PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1202)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
more »
issn:0950-382
1.  The role of laccase in prostaglandin production by Cryptococcus neoformans 
Molecular microbiology  2008;68(6):1428-1437.
Recently, it has been demonstrated that the opportunistic fungal pathogen Cryptococcus neoformans can synthesize authentic immunomodulatory prostaglandins. The mechanism by which this takes place is unclear since there is no cyclooxygenase homolog in the cryptococcal genome. In this study, we show that cryptococcal production of both PGE2 and PGF2α can be chemically inhibited by caffeic acid, resveratrol and nordihydroguaiaretic acid. These polyphenolic molecules are frequently used as inhibitors of lipoxygenase enzymes; however, BLAST searches of the cryptococcal genome were unable to identify any homologs of mammalian, plant or fungal lipoxygenases. Next we investigated cryptococcal laccase, an enzyme known to bind polyphenols, and found that either antibody depletion or genetic deletion of the primary cryptococcal laccase (lac1Δ) resulted in a loss of cryptococcal prostaglandin production. To determine how laccase is involved, we tested recombinant laccase activity on the prostaglandin precursors, arachidonic acid (AA), PGG2 and PGH2. Using mass spectroscopy we determined that recombinant Lac1 does not modify AA or PGH2, but does have a marked activity toward PGG2 converting it to PGE2 and 15-keto-PGE2. This data demonstrates a critical role for laccase in cryptococcal prostaglandin production, and provides insight into a new and unique fungal prostaglandin pathway.
doi:10.1111/j.1365-2958.2008.06245.x
PMCID: PMC3973538  PMID: 18410494
oxylipin; fungi; polyphenol; eicosanoid; laccase
2.  In vivo phosphorylation dynamics of the Bordetella pertussis virulence-controlling response regulator BvgA 
Molecular microbiology  2013;88(1):156-172.
Summary
We have used protein electrophoresis through polyacrylamide gels derivatized with the proprietary ligand Phos-tag™ to separate the response regulator BvgA from its phosphorylated counterpart BvgA~P. This approach has allowed us to readily ascertain the degree of phosphorylation of BvgA in in vitro reactions, or in crude lysates of Bordetella pertussis grown under varying laboratory conditions. We have used this technique to examine the kinetics of BvgA phosphorylation after shift of B. pertussis cultures from non-permissive to permissive conditions, or of its dephosphorylation following a shift from permissive to non-permissive conditions. Our results provide the first direct evidence that levels of BvgA~P in vivo correspond temporally to the expression of early and late BvgA-regulated virulence genes. We have also examined a number of other aspects of BvgA function predicted from previous studies and by analogy with other two component response regulators. These include the site of BvgA phosphorylation, the exclusive role of the cognate BvgS sensor kinase in its phosphorylation in Bordetella pertussis, and the effect of the T194M mutation on phosphorylation. We also detected the phosphorylation of a small but consistent fraction of BvgA purified after expression in Escherichia coli.
doi:10.1111/mmi.12177
PMCID: PMC3608721  PMID: 23489959
Bordetella pertussis; transcriptional activation; RNA polymerase; two-component systems; phosphorylation
3.  Profligate Biotin Synthesis in α-Proteobacteria – A Developing or Degenerating Regulatory System? 
Molecular microbiology  2013;88(1):77-92.
Summary
Biotin (vitamin H) is a key enzyme cofactor required in all three domains of life. Although this cofactor was discovered over 70 years ago and has long been recognized as an essential nutrient for animals, our knowledge of the strategies bacteria use to sense biotin demand is very limited. The paradigm mechanism is that of Escherichia coli in which BirA protein, the prototypical bi-functional biotin protein ligase, both covalently attaches biotin to the acceptor proteins of central metabolism and represses transcription of the biotin biosynthetic pathway in response to biotin demand. However, in other bacteria the biotin protein ligase lacks a DNA-binding domain which raises the question of how these bacteria regulate the synthesis of biotin, an energetically expensive molecule. A bioinformatic study by Rodionov and Gelfand (FEMS Microbiol Lett. (2006) 255:102–107) identified a protein termed BioR in α-proteobacteria and predicted that BioR would have the biotin operon regulatory role that in most other bacteria is fulfilled by the BirA DNA-binding domain. We have now tested this prediction in the plant pathogen Agrobacterium tumefaciens. As predicted the A. tumefaciens biotin protein ligase is a fully functional ligase that has no role in regulation of biotin synthesis whereas BioR represses transcription of the biotin synthesis genes. Moreover, as determined by electrophoretic mobility shift assays, BioR binds the predicted operator site, which is located downstream of the mapped transcription start site. qPCR measurements indicated that deletion of BioR resulted in a ca.15-fold increase of bio operon transcription in the presence of high biotin levels. Effective repression of a plasmid-borne bioB-lacZ reporter was seen only upon the overproduction of BioR. In contrast to E. coli and Bacillus subtilis where biotin synthesis is tightly controlled, A. tumefaciens synthesizes much more biotin than needed for modification of the biotin-requiring enzymes. Protein-bound biotin constitutes only about 0.5% of the total biotin, most of which is found in the culture medium. To the best of our knowledge, A. tumefaciens represents the first example of profligate biotin synthesis by a wild type bacterium.
doi:10.1111/mmi.12170
PMCID: PMC3608792  PMID: 23387333
4.  Malaria parasites tolerate a broad range of ionic environments and do not require host cation remodeling 
Molecular microbiology  2013;88(1):20-34.
Summary
Malaria parasites grow within erythrocytes, but are also free in host plasma between cycles of asexual replication. As a result, the parasite is exposed to fluctuating levels of Na+ and K+, ions assumed to serve important roles for the human pathogen, Plasmodium falciparum. We examined these assumptions and the parasite's ionic requirements by establishing continuous culture in novel sucrose-based media. With sucrose as the primary osmoticant and K+ and Cl− as the main extracellular ions, we obtained parasite growth and propagation at rates indistinguishable from those in physiological media. These conditions abolish long-known increases in intracellular Na+ via parasite-induced channels, excluding a requirement for erythrocyte cation remodeling. We also dissected Na+, K+, and Cl− requirements and found that unexpectedly low concentrations of each ion meet the parasite's demands. Surprisingly, growth was not adversely affected by up to 148 mM K+, suggesting that low extracellular K+ is not an essential trigger for erythrocyte invasion. At the same time, merozoite egress and invasion required a threshold ionic strength, suggesting critical electrostatic interactions between macromolecules at these stages. These findings provide insights into transmembrane signaling in malaria and reveal fundamental differences between host and parasite ionic requirements.
doi:10.1111/mmi.12159
PMCID: PMC3608822  PMID: 23347042
Malaria parasites; invasion; transmembrane signaling; cation transport
5.  Enterococcus faecalis utilizes maltose by connecting two incompatible metabolic routes via a novel maltose-6’-phosphate phosphatase (MapP) 
Molecular microbiology  2013;88(2):234-253.
Summary
Similar to Bacillus subtilis, Enterococcus faecalis transports and phosphorylates maltose via a phosphoenolpyruvate (PEP):maltose phosphotransferase system (PTS). The maltose-specific PTS permease is encoded by the malT gene. However, E. faecalis lacks a malA gene encoding a 6-phospho-α-glucosidase which in B. subtilis hydrolyses maltose-6’-P into glucose and glucose-6-P. Instead, an operon encoding a maltose phosphorylase (MalP), a phosphoglucomutase and a mutarotase starts upstream from malT. MalP was suggested to split maltose-6-P into glucose-1-P and glucose-6-P. However, purified MalP phosphorolyses maltose but not maltose-6’-P. We discovered that the gene downstream from malT encodes a novel enzyme (MapP) that dephosphorylates maltose-6’-P formed by the PTS. The resulting intracellular maltose is cleaved by MalP into glucose and glucose-1-P. Slow uptake of maltose probably via a maltodextrin ABC transporter allows poor growth for the mapP but not the malP mutant. Synthesis of MapP in a B. subtilis mutant accumulating maltose-6’-P restored growth on maltose. MapP catalyzes the dephosphorylation of intracellular maltose-6’-P, and the resulting maltose is converted by the B. subtilis maltose phosphorylase into glucose and glucose-1-P. MapP therefore connects PTS-mediated maltose uptake to maltose phosphorylase-catalyzed metabolism. Dephosphorylation assays with a wide variety of phospho-substrates revealed that MapP preferably dephosphorylates disaccharides containing an O-α-glycosyl linkage.
doi:10.1111/mmi.12183
PMCID: PMC3633101  PMID: 23490043
Enterococcus faecalis; phosphotransferase system; maltose transport; maltose-6’-P phosphatase; maltose phosphorylase
6.  Dose-Dependent Reduction of Replication Elongation Rate by (p)ppGpp in Escherichia coli and Bacillus subtilis 
Molecular microbiology  2013;88(1):93-104.
DNA replication is regulated in response to environmental constraints such as nutrient availability. While much is known about regulation of replication during initiation, little is known about regulation of replication during elongation. In the bacterium Bacillus subtilis, replication elongation is paused upon sudden amino acid starvation by the starvation-inducible nucleotide (p)ppGpp. However, in many bacteria including Escherichia coli, replication elongation is thought to be unregulated by nutritional availability. Here we reveal that the replication elongation rate in E. coli is modestly but significantly reduced upon strong amino acid starvation. This reduction requires (p)ppGpp and is exacerbated in a gppA mutant with increased pppGpp levels. Importantly, high levels of (p)ppGpp, independent of amino acid starvation, are sufficient to inhibit replication elongation even in the absence of transcription. Finally, in both E. coli and B. subtilis, (p)ppGpp inhibits replication elongation in a dose-dependent manner rather than via a switch-like mechanism, although this inhibition is much stronger in B. subtilis. This supports a model where replication elongation rates are regulated by (p)ppGpp to allow rapid and tunable response to multiple abrupt stresses in evolutionarily diverse bacteria.
doi:10.1111/mmi.12172
PMCID: PMC3640871  PMID: 23461544
7.  A complex of YlbF, YmcA and YaaT regulates sporulation, competence and biofilm formation by accelerating the phosphorylation of Spo0A 
Molecular microbiology  2013;88(2):283-300.
Summary
Bacillus subtilis has adopted a bet-hedging strategy to ensure survival in changing environments. From a clonal population, numerous sub-populations can emerge, expressing different sets of genes that govern the developmental processes of sporulation, competence and biofilm formation. The master transcriptional regulator Spo0A controls the entry into all three fates and the production of the phosphorylated active form of Spo0A is precisely regulated via a phosphorelay, involving at least four proteins. Two proteins, YmcA and YlbF were previously shown to play an unidentified role in the regulation of biofilm formation, and in addition, YlbF was shown to regulate competence and sporulation. Using an unbiased proteomics screen, we demonstrate that YmcA and YlbF interact with a third protein, YaaT to form a tripartite complex. We show that all three proteins are required for proper establishment of the three above-mentioned developmental states. We show that the complex regulates the activity of Spo0A in vivo and, using in vitro reconstitution experiments, determine that they stimulate the phosphorelay, probably by interacting with Spo0F and Spo0B. We propose that the YmcA-YlbF-YaaT ternary complex is required to increase Spo0A~P levels above the thresholds needed to induce development.
doi:10.1111/mmi.12186
PMCID: PMC3781937  PMID: 23490197
Spo0A; YmcA; YlbF; YaaT; Phosphorelay; Two-component regulation
8.  Functional control of the Candida albicans cell wall by catalytic protein kinase A subunit Tpk1 
Molecular microbiology  2012;86(2):284-302.
SUMMARY
The cyclic AMP-protein kinase A pathway governs numerous biological features of the fungal pathogen Candida albicans. The catalytic protein kinase A subunits, Tpk1 (orf19.4892) and Tpk2 (orf19.2277), have divergent roles, and most studies indicate a more pronounced role for Tpk2. Here we dissect two Tpk1-responsive properties: adherence and cell wall integrity. Homozygous tpk1/tpk1 mutants are hyperadherent, and a Tpk1 defect enables biofilm formation in the absence of Bcr1, a transcriptional regulator of biofilm adhesins. A quantitative gene expression-based assay reveals that tpk1/tpk1 and bcr1/bcr1 genotypes show mixed epistasis, as expected if Tpk1 and Bcr1 act mainly in distinct pathways. Overexpression of individual Tpk1-repressed genes indicates that cell surface proteins Als1, Als2, Als4, Csh1, and Csp37 contribute to Tpk1-regulated adherence. Tpk1 is also required for cell wall integrity, but has no role in the gene expression response to cell wall inhibition by caspofungin. Interestingly, increased expression of the adhesin gene ALS2 confers a cell wall defect, as manifested in hypersensitivity to the cell wall inhibitor caspofungin and a shallow cell wall structure. Our findings indicate that Tpk1 governs C. albicans cell wall properties through repression of select cell surface protein genes.
doi:10.1111/j.1365-2958.2012.08193.x
PMCID: PMC3947901  PMID: 22882910
cyclic AMP; adherence; biofilm; cell wall integrity
9.  Genome-wide profiling of chromosome interactions in Plasmodium falciparum characterizes nuclear architecture and reconfigurations associated with antigenic variation 
Molecular microbiology  2013;90(3):519-537.
Summary
Spatial relationships within the eukaryotic nucleus are essential for proper nuclear function. In Plasmodium falciparum, the repositioning of chromosomes has been implicated in the regulation of the expression of genes responsible for antigenic variation, and the formation of a single, peri-nuclear nucleolus results in the clustering of rDNA. Nevertheless, the precise spatial relationships between chromosomes remain poorly understood, because, until recently, techniques with sufficient resolution have been lacking. Here we have used chromosome conformation capture and second-generation sequencing to study changes in chromosome folding and spatial positioning that occur during switches in var gene expression. We have generated maps of chromosomal spatial affinities within the P. falciparum nucleus at 25 Kb resolution, revealing a structured nucleolus, an absence of chromosome territories, and confirming previously identified clustering of heterochromatin foci. We show that switches in var gene expression do not appear to involve interaction with a distant enhancer, but do result in local changes at the active locus. These maps reveal the folding properties of malaria chromosomes, validate known physical associations, and characterize the global landscape of spatial interactions. Collectively, our data provide critical information for a better understanding of gene expression regulation and antigenic variation in malaria parasites.
doi:10.1111/mmi.12381
PMCID: PMC3894959  PMID: 23980881
Plasmodium falciparum; antigenic variation; genome conformation capture; 3C; HiC
10.  Sphingosine kinase A is a pleiotropic and essential enzyme forLeishmania survival and virulence 
Molecular microbiology  2013;90(3):489-501.
Summary
Sphingosine kinase is a key enzyme in sphingolipid metabolism, catalysing the conversion of sphingosine or dihydrosphingosine into sphingosine-1-phosphate or dihydrosphingosine-1-phosphate respectively. In mammals, sphingosine-1-phosphate is a powerful signalling molecule regulating cell growth, differentiation, apoptosis and immunity. Functions of sphingosine kinase or sphingosine-1-phosphate in pathogenic protozoans are virtually unknown. While most organisms possess two closely related sphingosine kinases, only one sphingosine kinase homologue (SKa) can be identified in Leishmania, which are vector-borne protozoan parasites responsible for leishmaniasis. Leishmania SKa is a large, cytoplasmic enzyme capable of phosphorylating both sphingosine and dihydrosphingosine. Remarkably, deletion of SKa leads to catastrophic defects in both the insect stage and mammalian stage of Leishmania parasites. Genetic and biochemical analyses demonstrate that proper expression of SKa is essential for Leishmania parasites to remove toxic metabolites, to survive stressful conditions, and to cause disease in mice. Therefore, SKa is a pleiotropic enzyme with vital roles throughout the life cycle of Leishmania. The essentiality of SKa and its apparent divergence from mammalian counterparts suggests that this enzyme can be selectively targeted to reduce Leishmania infection.
doi:10.1111/mmi.12378
PMCID: PMC3938578  PMID: 23980754
11.  On the role of TolC in multidrug efflux: the function and assembly of AcrAB-TolC tolerate significant depletion of intracellular TolC protein 
Molecular microbiology  2013;87(5):982-997.
TolC channel provides a route for the expelled drugs and toxins to cross the outer membrane of Escherichia coli. The puzzling feature of TolC structure is that the periplasmic entrance of the channel is closed by dense packing of twelve α-helices. Efflux pumps exemplified by AcrAB are proposed to drive the opening of TolC channel. How interactions with AcrAB promote the close-to-open transition in TolC remains unclear. In this study, we investigated in vivo the functional and physical interactions of AcrAB with the closed TolC and its conformer opened by mutations in the periplasmic entrance. We found that the two conformers of TolC are readily distinguishable in vivo by characteristic drug susceptibility, thiol modification and proteolytic profiles. However, these profiles of TolC variants respond neither to the in vivo stoichiometry of AcrAB:TolC nor to the presence of vancomycin, which is used often to assess the permeability of TolC channel. We further found that the activity and assembly of AcrAB-TolC tolerates significant changes in amounts of TolC and that only a small fraction of intracellular TolC is likely used to support efflux needs of E. coli. Our findings explain why TolC is not a good target for inhibition of multidrug efflux.
doi:10.1111/mmi.12143
PMCID: PMC3581732  PMID: 23331412
12.  Characterization of a second sterol-esterifying enzyme in Toxoplasma highlights the importance of cholesterol storage pathways for the parasite 
Molecular microbiology  2013;87(5):951-967.
Summary
Lipid bodies are eukaryotic structures for temporary storage of neutral lipids such as acylglycerols and steryl esters. Fatty acyl-CoA and cholesterol are two substrates for cholesteryl ester (CE) synthesis via the ACAT reaction. The intracellular parasite Toxoplasma gondii is incapable of sterol synthesis and unremittingly scavenges cholesterol from mammalian host cells. We previously demonstrated that the parasite expresses a cholesteryl ester-synthesizing enzyme, TgACAT1. In this paper, we identified and characterized a second ACAT-like enzyme, TgACAT2, which shares 56% identity with TgACAT1. Both enzymes are endoplasmic reticulum-associated and contribute to CE formation for storage in lipid bodies. While TgACAT1 preferentially utilizes palmitoyl-CoA, TgACAT2 has broader fatty acid specificity and produces more CE. Genetic ablation of each individual ACAT results in parasite growth impairment whereas dual ablation of ACAT1 and ACAT2 is not tolerated by Toxoplasma. ΔACAT1 and ΔACAT2 parasites have reduced CE levels, fewer lipid bodies, and accumulate free cholesterol, which causes injurious membrane effects. Mutant parasites are particularly vulnerable to ACAT inhibitors. This study underlines the important physiological role of ACAT enzymes to store cholesterol in a sterol-auxotrophic organism such as Toxoplasma, and furthermore opens up possibilities of exploiting TgACAT as targets for the development of antitoxoplasmosis drugs.
doi:10.1111/mmi.12142
PMCID: PMC3581733  PMID: 23374239
Protozoa; toxoplasmosis; fat storage organelle; cholesterol homeostasis; acyl-CoA:cholesterol acyltransferase; ACAT inhibitors
13.  The Intestinal Fatty Acid Propionate Inhibits Salmonella Invasion through the Post-translational Control of HilD 
Molecular microbiology  2013;87(5):1045-1060.
SUMMARY
To cause disease, Salmonella must invade the intestinal epithelium employing genes encoded within Salmonella Pathogenicity Island 1 (SPI1). We show here that propionate, a fatty acid abundant in the intestine of animals, repressed SPI1 at physiologically relevant concentration and pH, reducing expression of SPI1 transcriptional regulators and consequently decreasing expression and secretion of effector proteins, leading to reduced bacterial penetration of cultured epithelial cells. Essential to repression was hilD, which occupies the apex of the regulatory cascade within SPI1, as loss of only this gene among those of the regulon prevented repression of SPI1 transcription by propionate. Regulation through hilD, however, was achieved through the control of neither transcription nor translation. Instead, growth of Salmonella in propionate significantly reduced the stability of HilD. Extending protein half-life using a Lon protease mutant demonstrated that protein stability itself did not dictate the effects of propionate and suggested modification of HilD with subsequent degradation as the means of action. Furthermore, repression was significantly lessened in a mutant unable to produce propionyl-CoA, while further metabolism of propionyl-CoA appeared not to be required. These results suggest a mechanism of control of Salmonella virulence in which HilD is post-translationally modified using the high energy intermediate propionyl-CoA.
doi:10.1111/mmi.12149
PMCID: PMC3581741  PMID: 23289537
propionic acid; SPI1; microbiota
14.  Overexpression of RbfA in the absence of the KsgA checkpoint results in impaired translation initiation 
Molecular microbiology  2013;87(5):968-981.
Summary
KsgA, a universally conserved small ribosomal subunit (SSU) rRNA methyltransferase, has recently been shown to facilitate a checkpoint within the ribosome maturation pathway. Under standard growth conditions removal of the KsgA checkpoint has a subtle impact on cell growth, yet upon overexpresssion of RbfA, a ribosome maturation factor, KsgA becomes essential. Our results demonstrate the requirement of KsgA, in the presence of excess RbfA, for both the incorporation of ribosomal protein S21 to the developing SSU, and for final maturation of SSU rRNA. Also, when SSU biogenesis is perturbed by an imbalance in KsgA and RbfA, a population of 70S-like particles accumulate that are compositionally, functionally and structurally distinct from mature 70S ribosomes. Thus, our work suggests that KsgA and RbfA function together and are required for SSU maturation, and that additional checkpoints likely act to modulate malfunctional 70S particle formation in vivo.
doi:10.1111/mmi.12145
PMCID: PMC3583373  PMID: 23387871
KsgA; RbfA; rRNA processing; ribosome biogenesis; translation initiation
15.  Characterization of Myxococcus xanthus MazF and Implications for a New Point of Regulation 
Molecular microbiology  2013;87(6):1267-1276.
During development, Myxococcus xanthus cells undergo programmed cell death (PCD) whereby 80% of vegetative cells die. Previously, the MazF RNA interferase has been implicated in this role. Recently, it was shown that deletion of the mazF gene does not eliminate PCD in wild-type strain DK1622 as originally seen in DZF1. To clarify the role of MazF, recombinant enzyme was characterized using a highly sensitive assay in the presence and absence of the proposed antitoxin MrpC. In contrast to previous reports that MrpC inhibits MazF activity, the hydrolysis rate was enhanced in a concentration-dependent manner with MrpC or MrpC2, an N-terminally truncated form of MrpC. Furthermore, MazF transcripts were not detected until 6–8 hours post-induction, suggesting an antitoxin is unnecessary earlier. Potential MazF targets were identified and their transcript levels were shown to decline in DK1622 while remaining steady in a mazF deletion strain. Elimination of the mazF hydrolysis site in the nla6 transcript resulted in overproduction of the mRNA. Thus, MazF negatively regulates specific transcripts. Additionally, we show that discrepancies in the developmental phenotypes caused by removal of mazF in DK1622 and DZF1 are due to the presence of the pilQ1 allele in the latter strain.
doi:10.1111/mmi.12165
PMCID: PMC3596438  PMID: 23369184
MazF; Myxococcus xanthus; mRNA interferase; development
16.  The mobility of two kinase domains in the Escherichia coli chemoreceptor array varies with signaling state 
Molecular microbiology  2013;89(5):831-841.
Summary
Motile bacteria sense their physical and chemical environment through highly cooperative, ordered arrays of chemoreceptors. These signaling complexes phosphorylate a response regulator which in turn governs flagellar motor reversals, driving cells towards favorable environments. The structural changes that translate chemoeffector binding into the appropriate kinase output are not known. Here, we apply high-resolution electron cryotomography to visualize mutant chemoreceptor signaling arrays in well-defined kinase activity states. The arrays were well ordered in all signaling states, with no discernible differences in receptor conformation at 2-3 nm resolution. Differences were observed, however, in a keel-like density that we identify here as CheA kinase domains P1 and P2, which are the phosphorylation site domain and the binding domain for response regulator target proteins, respectively. Mutant receptor arrays with high kinase activities all exhibited small keels and high proteolysis susceptibility, indicative of mobile P1 and P2 domains. In contrast, arrays in kinase-off signaling states exhibited a range of keel sizes. These findings confirm that chemoreceptor arrays do not undergo large structural changes during signaling, and suggest instead that kinase activity is modulated at least in part by changes in the mobility of key domains.
doi:10.1111/mmi.12309
PMCID: PMC3763515  PMID: 23802570
bacterial chemotaxis; signal transduction; electron cryotomography
17.  The IbpA and IbpB small heat-shock proteins are substrates of the AAA+ Lon protease 
Molecular microbiology  2010;75(6):1539-1549.
Summary
Small heat-shock proteins (sHSPs) are a widely conserved family of molecular chaperones, all containing a conserved α-crystallin domain flanked by variable N- and C-terminal tails. We report that IbpA and IbpB, the sHSPs of Escherichia coli, are substrates for the AAA+ Lon protease. This ATP-fueled enzyme degraded purified IbpA substantially more slowly than purified IbpB, and we demonstrate that this disparity is a consequence of differences in maximal Lon degradation rates and not in substrate affinity. Interestingly, however, IbpB stimulated Lon degradation of IbpA both in vitro and in vivo. Furthermore, although the variable N- and C-terminal tails of the Ibps were dispensable for proteolytic recognition, these tails contain critical determinants that control the maximal rate of Lon degradation. Finally, we show that E. coli Lon degrades variants of human α-crystallin, indicating that Lon recognizes conserved determinants in the folded α-crystallin domain itself. These results suggest a novel mode for Lon substrate recognition and provide a highly suggestive link between the degradation and sHSP branches of the protein quality-control network.
doi:10.1111/j.1365-2958.2010.07070.x
PMCID: PMC3934651  PMID: 20158612
18.  Type IV secretion: intercellular transfer of macromolecules by systems ancestrally related to conjugation machines 
Molecular microbiology  2001;40(2):294-305.
Summary
Bacterial conjugation systems are highly promiscuous macromolecular transfer systems that impact human health significantly. In clinical settings, conjugation is exceptionally problematic, leading to the rapid dissemination of antibiotic resistance genes and other virulence traits among bacterial populations. Recent work has shown that several pathogens of plants and mammals – Agrobacterium tumefaciens, Bordetella pertussis, Helicobacter pylori and Legionella pneumophila – have evolved secretion pathways ancestrally related to conjugation systems for the purpose of delivering effector molecules to eukaryotic target cells. Each of these systems exports distinct DNA or protein substrates to effect a myriad of changes in host cell physiology during infection. Collectively, secretion pathways ancestrally related to bacterial conjugation systems are now referred to as the type IV secretion family. The list of putative type IV family members is increasing rapidly, suggesting that macromolecular transfer by these systems is a widespread phenomenon in nature.
PMCID: PMC3922410  PMID: 11309113
19.  Dimerization of the Agrobacterium tumefaciens VirB4 ATPase and the effect of ATP-binding cassette mutations on the assembly and function of the T-DNA transporter 
Molecular microbiology  1999;32(6):1239-1253.
Summary
The Agrobacterium tumefaciens VirB4 ATPase functions with other VirB proteins to export T-DNA to susceptible plant cells and other DNA substrates to a variety of prokaryotic and eukaryotic cells. Previous studies have demonstrated that VirB4 mutants with defects in the Walker A nucleotide-binding motif are non-functional and exert a dominant negative phenotype when synthesized in wild-type cells. This study characterized the oligomeric structure of VirB4 and examined the effects of Walker A sequence mutations on complex formation and transporter activity. VirB4 directed dimer formation when fused to the amino-terminal portion of cI repressor protein, as shown by immunity of Escherichia coli cells to λ phage infection. VirB4 also dimerized in Agrobacterium tumefaciens, as demonstrated by the recovery of a detergent-resistant complex of native protein and a functional, histidine-tagged derivative by precipitation with anti-His6 antibodies and by Co2+ affinity chromatography. Walker A sequence mutants directed repressor dimerization in E. coli and interacted with His-VirB4 in A. tumefaciens, indicating that ATP binding is not required for self-association. A dimerization domain was localized to a proposed N-terminal membrane-spanning region of VirB4, as shown by the dominance of an allele coding for the N-terminal 312 residues and phage immunity of host cells expressing cI repressor fusions to alleles for the first 237 or 312 residues. A recent study reported that the synthesis of a subset of VirB proteins, including VirB4, in agrobacterial recipients has a pronounced stimulatory effect on the virB-dependent conjugal transfer of plasmid RSF1010 by agrobacterial donors. VirB4′312 suppressed the stimulatory effect of VirB proteins for DNA uptake when synthesized in recipient cells. In striking contrast, Walker A sequence mutants contributed to the stimulatory effect of VirB proteins to the same extent as native VirB4. These findings indicate that the oligomeric structure of VirB4, but not its capacity to bind ATP, is important for the assembly of VirB proteins as a DNA uptake system. The results of these studies support a model in which VirB4 dimers or homomultimers contribute structural information for the assembly of a transenvelope channel competent for bidirectional DNA transfer, whereas an ATP-dependent activity is required for configuring this channel as a dedicated export machine.
PMCID: PMC3918219  PMID: 10383764
20.  Symmetric Signaling within Asymmetric Dimers of the Staphylococcus aureus Receptor Histidine Kinase AgrC 
Molecular microbiology  2009;74(1):44-57.
Virulence in Staphylococcus aureus is largely under control of the accessory gene regulator (agr) quorum sensing system. The AgrC receptor histidine kinase detects its autoinducing peptide (AIP) ligand and generates an intracellular signal resulting in secretion of virulence factors. Although agr is a well-studied quorum sensing system, little is known about the mechanism of AgrC activation. By co-immunoprecipitation analysis and intermolecular complementation of receptor mutants, we showed that AgrC forms ligand-independent dimers that undergo trans-autophosphorylation upon interaction with AIP. Remarkably, addition of specific AIPs to AgrC mutant dimers with only one functional sensor domain caused symmetric activation of either kinase domain despite the sensor asymmetry. Furthermore, mutant dimers involving one constitutive protomer demonstrated ligand-independent activity, irrespective of which protomer was kinase deficient. These results demonstrate that signaling through either individual AgrC protomer causes symmetric activation of both kinase domains. We suggest that such signaling across the dimer interface may be an important mechanism for dimeric quorum sensing receptors to rapidly elicit a response upon signal detection.
doi:10.1111/j.1365-2958.2009.06849.x
PMCID: PMC3913215  PMID: 19708918
quorum sensing; histidine kinase; symmetric signaling; AgrC; signal transduction mechanism
21.  Evidence that transport of iron from the lysosome to the cytosol in African trypanosomes is mediated by a mucolipin orthologue 
Molecular Microbiology  2013;89(3):420-432.
Bloodstream-form Trypanosoma brucei acquire iron by receptor-mediated endocytosis of host transferrin. However, the mechanism(s) by which iron is then transferred from the lysosome to the cytosol are unresolved. Here, we provide evidence for the involvement of a protein (TbMLP) orthologous to the mammalian endolysosomal cation channel Mucolipin 1. In T. brucei, we show that this protein is localized to the single parasite lysosome. TbMLP null mutants could only be generated in the presence of an expressed ectopic copy, suggesting that the protein is essential. RNAi-mediated ablation resulted in a growth defect in vitro and led to a sevenfold increase in susceptibility to the iron-chelators deferoxamine and salicylhydroxamic acid. Conditional null mutants remained viable when the ectopic copy was repressed, but were hypersensitive to deferoxamine and displayed a growth defect similar to that observed following RNAi. The conditional nulls also retained virulence in vivo in the absence of the doxycycline inducer. These data provide strong evidence that TbMLP has a role in import of iron into the cytosol of African trypanosomes. They also indicate that even when expression is greatly reduced, there is sufficient protein, or an alternative mechanism, to provide the parasite with an adequate supply of cytosolic iron.
doi:10.1111/mmi.12285
PMCID: PMC3828870  PMID: 23750752
22.  Induced ectopic expression of HigB toxin in Mycobacterium tuberculosis results in growth inhibition, reduced abundance of a subset of mRNAs and cleavage of tmRNA 
Molecular Microbiology  2013;90(1):195-207.
In Mycobacterium tuberculosis, the genes Rv1954A–Rv1957 form an operon that includes Rv1955 and Rv1956 which encode the HigB toxin and the HigA antitoxin respectively. We are interested in the role and regulation of this operon, since toxin–antitoxin systems have been suggested to play a part in the formation of persister cells in mycobacteria. To investigate the function of the higBA locus, effects of toxin expression on mycobacterial growth and transcript levels were assessed in M. tuberculosis H37Rv wild type and in an operon deletion background. We show that expression of HigB toxin in the absence of HigA antitoxin arrests growth and causes cell death in M. tuberculosis. We demonstrate HigB expression to reduce the abundance of IdeR and Zur regulated mRNAs and to cleave tmRNA in M. tuberculosis, Escherichia coli and Mycobacterium smegmatis. This study provides the first identification of possible target transcripts of HigB in M. tuberculosis.
doi:10.1111/mmi.12358
PMCID: PMC3912914  PMID: 23927792
23.  Regulation of Chaperone/Effector Complex Synthesis in a Bacterial Type III Secretion System 
Molecular microbiology  2011;81(6):1474-1483.
Summary
Type III protein secretion systems (T3SS), which have evolved to deliver bacterial proteins into nucleated cells, are found in many species of Gram-negative bacteria that live in close association with eukaryotic hosts. Proteins destined to travel this secretion pathway are targeted to the secretion machine by customized chaperones, with which they form highly ordered complexes. Here, we have identified a mechanism that coordinates the expression of the Salmonella Typhimurium T3SS chaperone SicP and its cognate effector SptP. Translation of the effector is coupled to that of its chaperone, and in the absence of translational coupling, an inhibitory RNA structure prevents translation of sptP. Furthermore, we have found that translational coupling is essential for secretion-competent SicP/SptP complex assembly. The data presented here show how the genomic organization of functionally related proteins can have a significant impact on protein function.
doi:10.1111/j.1365-2958.2011.07784.x
PMCID: PMC3909996  PMID: 21801239
bacterial pathogenesis; gene regulation; protein secretion; Salmonella Typhimurium; translational coupling
24.  The Toxoplasma nuclear factor TgAP2XI-4 controls bradyzoite gene expression and cyst formation 
Molecular microbiology  2012;87(3):641-655.
Toxoplasma gondii undergoes many phenotypic changes during its life cycle. The recent identification of AP2 transcription factors in T. gondii has provided a platform for studying the mechanisms controlling gene expression. In the present study, we report that a recombinant protein encompassing the TgAP2XI-4 AP2 domain was able to specifically bind to a DNA motif using gel retardation assays. TgAP2XI-4 protein is localised in the parasite nucleus throughout the tachyzoite life-cycle in vitro, with peak expression occurring after cytokinesis. We found that the TgAP2XI-4 transcript level was higher in bradyzoite cysts isolated from brains of chronically infected mice than in the rapidly replicating tachyzoites. A knock-out of the TgAP2XI-4 gene in both T. gondii virulent type I and avirulent type II strains reveals its role in modulating expression and promoter activity of genes involved in stage conversion of the rapidly replicating tachyzoites to the dormant cyst forming bradyzoites. Furthermore, mice infected with the type II KO mutants show a drastically reduced brain cyst burden. Thus, our results validate TgAP2XI-4 as a novel nuclear factor that regulates bradyzoite gene expression during parasite differentiation and cyst formation.
doi:10.1111/mmi.12121
PMCID: PMC3556193  PMID: 23240624
25.  The response regulator SypE controls biofilm formation and colonization through phosphorylation of the syp-encoded regulator SypA in Vibrio fischeri 
Molecular microbiology  2012;87(3):509-525.
Summary
Bacteria utilize multiple regulatory systems to modulate gene expression in response to environmental changes, including two-component signaling systems and partner-switching networks. We recently identified a novel regulatory protein SypE that combines features of both signaling systems. SypE contains a central response regulator receiver domain flanked by putative kinase and phosphatase effector domains with similarity to partner-switching proteins. SypE was previously shown to exert dual control over biofilm formation through the opposing activities of its terminal effector domains. Here, we demonstrate that SypE controls biofilms in Vibrio fischeri by regulating the activity of SypA, a STAS (sulphate transporter and anti-sigma antagonist) domain protein. Using biochemical and genetic approaches, we determined that SypE both phosphorylates and dephosphorylates SypA, and that phosphorylation inhibits SypA’s activity. Furthermore, we found that biofilm formation and symbiotic colonization required active, unphosphorylated SypA, and thus SypA phosphorylation corresponded with a loss of biofilms and impaired host colonization. Finally, expression of a non-phosphorylatable mutant of SypA suppressed both the biofilm and symbiosis defects of a constitutively inhibitory SypE mutant strain. This study demonstrates that regulation of SypA activity by SypE is a critical mechanism by which V. fischeri controls biofilm development and symbiotic colonization.
doi:10.1111/mmi.12109
PMCID: PMC3556205  PMID: 23171087

Results 1-25 (1202)