PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (44)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
more »
Document Types
1.  Vaccination with major outer membrane protein proteosomes elicits protection in mice against a Chlamydia respiratory challenge 
Microbes and infection / Institut Pasteur  2013;15(13):10.1016/j.micinf.2013.08.005.
Vaccines formulated with the Chlamydia muridarum native major outer membrane protein (nMOMP) have so far been shown to elicit the most robust protection against this pathogen. nMOMP is a membrane protein and therefore, detergents are used to keep it in solution. Detergents however, have toxic effects. To address this limitation, we tested a nMOMP proteosome vaccine and compared it for its ability to elicit protection against nMOMP solubilized in the detergent Z3-14. The two preparations were formulated with or without CpG + Montanide (C/M). As a control antigen we used ovalbumin. Mice vaccinated with nMOMP developed strong humoral and cell mediated Chlamydia-specific immune responses. Based on the IgG2a/IgG1 levels in serum and amounts of IFN-γ in splenocytes supernatants the immune responses were predominantly Th1-biased. The animals were subsequently challenged intranasally with 2×103 Chlamydia inclusion forming units (IFU) and the course of the infection was followed for 10 days when the mice were euthanized. Based on changes in body weight, weight of the lungs and number of IFU recovered from the lungs, mice immunized with nMOMP-Ps and nMOMP+Z3-14 adjuvanted with C/M showed the most robust protection. In summary, nMOMP-Ps should be considered as Chlamydia vaccine candidates.
doi:10.1016/j.micinf.2013.08.005
PMCID: PMC3842390  PMID: 23999313
Chlamydia; vaccine; proteosomes; major outer membrane protein; detergents; mouse model
2.  TRAIL-R1 Is a Negative Regulator of Pro-Inflammatory Responses and Modulates Long-Term Sequelae Resulting from Chlamydia trachomatis Infections in Humans 
PLoS ONE  2014;9(4):e93939.
The immune system eliminates Chlamydia trachomatis infection through inflammation. However, uncontrolled inflammation can enhance pathology. In mice, TNF-related apoptosis-inducing ligand receptor (TRAIL-R), known for its effects on apoptosis, also regulates inflammation. In humans, the four homologues of TRAIL-R had never been investigated for effects on inflammation. Here, we examined whether TRAIL-R regulates inflammation during chlamydial infection. We examined TRAIL-R1 single nucleotide polymorphisms (SNPs) in an Ecuadorian cohort with and without C. trachomatis infections. There was a highly significant association for the TRAIL+626 homozygous mutant GG for infection vs no infection in this population. To confirm the results observed in the human population, primary lung fibroblasts and bone marrow-derived macrophages (BMDMs) were isolated from wildtype (WT) and TRAIL-R-deficient mice, and TRAIL-R1 levels in human cervical epithelial cells were depleted by RNA interference. Infection of BMDMs and primary lung fibroblasts with C. trachomatis strain L2, or the murine pathogen C. muridarum, led to higher levels of MIP2 mRNA expression or IL-1β secretion from TRAIL-R-deficient cells than WT cells. Similarly, depletion of TRAIL-R1 expression in human epithelial cells resulted in a higher level of IL-8 mRNA expression and protein secretion during C. trachomatis infection. We conclude that human TRAIL-R1 SNPs and murine TRAIL-R modulate the innate immune response against chlamydial infection. This is the first evidence that human TRAIL-R1 is a negative regulator of inflammation and plays a role in modulating Chlamydia pathogenesis.
doi:10.1371/journal.pone.0093939
PMCID: PMC3973638  PMID: 24695582
3.  Differences in infectivity and induction of infertility: A comparative study of Chlamydia trachomatis strains in the murine model 
Chlamydia trachomatis, although commonly asymptomatic in women, can result in chronic sequelae, such as pelvic inflammatory disease, ectopic pregnancy and infertility. However, a clear relationship has not been determined between specific serovars and the ability to lead to upper genital tract infection or infertility. Thus, in order to investigate differences in pathogenicity, C3H/HeN mice were infected in the ovarian bursa with the C. trachomatis strains D (UW-3/Cx), F (N.I.1), F (IC-Cal-3) and E (Bour). Differences both in the amount of vaginal shedding as well as subsequent fertility rates were observed between D (UW-3/Cx) and F (N.I.1) compared to F (IC-Cal-3) and E (Bour). Approximately 50% of the mice infected with the D (UW-3/Cx) and F (N.I.1) strains had vaginal shedding for up to 3–4 weeks after infection and fertility rates of less than 25%. Furthermore, mice inoculated with D (UW-3/Cx) and F (N.I.1) showed infertility even in the absence of medroxy progesterone acetate (MPA) treatment. In contrast, both MPA and non-MPA treated mice infected with F (IC-Cal-3) or E (Bour) did not show vaginal shedding and had fertility rates between 45–88%. Mutations in the CT135 open reading frame have been associated with virulence. However, no nucleotide differences were found among the four isolates for CT135. This murine model of infection with C. trachomatis may help with the understanding of disease pathology in humans and ultimately vaccine development.
doi:10.1016/j.micinf.2012.12.001
PMCID: PMC3602122  PMID: 23287699
Chlamydia; infertility; murine; pathogenicity
4.  Proteomic identification of immunodominant chlamydial antigens in a mouse model 
Journal of proteomics  2012;77:176-186.
Chlamydia trachomatis is the most common bacterial sexually transmitted pathogen in the world. To identify new vaccine candidates a protein microarray was constructed by expressing the open reading frames (ORFs) from Chlamydia mouse pneumonitis (MoPn). C57BL/6, C3H/HeN and BALB/c mice were immunized either intranasally or intravaginally with live MoPn elementary bodies (EB). Two additional groups were immunized by the intramuscular plus subcutaneous routes with UV-treated EB, using CpG and Montanide as adjuvants to favor a Th1 response, or Alum, to elicit a Th2 response. Serum samples collected from the three strains of mice were tested in the microarray. The array included the expression of 909 proteins from the 921 ORFs of the MoPn genome and plasmid. A total of 530 ORFs were recognized by at least one serum sample. Of these, 36 reacted with sera from the three strains of mice immunized with live EB. These antigens included proteins that were previously described as immunogenic such as MOMP and HSP60. In addition, we uncovered new immunogens, including 11 hypothetical proteins. In summary, we have identified new immunodominant chlamydial proteins that can be tested for their ability to induce protection in animal models and subsequently in humans.
doi:10.1016/j.jprot.2012.08.017
PMCID: PMC3575745  PMID: 22959960
Chlamydia; Antigens; Microarrays; Vaccine; Mouse model
5.  Vaccination with the Recombinant Major Outer Membrane Protein Elicits Antibodies to the Constant Domains and Induces Cross-Serovar Protection against Intranasal Challenge with Chlamydia trachomatis 
Infection and Immunity  2013;81(5):1741-1750.
To determine the ability of the major outer membrane protein (MOMP) to elicit cross-serovar protection, groups of mice were immunized by the intramuscular (i.m.) and subcutaneous (s.c.) routes with recombinant MOMP (rMOMP) from Chlamydia trachomatis serovars D (UW-3/Cx), E (Bour), or F (IC-Cal-3) or Chlamydia muridarum strain Nigg II using CpG-1826 and Montanide ISA 720 VG as adjuvants. Negative-control groups were immunized i.m. and s.c. with Neisseria gonorrhoeae recombinant porin B (Ng-rPorB) or i.n. with Eagle's minimal essential medium (MEM-0). Following vaccination, the mice developed antibodies not only against the homologous serovar but also against heterologous serovars. The rMOMP-vaccinated animals also mounted cell-mediated immune responses as assessed by a lymphoproliferative assay. Four weeks after the last immunization, mice were challenged i.n. with 104 inclusion-forming units (IFU) of C. muridarum. The mice were weighed for 10 days and euthanized, and the number of IFU in their lungs was determined. At 10 days postinfection (p.i.), mice immunized with the rMOMP of C. muridarum or C. trachomatis D, E, or F had lost 4%, 6%, 8%, and 8% of their initial body weight, respectively, significantly different from the negative-control groups (Ng-rPorB, 13%; MEM-0, 19%; P < 0.05). The median number of IFU recovered from the lungs of mice immunized with C. muridarum rMOMP was 0.13 × 106. The median number of IFU recovered from mice immunized with rMOMP from serovars D, E, and F were 0.38 × 106, 7.56 × 106, and 11.94 × 106 IFU, respectively. All the rMOMP-immunized animals had significantly less IFU than the Ng-rPorB (40 × 106)- or MEM-0 (70 × 106)-immunized mice (P < 0.05). In conclusion, vaccination with rMOMP can elicit protection against homologous and heterologous Chlamydia serovars.
doi:10.1128/IAI.00734-12
PMCID: PMC3648024  PMID: 23478318
6.  A 3-Dimensional Trimeric β-Barrel Model for Chlamydia MOMP Contains Conserved and Novel Elements of Gram-Negative Bacterial Porins 
PLoS ONE  2013;8(7):e68934.
Chlamydia trachomatis is the most prevalent cause of bacterial sexually transmitted diseases and the leading cause of preventable blindness worldwide. Global control of Chlamydia will best be achieved with a vaccine, a primary target for which is the major outer membrane protein, MOMP, which comprises ∼60% of the outer membrane protein mass of this bacterium. In the absence of experimental structural information on MOMP, three previously published topology models presumed a16-stranded barrel architecture. Here, we use the latest β-barrel prediction algorithms, previous 2D topology modeling results, and comparative modeling methodology to build a 3D model based on the 16-stranded, trimeric assumption. We find that while a 3D MOMP model captures many structural hallmarks of a trimeric 16-stranded β-barrel porin, and is consistent with most of the experimental evidence for MOMP, MOMP residues 320–334 cannot be modeled as β-strands that span the entire membrane, as is consistently observed in published 16-stranded β-barrel crystal structures. Given the ambiguous results for β-strand delineation found in this study, recent publications of membrane β-barrel structures breaking with the canonical rule for an even number of β-strands, findings of β-barrels with strand-exchanged oligomeric conformations, and alternate folds dependent upon the lifecycle of the bacterium, we suggest that although the MOMP porin structure incorporates canonical 16-stranded conformations, it may have novel oligomeric or dynamic structural changes accounting for the discrepancies observed.
doi:10.1371/journal.pone.0068934
PMCID: PMC3723809  PMID: 23935908
7.  Toll-Like Receptor 2-Dependent Activity of Native Major Outer Membrane Protein Proteosomes of Chlamydia trachomatis 
Infection and Immunity  2013;81(1):303-310.
Chlamydia trachomatis is the most common sexually transmitted bacterial pathogen and the etiologic agent of blinding trachoma. Intracellular signaling pathways leading to host cell inflammation and innate immunity to Chlamydia include those mediated by Toll-like receptors (TLRs) and nucleotide binding oligomerization domain 1 (Nod1) protein. In epithelial cells, TLR-dependent signaling contributes to local immune responses via induction of inflammatory mediators. There is evidence that TLR3, TLR4, and, particularly, TLR2 are critical for Chlamydia-mediated host cell activation and pathology. Despite the importance of TLR2, major chlamydial TLR2 antigens have not been identified so far. Numerous bacterial porins are known TLR2 agonists, i.e., porins from Neisseriae, Shigella, Salmonella, Haemophilus influenzae, and Fusobacterium nucleatum, which share structural and functional similarities with the chlamydial major outer membrane protein (MOMP), a strong antigen candidate for a potential vaccine against C. trachomatis. We describe the ability of purified, detergent-free MOMP to signal via TLR2 in vitro in TLR-overexpressing cells and TLR2-competent human reproductive tract epithelial cell lines. Using MOMP formed in pure protein micelles (proteosomes), we show the induction of TLR2-dependent interleukin-8 (IL-8) and IL-6 secretion in vitro, the involvement of TLR1 as a TLR2 coreceptor, and the activation of both NF-κB and mitogen-activated protein (MAP) kinase intracellular pathways. Interestingly, MOMP proteosomes induce cytokine secretion in endocervical epithelial cells (End/E6E7) but not in urethral epithelial cells (THUECs). A detailed understanding of the TLR2-dependent molecular mechanisms that characterize the effect of MOMP proteosomes on host cells may provide new insights for its successful development as an immunotherapeutic target against Chlamydia.
doi:10.1128/IAI.01062-12
PMCID: PMC3536141  PMID: 23132491
8.  Induction of protective immunity by vaccination against Chlamydia trachomatis using the major outer membrane protein adjuvanted with CpG oligodeoxynucleotide coupled to the nontoxic B subunit of cholera toxin 
Vaccine  2009;27(44):6239-6246.
The present study was undertaken to test the efficacy of immunization with the native major outer membrane protein (nMOMP) of C. trachomatis mouse pneumonitis (MoPn) serovar in combination with a novel immunostimulatory adjuvant consisting of CpG oligodeoxynucleotide (ODN) linked to the nontoxic B subunit of cholera toxin (CTB-CpG) to elicit a protective immune response to C. trachomatis. High levels of Chlamydia specific IgG antibodies were detected in the sera from BALB/c mice immunized intramuscularly and subcutaneously (i.m.+s.c.) with the nMOMP/CTB-CpG vaccine or with nMOMP adjuvanted with a mixture of CT and CpG ODN (CT + CpG). Further, these immunization schemes gave rise to significant T-cell mediated Chlamydia-specific immune responses. No Chlamydia-specific humoral or cell-mediated immune responses were detected in the control mice vaccinated with ovalbumin together with either CTB-CpG or CT + CpG. Following an intranasal challenge with C. trachomatis the groups of mice immunized with nMOMP plus CTB-CpG, CT + CpG or live C. trachomatis were found to be protected based on their change in body weight and lung weight as well as number of inclusion forming unit recovered from the lungs, as compared with control groups immunized with ovalbumin plus either adjuvants. Interestingly, IFN-γ-producing CD4+, but not CD8+, T-cells showed a significant correlation with the outcomes of the challenge. In conclusion, nMOMP in combination with the novel adjuvant CTB-CpG elicited a significant antigen specific antibody and cell-mediated immune responses as well as protection against a pulmonary challenge with C. trachomatis.
doi:10.1016/j.vaccine.2009.07.108
PMCID: PMC3566636  PMID: 19686693
Chlamydia trachomatis; vaccine; CTB-CpG adjuvant
9.  A TLR2 agonist is a more effective adjuvant for a Chlamydia major outer membrane protein vaccine than ligands to other TLR and NOD receptors 
Vaccine  2011;29(38):6641-6649.
Chlamydia trachomatis (Ct) is the most common sexually transmitted bacterial pathogen in the World and there is an urgent need for a vaccine to prevent these infections. To determine what type of adjuvant can better enhance the immunogenicity of a Chlamydia vaccine, we formulated the recombinant major outer membrane protein (Ct-rMOMP) with several ligands for Toll-like receptor (TLR) and the nucleotide-binding oligomerization domain (NOD) including Pam2CSK4 (TLR2/TLR6), Poly (I:C) (TLR3), monophosphoryl lipid A (TLR4), flagellin (TLR5), imiquimod R837 (TLR7), imidazoquinoline R848 (TRL7/8), CpG-1826 (TLR9), M-Tri-DAP (NOD1/NOD2) and muramyldipeptide (NOD2). Groups of female BALB/c mice were immunized intramuscularly (i.m.) three times with the Ct-rMOMP and each one of those adjuvants. Four weeks after the last immunization the mice were challenged intranasally (i.n.) with 104 C. trachomatis mouse pneumonitis (MoPn) inclusion forming units (IFU). As negative antigen controls mice were immunized with the Neisseria gonorrhoeae recombinant porin B (Ng-rPorB) and the same adjuvants. As a positive vaccine control mice were inoculated i.n. with 104 IFU of MoPn. The humoral and cell mediated immune responses were determined the day before the challenge. Following the challenge the mice were weighed daily and, at 10 days post-challenge (p.c.), they were euthanized, their lungs weighted and the number of IFU in the lungs counted. As determined by the IgG2a/IgG1 ratio in the sera, mice immunized with Ct-rMOMP + Pam2CSK4 showed a strong Th2 biased humoral immune response. Furthermore, these mice develop a robust cellular immune response with high Chlamydia-specific T cell proliferation and levels of IFN-γ production. In addition, based on changes in body weight, weight of the lungs and number of IFU recovered from the lungs, the mice immunized with Ct-rMOMP + Pam2CSK4, were better protected against the i.n. challenge than any group of mice immunized with Ct-rMOMP and the other adjuvants. In conclusion, Pam2CSK4 should be evaluated as a candidate adjuvant for a C. trachomatis vaccine.
doi:10.1016/j.vaccine.2011.06.105
PMCID: PMC3156873  PMID: 21742006
Chlamydia trachomatis; vaccine; mice; immunization; Toll-like receptors; Pam2CSK4
10.  Induction of protection against vaginal shedding and infertility by a recombinant Chlamydia vaccine 
Vaccine  2011;29(32):5276-5283.
A vaccine formulated with the Chlamydia muridarum recombinant major outer membrane protein, plus the adjuvants CpG and Montanide, was tested for its ability to protect BALB/c mice against a vaginal challenge. Mice were immunized by mucosal [intravaginal (i.vag.) plus colonic (col.), or intranasal (i.n.) plus sublingual (s.l.)], or systemic [intramuscular (i.m.) plus subcutaneous (s.c.)] routes, and a combination of mucosal priming/systemic boosting routes. A negative control group was vaccinated with the Neisseria gonorrhoeae porin B (Ng-rPorB) and a positive control group was inoculated in the nares with live Chlamydia. The strongest Chlamydia-specific humoral and cell-mediated immune responses were observed in the groups immunized by a combination of mucosal and systemic routes. Following the vaginal challenge, groups immunized using mucosal priming followed by systemic immunization had a significant decrease in the number of mice with positive vaginal cultures. For example, of the mice immunized i.n./s.l.+i.m./s.c., 24% had positive cultures during the six weeks of the experiment versus 69% for the negative control group immunized with Ng-rPorB (p<0.05). Similarly, the groups of mice primed by the mucosal routes and boosted by the systemic routes had significantly less IFU in the vaginal cultures when compared to the Ng-rPorB animals (P<0.05). These combination groups were also protected against infertility. The two groups had fertility rates of 100% (i.n./s.l.+i.m./s.c.) and 81% (i.vag./col.+i.m./s.c.) equivalent to the positive-control group immunized with live Chlamydia (100% fertility; P>0.05). These results show the importance of the schedule and routes of vaccination and represent the first study to show protection against infertility by a Chlamydia recombinant subunit vaccine.
doi:10.1016/j.vaccine.2011.05.013
PMCID: PMC3139009  PMID: 21609745
Chlamydia; rMOMP; immunization; mucosal; mice; infertility
11.  Amphipols stabilize the Chlamydia major outer membrane protein and enhance its protective ability as a vaccine 
Vaccine  2011;29(28):4623-4631.
The native major outer membrane protein (nMOMP) from Chlamydia was purified in its trimeric form using the zwitterionic detergent Z3-14. In aliquots from this preparation, Z3-14 was exchanged for amphipol (APol) A8-35. CD analysis showed that trapping with A8-35 improved the thermostability of nMOMP without affecting its secondary structure. Recombinant MOMP (rMOMP) was also formulated with Z3-14 or A8-35. Four groups of mice were vaccinated with nMOMP/Z3-14, nMOMP/A8-35, rMOMP/Z3-14 or rMOMP/A8-35 using CpG and Montanide as adjuvants. A positive control group was inoculated intranasally with live Chlamydia and a negative control group with culture medium. Mice were challenged intranasally with live Chlamydia and protection was assessed based on changes in body weight, the weight of the lungs and the number of chlamydial inclusion forming units recovered from the lungs 10 days after the challenge. Overall, vaccines formulated with nMOMP elicited better protection than those using rMOMP. Furthermore, the protection afforded by nMOMP/A8-35 was more robust than that achieved with nMOMP/Z3-14. In contrast, no differences in protection were observed between rMOMP/Z3-14 and rMOMP/A8-35 preparations. These findings suggest that the higher protection conferred by nMOMP/A8-35 complexes most likely results from a better preservation of the native structure of MOMP and/or from a more efficient presentation of the antigen to the immune system, rather than from an adjuvant effect of the amphipol. Thus, amphipols can be used in vaccine formulations to stabilize a membrane-protein component and enhance its immunogenicity.
doi:10.1016/j.vaccine.2011.04.065
PMCID: PMC3114171  PMID: 21550371
Amphipols; detergents; Chlamydia; thermal stability; major outer membrane protein; vaccine protection
12.  Immunogenicity of a vaccine formulated with the Chlamydia trachomatis serovar F, native major outer membrane protein in a nonhuman primate model 
Vaccine  2011;29(18):3456-3464.
To determine the ability of a vaccine formulated with the genital Chlamydia trachomatis, serovar F, native major outer membrane protein (Ct-F-nMOMP), to induce systemic and mucosal immune responses, rhesus macaques (Macaca mulatta) were immunized three times by the intramuscular (i.m.) and subcutaneous (s.c.) routes using CpG-2395 and Montanide ISA 720 VG, as adjuvants. As controls, another group of M. mulatta was immunized with ovalbumin instead of Ct-F-nMOMP using the same formulation and routes. High levels of Chlamydia-specific IgG and IgA antibodies were detected in plasma, vaginal washes, tears, saliva, and stools from the Ct-F-nMOMP immunized animals. Also, high neutralizing antibody titers were detected in the plasma from these animals. Monkeys immunized with ovalbumin had no detectable Chlamydia-specific antibodies. Furthermore, as measured by a lymphoproliferative assay, significant Chlamydia-specific cell-mediated immune responses were detected in the peripheral blood mononuclear cells (PBMC) from the rhesus macaques vaccinated with Ct-F-nMOMP when compared with the animals immunized with ovalbumin. In addition, the levels of two Th1 cytokines, IFN-γ and TNF-α, were significantly higher in the animals immunized with Ct-F-nMOMP when compared with those from the monkeys immunized with ovalbumin. To our knowledge, this is the first time that mucosal and systemic immune responses have been investigated in a nonhuman primate model using a subunit vaccine from a human genital C. trachomatis serovar.
doi:10.1016/j.vaccine.2011.02.057
PMCID: PMC3084512  PMID: 21376796
Chlamydia trachomatis; vaccine; Macaca mulatta; nonhuman primates; systemic and mucosal immune responses
13.  A new murine model for testing vaccines against genital Chlamydia trachomatis infections in males 
Vaccine  2010;28(48):7606-7612.
Two groups of 50 BALB/c male mice were immunized with live Chlamydia trachomatis mouse pneumonitis (MoPn) using the intranasal (i.n.) or the meatus urethra (intraurethral: i.u.) routes. As a control group, 100 male mice were sham-immunized in parallel. Both groups of animals vaccinated with live organisms developed strong Chlamydia-specific humoral and cell mediated immune responses. Based on the IgG2a/IgG1 ratio and the levels of IFN-γ both groups mounted a Th1 immune response. At six weeks following the immunization, all mice were challenged in the meatus urethra. The urethra, urinary bladder, testes and epididymides were harvested at weekly intervals and tested for the presence of C. trachomatis. Based on the culture results from these four organs both groups of Chlamydia-immunized mice showed significant protection. In the group immunized i.u., 10% (5/50) had positive cultures, while in the group immunized i.n. 28% (14/50) had positive cultures during the 5 weeks of observation. In contrast, in the sham-immunized animals 47% (47/100) had positive cultures (P<0.005) during the study period. In addition, the number of positive organs, the length of time that the animal had positive cultures, and the total number of inclusion forming units (IFU) recovered were overall significantly lower in the i.u. or i.n. groups in comparison with the sham-immunized animals. However, in relation to the i.u. immunized group, the protection elicited in the i.n. group was delayed and not as robust. In conclusion, immunization of mice in the meatus urethra may provide the gold standard for testing Chlamydia vaccines in a male model.
doi:10.1016/j.vaccine.2010.09.060
PMCID: PMC2981627  PMID: 20920574
Chlamydia; vaccines; males; mice
14.  Enhancement of the protective efficacy of a Chlamydia trachomatis recombinant vaccine by combining systemic and mucosal routes for immunization 
Vaccine  2010;28(48):7659-7666.
Chlamydia trachomatis causes respiratory and sexually transmitted infections. Here, we tested a vaccine formulated with the recombinant major outer membrane protein from C. trachomatis mouse pneumonitis (CT-MoPn) for its ability to protect mice against an intranasal (i.n.) challenge. The adjuvants CpG and Montanide were used for systemic routes, intramuscular (i.m.) and subcutaneous (s.c.), and cholera toxin for mucosal routes, sublingual (s.l.) and colonic (c.l.). Mucosal immunizations were performed either alone or in combination with systemic routes. Mice inoculated i.n. with 104 inclusion-forming units (IFU) of CT-MoPn served as a positive control and the Neisseria gonorrhoeae recombinant porin B (Ng-rPorB) as the negative antigen control. Immunized animals were challenged i.n. with 104 IFU of CT-MoPn. Following immunization the combination groups showed high chlamydial serum IgG titers (s.l.+i.m.+s.c. 25,600; c.l+i.m.+s.c. 102,400) and the IgG2a/IgG1 ratios indicated a Th1 response. Following the i.n. challenge the s.l./i.m.+s.c. group showed the best protection as demonstrated by an increase in body weight of 0.3% over the 10 day course of infection. A statistically significant difference was found when compared with the Ng-rPorB immunized animals that had lost 20% of their original body weight (P < 0.05). In addition, the repeated measures ANOVA test showed significant difference in body weight change for the combined immunized groups versus their mucosal counterparts and also the systemic immunized group. A statistically significant difference (P < 0.05) was also observed in the median number of IFUs recovered from the lungs when the s.l.+i.m.+s.c. (2.8 × 106 ) and c.l.+i.m.+s.c. (3.4 × 106) groups where compared to their respective mucosal only groups (s.l.: 61.9 × 106 and c.l: 136.2 × 106) and the control Ng-rPorB immunized mice (198.2 × 106) (P < 0.05). In conclusion, a combined systemic plus mucosal vaccination provides better protection against a respiratory challenge with C. trachomatis than either systemic or mucosal immunizations alone.
doi:10.1016/j.vaccine.2010.09.040
PMCID: PMC2981640  PMID: 20875490
Chlamydia trachomatis; recombinant major outer membrane proteins; systemic and mucosal immunization; mice; respiratory infections; vaccine
15.  Maternal immunity partially protects newborn mice against a Chlamydia trachomatis intranasal challenge 
To determine the role of maternal immunity in protecting newborn mice against a C. trachomatis infection female BALB/c mice were immunized intranasally (i.n.) with 104 inclusion forming units (IFU) of the C. trachomatis mouse pneumonitis biovar (MoPn). As a control, another group of female mice was sham-immunized i.n. with HeLa cell extracts. Immunized animals mounted strong immune responses as evidenced by high Chlamydia-specific antibody titers in serum and milk. Newborn mice born from immunized and sham-immunized dams were challenged i.n. with 103 IFU of MoPn at 2-post natal days (PND). Following inoculation, newborn mice were euthanized at 7-PND and 18-PND and the lungs, spleen and intestine were cultured for Chlamydia. Overall, no significant differences were observed between the mice born from and fed by immunized dams and mice born from and fed by sham-immunized dams. Of the mice born from immunized dams, 75% and 25% had positive lung cultures at 7-PND and 18-PND, respectively. Of the mice born from sham-immunized dams, 82% and 50% had positive lung cultures for those same days. When the number of IFU recovered from the lungs and spleens were compared between the two groups no significant differences were observed. However, when the number of IFU recovered from the small intestine were compared, significant differences were observed between the two groups of newborn mice (2×105 versus 32×106 at 7-PND and 9.2×106 versus 85×106 at 18-PND). In conclusion, maternal immunity plays a limited role in protecting newborn mice against a Chlamydia infection.
doi:10.1016/j.jri.2010.04.003
PMCID: PMC2949516  PMID: 20554327
maternal immunity; Chlamydia trachomatis; newborn mice; intranasal infection
16.  Candidate vaginal microbicides with activity against Chlamydia trachomatis and Neisseria gonorrhoeae 
Vaginal microbicides with activity towards organisms that cause sexually transmitted infections have been proposed as a strategy to reduce transmission. Small-molecule inhibitors of Chlamydia trachomatis serovar D belonging to the class of salicylidene acylhydrazides (INPs) have been shown to work through a mechanism that involves iron restriction. Expanding on this work, ten INPs were tested against a lymphogranuloma venereum strain of C. trachomatis serovar L2, Neisseria gonorrhoeae, and hydrogen peroxide-producing Lactobacillus crispatus and Lactobacillus jensenii. Seven INPs had minimal inhibitory concentrations (MICs) and minimal bactericidal concentrations of <50 µM towards C. trachomatis L2. Three INPs had an MIC <12.5 µM against N. gonorrhoeae. Inhibition by was reversed by iron, holo-transferrin and holo-lactoferrin but not by the iron-poor forms of these compounds. The compounds exhibited no bactericidal activity toward Lactobacillus. The INPs were not cytotoxic to HeLa 229 cells. When INP 0341 was tested in a mouse model of a Chlamydia vaginal infection there was a significant reduction in the number of mice shedding C. trachomatis up to 4 days after infection (P < 0.01). In summary, select INPs are promising vaginal microbicide candidates as they inhibit the growth of two common sexually transmitted organisms in vitro, are active in a mouse model against C. trachomatis, are not cytotoxic and do not inhibit organisms that compose the normal vaginal flora.
doi:10.1016/j.ijantimicag.2010.03.018
PMCID: PMC2902681  PMID: 20605703
Vaginal microbicide; Sexually transmitted infections; Chlamydia trachomatis; LGV; Neisseria gonorrhoeae
17.  Identification of Immunodominant Antigens by Probing a Whole Chlamydia trachomatis Open Reading Frame Proteome Microarray Using Sera from Immunized Mice ▿ †  
Infection and Immunity  2010;79(1):246-257.
Chlamydia trachomatis infections can lead to severe chronic complications, including trachoma, ectopic pregnancy, and infertility. The only effective approach to disease control is vaccination. The goal of this work was to identify new potential vaccine candidates through a proteomics approach. We constructed a protein chip array (Antigen Discovery, Inc.) by expressing the open reading frames (ORFs) from C. trachomatis mouse pneumonitis (MoPn) genomic and plasmid DNA and tested it with serum samples from MoPn-immunized mice. Two groups of BALB/c female mice were immunized either intranasally or intravaginally with live elementary bodies (EB). Another two groups were immunized by a combination of the intramuscular and subcutaneous routes with UV-treated EB (UV-EB), using either CpG and Montanide as adjuvants to favor a Th1 response or alum to elicit a Th2 response. Serum samples collected at regular intervals postimmunization were tested in the proteome array. The microarray included the expression products of 909 proteins from a total of 921 ORFs of the Chlamydia MoPn genome and plasmid. A total of 185 immunodominant proteins elicited an early and sustained antibody response in the mice immunized with live EB, and of these, 71 were also recognized by the sera from mice immunized with UV-EB. The reactive antigens included some proteins that were previously described as immunogenic, such as the major outer membrane protein, OmpB, Hsp60, and IncA and proteins from the type III secretion system. In addition, we identified in mice several new immunogens, including 75 hypothetical proteins. In summary, we have identified a new group of immunodominant chlamydial proteins that can be tested for their ability to induce protection.
doi:10.1128/IAI.00626-10
PMCID: PMC3019893  PMID: 20956570
18.  Identification of immunodominant antigens of Chlamydia trachomatis using proteome microarrays 
Vaccine  2009;28(17):3014-3024.
Chlamydia trachomatis is the most common bacterial sexually transmitted pathogen in the world. In order to control this infection, there is an urgent need to formulate a vaccine. Identification of protective antigens is required to implement a subunit vaccine. To identify potential antigen vaccine candidates, three strains of mice, BALB/c, C3H/HeN and C57BL/6, were inoculated with live and inactivated C. trachomatis mouse pneumonitis (MoPn) by different routes of immunization. Using a protein microarray, serum samples collected after immunization were tested for the presence of antibodies against specific chlamydial antigens. A total of 225 open reading frames (ORF) of the C. trachomatis genome were cloned, expressed, and printed in the microarray. Using this protein microarray, a total of seven C. trachomatis dominant antigens were identified (TC0052, TC0189, TC0582, TC0660, TC0726, TC0816 and, TC0828) as recognized by IgG antibodies from all three strains of animals after immunization. In addition, the microarray was probed to determine if the antibody response exhibited a Th1 or Th2 bias. Animals immunized with live organisms mounted a predominant Th1 response against most of the chlamydial antigens while mice immunized with inactivated Chlamydia mounted a Th2-biased response. In conclusion, using a high throughput protein microarray we have identified a set of novel proteins that can be tested for their ability to protect against a chlamydial infection.
doi:10.1016/j.vaccine.2009.12.020
PMCID: PMC3048468  PMID: 20044059
19.  Biophysical and Stabilization Studies of the Chlamydia trachomatis Mouse Pneumonitis Major Outer Membrane Protein 
Molecular pharmaceutics  2009;6(5):1553-1561.
Native Chlamydia trachomatis mouse pneumonitis major outer membrane protein (nMOMP) induces effective protection against genital infection in a mouse challenge model. The conformation of nMOMP is crucial to confer this protective immunity. To achieve a better understanding of the conformational behavior and stability of nMOMP, a number of spectroscopic techniques are employed to characterize the secondary structure (circular dichroism), tertiary structure (intrinsic fluorescence) and aggregation properties (static light scattering and optical density) as a function of pH (3-8) and temperature (10-87.5°C). The data are summarized in an empirical phase diagram (EPD) which demonstrates that the thermal stability of nMOMP is strongly pH-dependent. Three distinctive regions are seen in the EPD. Below the major thermal transition regions, nMOMP remains in its native conformation over the pH range of 3-8. Above the thermal transitions, nMOMP appears in two different structurally altered states; one at pH 3-5 and the other at pH 6-8. The EPD shows that the highest thermal transition point (~ 65°C) of nMOMP is near pH 6. Several potential excipients such as arginine, sodium citrate, Brij 35, sucrose and guanidine are also selected to evaluate their effects on the stability of nMOMP. These particular compounds increase the aggregation onset temperature of nMOMP by more than 10°C, without affecting its secondary and tertiary structure. These results should help formulate a vaccine using a recombinant MOMP.
doi:10.1021/mp900110q
PMCID: PMC2757499  PMID: 19650664
Chlamydia; MOMP; Biophysical Characterization; Stabilization
20.  Protection against an intranasal challenge by vaccines formulated with native and recombinant preparations of the Chlamydia trachomatis major outer membrane protein 
Vaccine  2009;27(36):5020-5025.
To compare the ability of a native and a recombinant preparation of the major outer membrane protein of Chlamydia trachomatis mouse pneumonitis (MoPn; Ct-nMOMP and Ct-rMOMP) to protect against an intranasal (i.n.) challenge, BALB/c mice were vaccinated by the intramuscular (i.m.) and subcutaneous (s.c.) routes using CpG-1826 and Montanide ISA 720 as adjuvants. Animals inoculated i.n. with live elementary bodies (EB) of Chlamydia served as a positive control. Negative control groups were immunized with either Neisseria gonorrhoeae recombinant porin B (Ng-rPorB) or with minimal essential medium (MEM-0). Mice immunized with Ct-rMOMP, Ct-nMOMP and EB developed a strong immune response as shown by high levels of Chlamydia specific antibodies in serum and a strong T-cell lymphoproliferative response. Following the i.n. challenge with 104 inclusion forming units (IFU) of C. trachomatis. mice immunized with Ct-nMOMP or Ct-rMOMP lost significantly less weight than the negative control animals immunized with Ng-rPorB or MEM-0 (P<0.05). However, mice vaccinated with the Ct-nMOMP lost less weight than those immunized with the Ct-rMOMP (P<0.05). Mice were euthanized at 10 days following the challenge, their lungs weighed and the number of IFU of Chlamydia determined. Based on the lung weight and number of IFU recovered, significant protection was observed in the groups of mice immunized with both Ct-nMOMP and the Ct-rMOMP (P<0.05). Nevertheless, significantly better protection was achieved with the Ct-nMOMP in comparison with the Ct-rMOMP (P<0.05). In conclusion, vaccination with a preparation of the nMOMP elicited a more robust protection than immunization with rMOMP suggesting that the conformational structure of MOMP is critical for inducing strong protection.
doi:10.1016/j.vaccine.2009.05.008
PMCID: PMC2741729  PMID: 19446590
Chlamydia trachomatis; vaccines; major outer membrane protein; mice
21.  Chlamydia trachomatis Native Major Outer Membrane Protein Induces Partial Protection in Non-Human Primates: Implication for a Trachoma Transmission Blocking Vaccine 
A vaccine is likely the most effective strategy for controlling human chlamydial infections. Recent studies have shown immunization with Chlamydia muridarum major outer membrane protein (MOMP) can induce significant protection against infection and disease in mice if its native trimeric structure is preserved (nMOMP). The objective of this study was to investigate the immunogenicity and vaccine efficacy of Chlamydia trachomatis nMOMP in a non-human primate trachoma model. Cynomolgus monkeys (Macaca fascicularis) were immunized systemically with nMOMP and monkeys were challenged ocularly. Immunization induced high serum IgG and IgA ELISA antibody titers, with antibodies displaying high strain-specific neutralizing activity. The PBMC of immunized monkeys produced a broadly cross-reactive, antigen-specific IFN-γ response equivalent to that induced by experimental infection. Immunized monkeys exhibited a highly significant decrease in infectious burden during the early peak shedding periods (days 3-14). However, at later time points they exhibited no difference from control animals in either burden or duration of infection. Immunization had no effect on the progression of ocular disease. These results show that systemically administered nMOMP is highly immunogenic in non-human primates and elicits partially protective immunity against ocular chlamydial challenge. This is the first time a subunit vaccine has shown a marked, significant reduction in ocular shedding in non-human primates. A partially protective vaccine, particularly one that significantly reduces infectious burden following primary infection of children, could interrupt the natural trachoma re-infection cycle. This could have a beneficial effect on the transmission between children and sensitized adults which drives blinding inflammatory disease.
doi:10.4049/jimmunol.0804375
PMCID: PMC2692073  PMID: 19494332
Vaccination; Mucosa; Bacterial; Antigens/Peptides/Epitopes; Other Animals
22.  C3H Male Mice with Severe Combined Immunodeficiency Cannot Clear a Urethral Infection with a Human Serovar of Chlamydia trachomatis▿  
Infection and Immunity  2009;77(12):5602-5607.
The pathogenesis of an infection of the male genitourinary tract of mice with a human serovar of Chlamydia trachomatis has not been characterized. To establish a new model, we inoculated C3H/HeN (H-2k) mice in the meatus urethra with C. trachomatis serovar D. To determine the 50% infectious dose (ID50), male mice were inoculated with doses ranging from 102 to 106 inclusion-forming units (IFU). The mice were euthanized 10 days post infection (p.i.), and the urethra, bladder, epididimydes, and testes were cultured for Chlamydia. Positive cultures were obtained from the urethra, urinary bladder, and epididimydes, and the ID50 was determined to be 5 × 104 IFU/mouse. Subsequently, to characterize the course of the infection, wild-type (WT) and C3H animals with severe combined immunodeficiency (SCID animals) were inoculated with 106 IFU/mouse (20 times the ID50). In the WT mice, the infection peaked in the second week, and by 42 days p.i., it was cleared. In contrast, most of the SCID mice continued to have positive cultures at 60 days p.i. C. trachomatis-specific antibodies were first detected in WT animals' sera at 21 days p.i. and increased until 42 days p.i. The immunoglobulin G2a (IgG2a) titers were 32-fold higher than those of IgG1, indicative of a Th1-biased immune response. A lymphoproliferative assay using splenocytes showed a significant cell-mediated immune response in the WT mice. As expected, no humoral or cell-mediated immune responses were observed in the SCID animals. In conclusion, inoculation of WT male mice in the meatus urethra with a human serovar of C. trachomatis resulted in a limited infection mainly localized to the lower genitourinary tract. On the other hand, SCID animals could not clear the infection, suggesting that in male mice, the adaptive immune response is necessary to control an infection with a C. trachomatis human serovar.
doi:10.1128/IAI.00766-09
PMCID: PMC2786464  PMID: 19805533
23.  Imaging of Effector Memory T Cells during a Delayed-Type Hypersensitivity Reaction and Suppression by Kv1.3 Channel Block 
Immunity  2008;29(4):602-614.
SUMMARY
Effector memory T (Tem) cells are essential mediators of autoimmune disease and delayed-type hypersensitivity (DTH), a convenient model for two-photon imaging of Tem cell participation in an inflammatory response. Shortly (3 hr) after entry into antigen-primed ear tissue, Tem cells stably attached to antigen-bearing antigen-presenting cells (APCs). After 24 hr, enlarged Tem cells were highly motile along collagen fibers and continued to migrate rapidly for 18 hr. Tem cells rely on voltage-gated Kv1.3 potassium channels to regulate calcium signaling. ShK-186, a specific Kv1.3 blocker, inhibited DTH and suppressed Tem cell enlargement and motility in inflamed tissue but had no effect on homing to or motility in lymph nodes of naive and central memory T (Tcm) cells. ShK-186 effectively treated disease in a rat model of multiple sclerosis. These results demonstrate a requirement for Kv1.3 channels in Tem cells during an inflammatory immune response in peripheral tissues. Targeting Kv1.3 allows for effector memory responses to be suppressed while central memory responses remain intact.
doi:10.1016/j.immuni.2008.07.015
PMCID: PMC2732399  PMID: 18835197
24.  Protection of Wild-Type and Severe Combined Immunodeficiency Mice against an Intranasal Challenge by Passive Immunization with Monoclonal Antibodies to the Chlamydia trachomatis Mouse Pneumonitis Major Outer Membrane Protein▿  
Infection and Immunity  2008;76(12):5581-5587.
Monoclonal antibodies (MAbs) to the Chlamydia trachomatis mouse pneumonitis (MoPn) major outer membrane protein (MOMP) were characterized for their ability to neutralize the infectivity of this organism in vitro and in vivo. One of the MAbs (MoPn-23) recognizes a nonlinear epitope in the MOMP, MAb MoPn-40 binds to a linear epitope in the variable domain 1 (VD1), and MAb MoPn-32 recognizes the chlamydial lipopolysaccharide. MAb MoPn-23 neutralized 50% of the infectivity of Chlamydia, as measured in vitro by using HAK (FcγIII−) and HeLa-229 (FcγIII+) cells at a concentration 100 times lower than MAb MoPn-40. MAb MoPn-32 had no neutralizing ability. In comparison to the control normal mouse immunoglobulin G, passive immunization of BALB/c mice with MAb MoPn-23 resulted in a highly significant protection against an intranasal (i.n.) challenge as determined by the change in body weight, the weight of the lungs, and the yield of Chlamydia inclusion-forming units (IFU) from the lungs. Passive immunization with MAb MoPn-40 resulted in a lower degree of protection, and MAb MoPn-32 afforded no protection. MAb MoPn-23 was also tested for its ability to protect wild-type (WT) and severe combined immunodeficient (SCID) C.B-17 mice against an i.n. challenge. Protection based on total body weight, lung weight, and yield of Chlamydia IFU was as effective in SCID as in WT C.B-17 mice. In conclusion, antibodies to MOMP can protect mice against a chlamydial infection in the presence or absence of T and B cells.
doi:10.1128/IAI.00574-08
PMCID: PMC2583570  PMID: 18809664
25.  Structural and Functional Analyses of the Major Outer Membrane Protein of Chlamydia trachomatis▿  
Journal of Bacteriology  2007;189(17):6222-6235.
Chlamydia trachomatis is a major pathogen throughout the world, and preventive measures have focused on the production of a vaccine using the major outer membrane protein (MOMP). Here, in elementary bodies and in preparations of the outer membrane, we identified native trimers of the MOMP. The trimers were stable under reducing conditions, although disulfide bonds appear to be present between the monomers of a trimer and between trimers. Cross-linking of the outer membrane complex demonstrated that the MOMP is most likely not in a close spatial relationship with the 60- and 12-kDa cysteine-rich proteins. Extraction of the MOMP from Chlamydia isolates under nondenaturing conditions yielded the trimeric conformation of this protein as shown by cross-linking and analysis by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis with different concentrations of acrylamide. Using circular dichroism spectroscopy, we determined that the trimers were formed mainly of β-pleated sheet structures in detergent micelles. Using a liposomal swelling assay, the MOMP was found to have porin activity, and the size of the pore was estimated to be approximately 2 nm in diameter. The trimers were found to be stable in SDS at temperatures ranging from 4 to 37°C and over a pH range of 5.0 to 8.0. In addition, the trimers of MOMP were found to be resistant to digestion with trypsin. In conclusion, these results show that the native conformation of the MOMP of C. trachomatis is a trimer with predominantly a β-sheet structure and porin function.
doi:10.1128/JB.00552-07
PMCID: PMC1951919  PMID: 17601785

Results 1-25 (44)