportunities that lie ahead.
doi:10.1016/j.gde.2013.10.003
PMCID: PMC3866044  PMID: 24238873
6.  Network analysis of GWAS data 
Current opinion in genetics & development  2013;23(6):10.1016/j.gde.2013.09.003.
Genome-wide association studies (GWAS) identify genetic variants that distinguish a control population from a population with a specific trait. Two challenges in GWAS are: (1) identification of the causal variant within a longer haplotype that is associated with the trait; (2) identification of causal variants for polygenic traits that are caused by variants in multiple genes within a pathway. We review recent methods that use information in protein–protein and protein–DNA interaction networks to address these two challenges.
doi:10.1016/j.gde.2013.09.003
PMCID: PMC3867794  PMID: 24287332
7.  Promises and limitations of hitchhiking mapping 
Current opinion in genetics & development  2013;23(6):10.1016/j.gde.2013.10.002.
Building the connection between genetic and phenotypic variation is an important ‘work in progress’, and one that will enable proactive diagnosis and treatment in medicine, promote development of environment-targeted varieties in agriculture, and clarify the limits of species adaptation to changing environments in conservation. Quantitative trait loci (QTL) mapping and genome wide association (GWA) studies have recently been allied to an additional focus on ‘hitchhiking’ (HH) mapping — using changes in allele frequency due to artificial or natural selection. This older technique has been popularized by the falling costs of high throughput sequencing. Initial HH-resequensing experiments seem to have found many thousands of polymorphisms responding to selection. We argue that this interpretation appears too optimistic, and that the data might in fact be more consistent with dozens, rather than thousands, of loci under selection. We propose several developments required for sensible data analyses that will fully realize the great power of the HH technique, and outline ways of moving forward.
doi:10.1016/j.gde.2013.10.002
PMCID: PMC3872824  PMID: 24239053
8.  The molecular basis of phenotypic variation in yeast 
The power of yeast genetics has now been extensively applied to phenotypic variation among strains of Saccharomyces cerevisiae. As a result, over 100 genes and numerous sequence variants have been identified, providing us with a general characterization of mutations underlying quantitative trait variation. Most quantitative trait alleles exert considerable phenotypic effects and alter conserved amino acid positions within protein coding sequences. When examined, quantitative trait alleles influence the expression of numerous genes, most of which are unrelated to an allele's phenotypic effect. The profile of quantitative trait alleles has proven useful to reverse quantitative genetics approaches and supports the use of systems genetics approaches to synthesize the molecular basis of trait variation across multiple strains.
doi:10.1016/j.gde.2013.10.005
PMCID: PMC3899683  PMID: 24269094
9.  Edgotype: the link between genotype and phenotype 
Classical ‘one-gene/one-disease’ models cannot fully reconcile with the increasingly appreciated prevalence of complicated genotype-to-phenotype associations in human disease. Genes and gene products function not in isolation but as components of intricate networks of macromolecules (DNA, RNA, or proteins) and metabolites linked through biochemical or physical interactions, represented in ‘interactome’ network models as ‘nodes’ and ‘edges’, respectively. Accordingly, mechanistic understanding of human disease will require understanding of how disease-causing mutations affect systems or interactome properties. The study of “edgetics” uncovers specific loss or gain of interactions (“edges”) to interpret genotype-to-phenotype relationships. We review how distinct genetic variants lead to distinct phenotypic outcomes through edgetic perturbations in interactome networks.
doi:10.1016/j.gde.2013.11.002
PMCID: PMC3902775  PMID: 24287335
10.  Exploring Genetic Susceptibility to Cancer in Diverse Populations 
Summary
Incidence rates for many cancers differ markedly by race/ethnicity and furthering our understanding of the genetic and environmental causes of such disparities is a scientific and public health need. Genome-wide association studies (GWAS) are widely acknowledged to provide important information about the etiology of common cancers. To date, these studies have been primarily conducted in European-derived populations. There are important reasons for extending the reach of GWAS studies to other groups and for conducting multiethnic genetic studies involving multiple populations and admixed populations. These include a (1) need to discover the full scope of variants that affect risk of disease in all populations, (2) furthering the understanding of disease pathways, and (3) to assist in fine mapping of genetic associations by exploiting the differences in linkage disequilibrium between populations to narrow the range of marker alleles demarking regions that contain a true biologically relevant variant. Challenges to multiethnic studies relating to study power, control for hidden population structure, imputation, and use of shared controls for multiple cancer endpoints are discussed.
doi:10.1016/j.gde.2010.02.007
PMCID: PMC4196678  PMID: 20359883
11.  Skeletal muscle programming and re-programming 
The discovery of the transcription factor MyoD and its ability to induce muscle differentiation was the first demonstration of genetically programmed cell transdifferentiation. MyoD functions by activating a feed-forward circuit to regulate muscle gene expression. This requires binding to specific E-boxes throughout the genome, followed by recruitment of chromatin modifying complexes and transcription machinery. MyoD binding can be modified by both cooperative factors and inhibitors, including microRNAs that may serve as important developmental switches. Recent studies indicate that epigenetic regulation of MyoD binding sites is another important mechanism for controlling MyoD activity, which may ultimately limit its ability to induce transdifferentiation to cells with permissive epigenetic ‘landscapes.’
doi:10.1016/j.gde.2013.05.002
PMCID: PMC3775946  PMID: 23756045
12.  Cardiac Reprogramming: From Mouse to Man 
Loss of cardiomyocytes from cardiovascular disease is irreversible and current therapeutic strategies do not redress the loss of myocardium after injury. The discovery that endogenous fibroblasts in the heart can be reprogrammed to cardiomyocyte-like cells after myocardial infarction and heart function is improved subsequently has strong implications in y bringing this treatment paradigm to the clinic. Here we discuss the advances in direct cardiac reprogramming that will potentially act as a springboard in the generation of effective approaches to restoring cardiac function after injury.
doi:10.1016/j.gde.2013.07.007
PMCID: PMC3782415  PMID: 23993230
13.  Toward directed reprogramming through exogenous factors 
Direct reprogramming of one cell type into another provides unprecedented opportunities to study fundamental biology, model disease, and develop regenerative medicine. Different paradigms of reprogramming strategies with different sets of factors have been developed to generate various cell types, including induced pluripotent stem cells, neuronal or neural precursor cells, cardiomyocyte-like cells, endothelial cells, and hepatocyte-like cells. Various exogenous factors, especially small molecules modulating signaling, cellular state, and transcription, have been identified to enhance and enable reprogramming. With an increased understanding of reprogramming mechanisms and discovery of new molecules, it is conceivable that reprogramming can be achieved in a more directed and deterministic manner under entirely chemically defined conditions.
doi:10.1016/j.gde.2013.06.002
PMCID: PMC3790470  PMID: 23932127
14.  Reprogramming Human Fibroblasts to Neurons by Recapitulating an Essential MicroRNA-Chromatin Switch 
The development of the vertebrate nervous system requires a switch of ATP-dependent chromatin remodeling mechanisms, which occures by substituting subunits within these complexes near cell cycle exit. This switching involves a triple negative genetic circuitry in which REST represses miR-9 and miR-124, which in turn repress BAF53a, which in turn repress the homologous neuron-specific BAF53b. Recapitulation of this microRNA/chromatin switch in human fibroblasts converts them to neurons. The genes involved in this fate-determining chromatin switch play genetically dominant roles in several human neurologic diseases suggesting that they are rate-limiting for aspects of human neural development. We review how this switch in ATP-dependent chromatin complexes might interface with traditional ideas about neural determination and reprogramming.
doi:10.1016/j.gde.2013.07.001
PMCID: PMC3951511  PMID: 24035011
15.  Understanding telomere diseases through analysis of disease-specific iPS cells 
A unique characteristic of tissue stem cells is the ability to self-renew, a process that enables the life-long maintenance of many organs. Stem cell self-renewal is dependent in part on the synthesis of telomere repeats by the enzyme telomerase. Defects in telomerase and in genes in the telomere maintenance pathway result in diverse disease states, including dyskeratosis congenita, pulmonary fibrosis, aplastic anemia, liver cirrhosis and cancer. Many of these disease states share a tissue failure phenotype, such as loss of bone marrow cells or failure of pulmonary epithelium, suggesting that stem cell dysfunction is a common pathophysiological mechanism underlying these telomere diseases. Studies of telomere diseases in undifferentiated iPS cells have provided a quantitative relationship between the magnitude of biochemical defects in the telomerase pathway and disease severity in patients, thereby establishing a clear correlation between genotype and phenotype in telomere disease states. Modeling telomere diseases in iPS cells has also revealed diverse underlying disease mechanisms, including reduced telomerase catalytic activity, diminished assembly of the telomerase holoenzyme and impaired trafficking of the enzyme within the nucleus. These studies highlight the need for therapies tailored to the underlying biochemical defect in each class of patients.
doi:10.1016/j.gde.2013.07.006
PMCID: PMC3925063  PMID: 23993228
16.  Accessing naïve human pluripotency 
Pluripotency manifests during mammalian development through formation of the epiblast, founder tissue of the embryo proper. Rodent pluripotent stem cells can be considered as two distinct states: naïve and primed. Naïve pluripotent stem cell lines are distinguished from primed cells by self-renewal in response to LIF signaling and MEK/GSK3 inhibition (LIF/2i conditions) and two active X chromosomes in female cells. In rodent cells, the naïve pluripotent state may be accessed through at least three routes: explantation of the inner cell mass, somatic cell reprogramming by ectopic Oct4, Sox2, Klf4, and C-myc, and direct reversion of primed post-implantation-associated epiblast stem cells (EpiSCs). In contrast to their rodent counterparts, human embryonic stem cells and induced pluripotent stem cells more closely resemble rodent primed EpiSCs. A critical question is whether naïve human pluripotent stem cells with bona fide features of both a pluripotent state and naïve-specific features can be obtained. In this review, we outline current understanding of the differences between these pluripotent states in mice, new perspectives on the origins of naïve pluripotency in rodents, and recent attempts to apply the rodent paradigm to capture naïve pluripotency in human cells. Unraveling how to stably induce naïve pluripotency in human cells will influence the full realization of human pluripotent stem cell biology and medicine.
doi:10.1016/j.gde.2012.03.001
PMCID: PMC4171054  PMID: 22463982
17.  Congenital Heart Disease: emerging themes linking genetics and development 
Although congenital heart disease (CHD) is the most common survivable birth defect, the etiology of most CHD remains unclear. Several lines of evidence from humans and vertebrate models have supported a genetic component for CHD, yet the extreme locus heterogeneity and lack of a distinct genotype-phenotype correlation has limited causative gene discovery. However, recent advances in genomic technologies are permitting detailed evaluation of the genetic abnormalities in large cohorts of CHD patients. This has lead to the identification of copy-number variation and de-novo mutations together accounting for up to 15% of CHD. Further, new strategies coupling human genetics with model organisms have provided mechanistic insights into the molecular and developmental pathways underlying CHD pathogenesis, notably chromatin remodeling and ciliary signaling.
doi:10.1016/j.gde.2013.05.004
PMCID: PMC4154700  PMID: 23790954
18.  Hedgehog signaling from the primary cilium to the nucleus: an emerging picture of ciliary localization, trafficking and transduction 
The unexpected connection between cilia and signaling is one of the most exciting developments in cell biology in the past decade. In particular, the Hedgehog (Hh) signaling pathway relies on the primary cilium to regulate tissue patterning and homeostasis in vertebrates. A central question is how ciliary localization and trafficking of Hh pathway components lead to pathway activation and regulation. In this review, we discuss recent studies that reveal the roles of ciliary regulators, components and structures in controlling the movement and signaling of Hh players. These findings significantly increase our mechanistic understanding of how the primary cilium facilitates Hh signal transduction and form the basis for further investigations to define the function of cilia in other signaling processes.
doi:10.1016/j.gde.2013.04.008
PMCID: PMC3913210  PMID: 23725801
19.  Fine-tuned Shuttles for Bone Morphogenetic Proteins 
Bone morphogenetic proteins (BMPs) are potent secreted signaling factors that trigger phosphorylation of Smad transcriptional regulators through receptor complex binding at the cell-surface. Resulting changes in target gene expression impact critical cellular responses during development and tissue homeostasis. BMP activity is tightly regulated in time and space by secreted modulators that control BMPs extracellular distribution and availability for receptor binding. Such extracellular regulation is key for BMPs to function as morphogens and/or in the formation of morphogen activity gradients. Here, we review shuttling systems utilized to control the distribution of BMP ligands in tissue of various geometries, developing under different temporal constraints. We discuss the biological advantages for employing specific strategies for BMP shuttling and roles of varied ligand forms.
doi:10.1016/j.gde.2013.04.012
PMCID: PMC3760970  PMID: 23735641
20.  Only scratching the cell surface; extracellular signals in cerebrum development 
Numerous roles have been identified for extracellular signals such as Fibroblast Growth Factors (FGFs), Transforming Growth Factor-βs (TGFβs), Wingless-Int proteins (WNTs), and Sonic Hedgehog (SHH) in assigning fates to cells during development of the cerebrum. However, several fundamental questions remain largely unexplored. First, how does the same extracellular signal instruct precursor cells in different locations or at different stages to adopt distinct fates? And second, how does a precursor cell integrate multiple signals to adopt a specific fate? Answers to these questions require knowing the mechanisms that underlie each cell type’s competence to respond to certain extracellular signals. This brief review provides illustrative examples of potential mechanisms that begin to bridge the gap between cell surface and cell fate during cerebrum development.
doi:10.1016/j.gde.2013.04.004
PMCID: PMC3748208  PMID: 23669550
21.  Planar Cell Polarity in vertebrate limb morphogenesis 
Studies of the vertebrate limb development have contributed significantly to understanding the fundamental mechanisms underlying growth, patterning and morphogenesis of a complex multicellular organism. In the limb, well-defined signaling centers interact to coordinate limb growth and patterning along the three axes. Recent analyses of live imaging and mathematical modeling have provided evidence that polarized cell behaviors governed by morphogen gradients play an important role in shaping the limb bud. Furthermore, the Wnt/Planar Cell Polarity (PCP) pathway that controls uniformly polarized cellular behaviors in a field of cells has emerged to be critical for directional morphogenesis in the developing limb. Directional information coded in the morphogen gradient may be interpreted by responding cells through regulating the activities of PCP components in a Wnt morphogen dose-dependent manner.
doi:10.1016/j.gde.2013.05.003
PMCID: PMC3759593  PMID: 23747034
22.  Genetic Dissection of Ventral Folding Morphogenesis in Mouse: Embryonic Visceral Endoderm-supplied BMP2 Positions Head and Heart 
Ventral folding morphogenesis, a vital morphogenetic process in amniotes, mediates gut endoderm internalization, linear heart tube formation, ventral body wall closure and encasement of the fetus in extraembryonic membranes. Aberrant ventral folding morphogenesis underlies a number of birth defects, such as gastroschisis and ectopia cordis in human and misplacement of head and heart in mouse. Recent cell lineage-specific mouse mutant analyses identified the Bone Morphogenetic Protein (BMP) pathway and Anterior Visceral Endoderm (AVE) as key regulators of anterior ventral folding morphogenesis. Loss of BMP2 expression solely from embryonic visceral endoderm (EmVE) and the AVE blocks formation of foregut invagination, and simultaneously, aberrantly positions the heart anterior/dorsal to the head, suggesting a mechanistic link between foregut and head/heart morphogenesis.
doi:10.1016/j.gde.2013.04.001
PMCID: PMC3759531  PMID: 23706163
23.  ECM-modulated cellular dynamics as a driving force for tissue morphogenesis 
The extracellular matrix (ECM) plays diverse regulatory roles throughout development. Coordinate interactions between cells within a tissue and the ECM result in the dynamic remodeling of ECM structure. Both chemical signals and physical forces that result from such microenvironmental remodeling regulate cell behavior that sculpts tissue structure. Here, we review recent discoveries illustrating different ways in which ECM remodeling promotes dynamic cell behavior during tissue morphogenesis. We focus first on new insights that identify localized ECM signaling as a regulator of cell migration, shape, and adhesion during branching morphogenesis. We also review mechanisms by which the ECM and basement membrane can both sculpt and stabilize epithelial tissue structure, using as examples Drosophila egg chamber development and cleft formation in epithelial organs. Finally, we end with an overview of the dynamic mechanisms by which the ECM can regulate stem cell differentiation to contribute to proper tissue morphogenesis.
doi:10.1016/j.gde.2013.05.005
PMCID: PMC3780589  PMID: 23849799
fibronectin; basement membrane; cell dynamics; development; morphogenesis
24.  Systems biology and the analysis of genetic variation 
doi:10.1016/j.gde.2013.11.010
PMCID: PMC4116483  PMID: 24291212
25.  The many roads to Rome: induction of neural precursor cells from fibroblasts 
The experimental induction of specific cell fates in related or unrelated lineages has fascinated developmental biologists for decades. The evaluation of altered cell fates in response to ectopic expression during embryonic development has been a standard assay for interrogating gene function. However, until recently examples of cell lineage conversions were limited to closely related and primitive cell types. The induction of pluripotency in fibroblasts prominently highlighted that combinations of transcription factors can be extremely powerful and are much more effective than single genes. On the basis of this conclusion we previously identified transcription factor combinations that directly induce functional neuronal cells from mesodermal and endodermal cells. This work has evoked numerous additional studies demonstrating direct lineage conversion into neural and other lineages. Here, we review the generation of neural progenitor cells from fibroblasts, which is the newest addition to the arena of induced cell types. Surprisingly, two fundamentally different approaches have been taken to induce this cell type, one direct approach and another that involves the intermediate generation of a partially reprogrammed pluripotent state.
doi:10.1016/j.gde.2012.07.002
PMCID: PMC4109718  PMID: 22868177

Results 1-25 (256)