PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-14 (14)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
1.  Genetics of Coxiella burnetii: on the path of specialization 
Future microbiology  2011;6(11):1297-1314.
Coxiella burnetii is an extremely infectious, zoonotic agent that causes Q fever in humans. With the exception of New Zealand, the bacterium is distributed worldwide. Coxiella is classified as a select agent based on its past and potential use as a bioweapon and its threat to public health. Despite decades of research, we know relatively little regarding Coxiella’s molecular pathogenesis, and a vaccine is not widely available. This article briefly reviews the unusual genetics of C. burnetii; a pathogen that retains telltale genetic mementos collected over the course of its evolutionary path from a free-living bacterium to an obligate intracellular parasite of eukaryotic host cell phagosomes. Understanding why these genetic elements are maintained may help us better understand the biology of this fascinating pathogen.
doi:10.2217/fmb.11.116
PMCID: PMC4104754  PMID: 22082290
chromosome; Coxiella; genome reduction; genomics; genotype; plasmids; Q fever; selfish genetic elements
2.  Identification of Novel Small RNAs and Characterization of the 6S RNA of Coxiella burnetii 
PLoS ONE  2014;9(6):e100147.
Coxiella burnetii, an obligate intracellular bacterial pathogen that causes Q fever, undergoes a biphasic developmental cycle that alternates between a metabolically-active large cell variant (LCV) and a dormant small cell variant (SCV). As such, the bacterium undoubtedly employs complex modes of regulating its lifecycle, metabolism and pathogenesis. Small RNAs (sRNAs) have been shown to play important regulatory roles in controlling metabolism and virulence in several pathogenic bacteria. We hypothesize that sRNAs are involved in regulating growth and development of C. burnetii and its infection of host cells. To address the hypothesis and identify potential sRNAs, we subjected total RNA isolated from Coxiella cultured axenically and in Vero host cells to deep-sequencing. Using this approach, we identified fifteen novel C. burnetii sRNAs (CbSRs). Fourteen CbSRs were validated by Northern blotting. Most CbSRs showed differential expression, with increased levels in LCVs. Eight CbSRs were upregulated (≥2-fold) during intracellular growth as compared to growth in axenic medium. Along with the fifteen sRNAs, we also identified three sRNAs that have been previously described from other bacteria, including RNase P RNA, tmRNA and 6S RNA. The 6S regulatory sRNA of C. burnetii was found to accumulate over log phase-growth with a maximum level attained in the SCV stage. The 6S RNA-encoding gene (ssrS) was mapped to the 5′ UTR of ygfA; a highly conserved linkage in eubacteria. The predicted secondary structure of the 6S RNA possesses three highly conserved domains found in 6S RNAs of other eubacteria. We also demonstrate that Coxiella’s 6S RNA interacts with RNA polymerase (RNAP) in a specific manner. Finally, transcript levels of 6S RNA were found to be at much higher levels when Coxiella was grown in host cells relative to axenic culture, indicating a potential role in regulating the bacterium’s intracellular stress response by interacting with RNAP during transcription.
doi:10.1371/journal.pone.0100147
PMCID: PMC4064990  PMID: 24949863
3.  Antisense Transcription Is Pervasive but Rarely Conserved in Enteric Bacteria 
mBio  2012;3(4):e00156-12.
ABSTRACT
Noncoding RNAs, including antisense RNAs (asRNAs) that originate from the complementary strand of protein-coding genes, are involved in the regulation of gene expression in all domains of life. Recent application of deep-sequencing technologies has revealed that the transcription of asRNAs occurs genome-wide in bacteria. Although the role of the vast majority of asRNAs remains unknown, it is often assumed that their presence implies important regulatory functions, similar to those of other noncoding RNAs. Alternatively, many antisense transcripts may be produced by chance transcription events from promoter-like sequences that result from the degenerate nature of bacterial transcription factor binding sites. To investigate the biological relevance of antisense transcripts, we compared genome-wide patterns of asRNA expression in closely related enteric bacteria, Escherichia coli and Salmonella enterica serovar Typhimurium, by performing strand-specific transcriptome sequencing. Although antisense transcripts are abundant in both species, less than 3% of asRNAs are expressed at high levels in both species, and only about 14% appear to be conserved among species. And unlike the promoters of protein-coding genes, asRNA promoters show no evidence of sequence conservation between, or even within, species. Our findings suggest that many or even most bacterial asRNAs are nonadaptive by-products of the cell’s transcription machinery.
IMPORTANCE
Application of high-throughput methods has revealed the expression throughout bacterial genomes of transcripts encoded on the strand complementary to protein-coding genes. Because transcription is costly, it is usually assumed that these transcripts, termed antisense RNAs (asRNAs), serve some function; however, the role of most asRNAs is unclear, raising questions about their relevance in cellular processes. Because natural selection conserves functional elements, comparisons between related species provide a method for assessing functionality genome-wide. Applying such an approach, we assayed all transcripts in two closely related bacteria, Escherichia coli and Salmonella enterica serovar Typhimurium, and demonstrate that, although the levels of genome-wide antisense transcription are similarly high in both bacteria, only a small fraction of asRNAs are shared across species. Moreover, the promoters associated with asRNAs show no evidence of sequence conservation between, or even within, species. These findings indicate that despite the genome-wide transcription of asRNAs, many of these transcripts are likely nonfunctional.
doi:10.1128/mBio.00156-12
PMCID: PMC3419515  PMID: 22872780
4.  Ribozyme Stability, Exon Skipping, and a Potential Role for RNA Helicase in Group I Intron Splicing by Coxiella burnetii▿ 
Journal of Bacteriology  2011;193(19):5292-5299.
The 23S rRNA gene of Coxiella burnetii, the agent of Q fever in humans, contains an unusually high number of conserved, selfish genetic elements, including two group I introns, termed Cbu.L1917 (L1917) and Cbu.L1951 (L1951). To better understand the role that introns play in Coxiella's biology, we determined the intrinsic stability time periods (in vitro half-lives) of the encoded ribozymes to be ∼15 days for L1917 and ∼5 days for L1951, possibly due to differences in their sizes (551 and 1,559 bases, respectively), relative degrees of compactness of the respective RNA structures, and amounts of single-stranded RNA. In vivo half-lives for both introns were also determined to be ∼11 min by the use of RNase protection assays and an Escherichia coli model. Intron RNAs were quantified in synchronous cultures of C. burnetii and found to closely parallel those of 16S rRNA; i.e., ribozyme levels significantly increased between days 0 and 3 and then remained stable until 8 days postinfection. Both 16S rRNA and ribozyme levels fell during the stationary and death phases (days 8 to 14). The marked stability of the Coxiella intron RNAs is presumably conferred by their association with ribosomes, a stoichiometric relationship that was determined to be one ribozyme, of either type, per 500 ribosomes. Inaccuracies in splicing (exon 2 skipping) were found to increase during the first 5 days in culture, with a rate of approximately one improperly spliced 23S rRNA per 1.3 million copies. The in vitro efficiency of L1917 intron splicing was significantly enhanced in the presence of a recombinant Coxiella RNA DEAD-box helicase (CBU_0670) relative to that of controls, suggesting that this enzyme may serve as an intron RNA splice facilitator in vivo.
doi:10.1128/JB.05472-11
PMCID: PMC3187410  PMID: 21803999
5.  Genome-Wide Identification of Transcription Start Sites Yields a Novel Thermosensing RNA and New Cyclic AMP Receptor Protein-Regulated Genes in Escherichia coli▿ 
Journal of Bacteriology  2011;193(11):2871-2874.
Intergenic regions often contain regulatory elements that control the expression of flanking genes. Using a deep-sequencing approach, we identified numerous new transcription start sites in Escherichia coli, yielding a new thermosensing regulatory RNA and seven genes previously unknown to be under the control of the global regulator CRP.
doi:10.1128/JB.00398-11
PMCID: PMC3133129  PMID: 21460078
6.  Pentamidine inhibits Coxiella burnetii growth and 23S rRNA intron splicing in vitro 
Coxiella burnetii is the bacterial agent of Q fever in humans. Acute Q fever generally manifests as a flu-like illness and is typically self-resolving. In contrast, chronic Q fever usually presents with endocarditis and is often life-threatening without appropriate antimicrobial therapy. Unfortunately, available options for the successful treatment of chronic Q fever are both limited and protracted (>18 months). Pentamidine, an RNA splice inhibitor used to treat fungal and protozoal infections, was shown to reduce intracellular growth of Coxiella by ca. 73% at a concentration of 1 μM (ca. 0.6 μg/mL) compared with untreated controls, with no detectable toxic effects on host cells. Bacterial targets of pentamidine include Cbu.L1917 and Cbu.L1951, two group I introns that disrupt the 23S rRNA gene of Coxiella, as demonstrated by the drug's ability to inhibit intron RNA splicing in vitro. Since both introns are highly conserved among all eight genotypes of the pathogen, pentamidine is predicted to be efficacious against numerous strains of C. burnetii. To our knowledge, this is the first report describing antibacterial activity for this antifungal/antiprotozoal agent.
doi:10.1016/j.ijantimicag.2010.05.017
PMCID: PMC2926257  PMID: 20599360
Coxiella; Pentamidine; Group I intron; RNA splicing
7.  Determinants for the activation and autoinhibition of the diguanylate cyclase response regulator WspR 
Journal of molecular biology  2009;393(3):619-633.
The bacterial second messenger c-di-GMP controls secretion, cell adhesion and motility leading to biofilm formation and increased cytotoxicity. Diguanylate cyclases containing GGDEF and phosphodiesterases containing EAL or HD-GYP domains have been identified as the enzymes controlling cellular c-di-GMP levels, yet less is known regarding the molecular mechanisms governing regulation and signaling specificity. We recently determined a product-inhibition pathway for the diguanylate cyclase response regulator WspR from Pseudomonas, a potent molecular switch that controls biofilm formation. In WspR, catalytic activity is modulated by a helical stalk motif that connects its phospho-receiver (REC) and GGDEF domains. The stalks facilitate the formation of distinct oligomeric states that contribute to both activation and autoinhibition. Here, we provide novel insights into the regulation of diguanylate cyclase activity in WspR based on the crystal structures of full-length WspR, the isolated GGDEF domain, and an artificially dimerized catalytic domain. The structures highlight that inhibition is achieved by restricting the mobility of rigid GGDEF domains, mediated by c-di-GMP binding to an inhibitory site at the GGDEF domain. Kinetic measurements and biochemical characterization corroborate a model in which the activation of WspR requires the formation of a tetrameric species. Tetramerization occurs spontaneously at high protein concentration or upon addition of the phosphomimetic compound beryllium fluoride. Our analyses elucidate common and WspR-specific mechanisms for the fine-tuning of diguanylate cyclase activity.
doi:10.1016/j.jmb.2009.08.030
PMCID: PMC2760619  PMID: 19695263
signaling; biofilm formation; bacterial response regulator; diguanylate cyclase; cyclic nucleotide
8.  A DNA-Binding Peroxiredoxin of Coxiella burnetii Is Involved in Countering Oxidative Stress during Exponential-Phase Growth▿  
Journal of Bacteriology  2010;192(8):2077-2084.
Coxiella burnetii is a Gram-negative, obligate intracellular bacterial pathogen that resides within the harsh, acidic confines of a lysosome-like compartment of the host cell that is termed a parasitophorous vacuole. In this study, we characterized a thiol-specific peroxidase of C. burnetii that belongs to the atypical 2-cysteine subfamily of peroxiredoxins, commonly referred to as bacterioferritin comigratory proteins (BCPs). Coxiella BCP was initially identified as a potential DNA-binding protein by two-dimensional Southwestern (SW) blots of the pathogen's proteome, probed with biotinylated C. burnetii genomic DNA. Confirmation of the identity of the DNA-binding protein as BCP (CBU_0963) was established by matrix-assisted laser desorption ionization-tandem time of flight mass spectrometry (MALDI-TOF/TOF MS). Recombinant Coxiella BCP (rBCP) was generated, and its DNA binding was demonstrated by two independent methods, including SW blotting and electrophoretic mobility shift assays (EMSAs). rBCP also demonstrated peroxidase activity in vitro that required thioredoxin-thioredoxin reductase (Trx-TrxR). Both the DNA-binding and peroxidase activities of rBCP were lost upon heat denaturation (100°C, 10 min). Functional expression of Coxiella bcp was demonstrated by trans-complementation of an Escherichia coli bcp mutant, as evidenced by the strain's ability to grow in an oxidative-stress growth medium containing tert-butyl hydroperoxide to levels that were indistinguishable from, or significantly greater than, those observed with its wild-type parental strain and significantly greater than bcp mutant levels (P < 0.05). rBCP was also found to protect supercoiled plasmid DNA from oxidative damage (i.e., nicking) in vitro. Maximal expression of the bcp gene coincided with the pathogen's early (day 2 to 3) exponential-growth phase in an experiment involving synchronized infection of an epithelial (Vero) host cell line. Taken as a whole, the results show that Coxiella BCP binds DNA and likely serves to detoxify endogenous hydroperoxide byproducts of Coxiella's metabolism during intracellular replication.
doi:10.1128/JB.01324-09
PMCID: PMC2849434  PMID: 20173000
10.  A Unique Group I Intron in Coxiella burnetii Is a Natural Splice Mutant▿  
Journal of Bacteriology  2009;191(12):4044-4046.
Cbu.L1917, a group I intron present in the 23S rRNA gene of Coxiella burnetii, possesses a unique 3′-terminal adenine in place of a conserved guanine. Here, we show that, unlike all other group I introns, Cbu.L1917 utilizes a different cofactor for each splicing step and has a decreased self-splicing rate in vitro.
doi:10.1128/JB.00359-09
PMCID: PMC2698393  PMID: 19376857
11.  Toxic Introns and Parasitic Intein in Coxiella burnetii: Legacies of a Promiscuous Past▿  
Journal of Bacteriology  2008;190(17):5934-5943.
The genome of the obligate intracellular pathogen Coxiella burnetii contains a large number of selfish genetic elements, including two group I introns (Cbu.L1917 and Cbu.L1951) and an intervening sequence that interrupts the 23S rRNA gene, an intein (Cbu.DnaB) within dnaB and 29 insertion sequences. Here, we describe the ability of the intron-encoded RNAs (ribozymes) to retard bacterial growth rate (toxicity) and examine the functionality and phylogenetic history of Cbu.DnaB. When expressed in Escherichia coli, both introns repressed growth, with Cbu.L1917 being more inhibitory. Both ribozymes were found to associate with ribosomes of Coxiella and E. coli. In addition, ribozymes significantly reduced in vitro luciferase translation, again with Cbu.L1917 being more inhibitory. We analyzed the relative quantities of ribozymes and genomes throughout a 14-day growth cycle of C. burnetii and found that they were inversely correlated, suggesting that the ribozymes have a negative effect on Coxiella's growth. We determined possible sites for ribozyme associations with 23S rRNA that could explain the observed toxicities. Further research is needed to determine whether the introns are being positively selected because they promote bacterial persistence or whether they were fixed in the population due to genetic drift. The intein, Cbu.DnaB, is able to self-splice, leaving the host protein intact and presumably functional. Similar inteins have been found in two extremophilic bacteria (Alkalilimnicola ehrlichei and Halorhodospira halophila) that are distantly related to Coxiella, making it difficult to determine whether the intein was acquired by horizontal gene transfer or was vertically inherited from a common ancestor.
doi:10.1128/JB.00602-08
PMCID: PMC2519523  PMID: 18606739
12.  Phosphorylation-Independent Regulation of the Diguanylate Cyclase WspR 
PLoS Biology  2008;6(3):e67.
Environmental signals that trigger bacterial pathogenesis and biofilm formation are mediated by changes in the level of cyclic dimeric guanosine monophosphate (c-di-GMP), a unique eubacterial second messenger. Tight regulation of cellular c-di-GMP concentration is governed by diguanylate cyclases and phosphodiesterases, which are responsible for its production and degradation, respectively. Here, we present the crystal structure of the diguanylate cyclase WspR, a conserved GGDEF domain-containing response regulator in Gram-negative bacteria, bound to c-di-GMP at an inhibitory site. Biochemical analyses revealed that feedback regulation involves the formation of at least three distinct oligomeric states. By switching from an active to a product-inhibited dimer via a tetrameric assembly, WspR utilizes a novel mechanism for modulation of its activity through oligomerization. Moreover, our data suggest that these enzymes can be activated by phosphodiesterases. Thus, in addition to the canonical pathways via phosphorylation of the regulatory domains, both product and enzyme concentration contribute to the coordination of c-di-GMP signaling. A structural comparison reveals resemblance of the oligomeric states to assemblies of GAF domains, widely used regulatory domains in signaling molecules conserved from archaea to mammals, suggesting a similar mechanism of regulation.
Author Summary
Bacteria can switch from a single-cell, free-floating behavioral mode to a community life-form via colonization of surfaces and the secretion of an extracellular matrix. This process, called biofilm formation, has been attributed to a majority of chronic infections, including the lungs, as occurs in patients with cystic fibrosis. Recently, a small intracellular signaling molecule, the nucleotide cyclic dimeric guanosine monophosphate (c-di-GMP), and enzymes for its production and degradation have been discovered that relay environmental cues to changes in secretion, cell adhesion and ultimately, biofilm formation and virulence. We have studied the molecular mechanism and mode of regulation of WspR, an enzyme from Pseudomonas and related pathogenic bacteria responsible for the generation of c-di-GMP and biofilm formation. On the basis of its crystal structure and functional assays, we elucidated a sophisticated regulatory mechanism in WspR that is controlled by feedback inhibition mediated by c-di-GMP. We hypothesize that WspR is primed for the (re)activation by enzymatic degradation of the inhibitory nucleotide. In addition, we identified mutations at the inhibitory site of WspR in a subset of bacteria that are frequently found in cystic fibrosis patients, suggesting that altered c-di-GMP signaling, mediated by modified WspR, may contribute to the pathogenicity of these strains. Furthermore, we present a structural comparison with GAF domains, which are widely used conserved regulatory signaling domains, suggesting a similar mechanism of regulation.
We present a model for the regulation of a conserved diguanyate cyclase fromPseudomonas that is responsible for cyclic di-GMP production and biofilm formation, providing insight into the molecular mechani7sm controlling cell signaling and virulence.
doi:10.1371/journal.pbio.0060067
PMCID: PMC2270323  PMID: 18366254
13.  The Unusual 23S rRNA Gene of Coxiella burnetii: Two Self-Splicing Group I Introns Flank a 34-Base-Pair Exon, and One Element Lacks the Canonical ΩG▿  
Journal of Bacteriology  2007;189(18):6572-6579.
We describe the presence and characteristics of two self-splicing group I introns in the sole 23S rRNA gene of Coxiella burnetii. The two group I introns, Cbu.L1917 and Cbu.L1951, are inserted at sites 1917 and 1951 (Escherichia coli numbering), respectively, in the 23S rRNA gene of C. burnetii. Both introns were found to be self-splicing in vivo and in vitro even though the terminal nucleotide of Cbu.L1917 is adenine and not the canonical conserved guanine, termed ΩG, found in Cbu.L1951 and all other group I introns described to date. Predicted secondary structures for both introns were constructed and revealed that Cbu.L1917 and Cbu.L1951 were group IB2 and group IA3 introns, respectively. We analyzed strains belonging to eight genomic groups of C. burnetii to determine sequence variation and the presence or absence of the elements and found both introns to be highly conserved (≥99%) among them. Although phylogenetic analysis did not identify the specific identities of donors, it indicates that the introns were likely acquired independently; Cbu.L1917 was acquired from other bacteria like Thermotoga subterranea and Cbu.L1951 from lower eukaryotes like Acanthamoeba castellanii. We also confirmed the fragmented nature of mature 23S rRNA in C. burnetii due to the presence of an intervening sequence. The presence of three selfish elements in C. burnetii's 23S rRNA gene is very unusual for an obligate intracellular bacterium and suggests a recent shift to its current lifestyle from a previous niche with greater opportunities for lateral gene transfer.
doi:10.1128/JB.00812-07
PMCID: PMC2045182  PMID: 17644584
14.  Transcriptional Regulation of the Heme Binding Protein Gene Family of Bartonella quintana Is Accomplished by a Novel Promoter Element and Iron Response Regulator▿ †  
Infection and Immunity  2007;75(9):4373-4385.
We previously identified a five-member family of hemin-binding proteins (Hbp's) of Bartonella quintana that bind hemin on the outer surface but share no homology with known bacterial heme receptors. Subsequently, we demonstrated that expression of the hbp family is significantly influenced by oxygen, heme, and temperature conditions encountered by the pathogen in the human host and the body louse vector; e.g., we observed a dramatic (>100-fold) increase in hbpC transcript levels in response to the “louse-like” temperature of 30°C. The goal of the present study was to identify a transcription factor(s) involved in the coordinated and differential regulation of the hbp family. First, we used quantitative real-time PCR (qRT-PCR) to show that the same environmental conditions generate parallels in the transcript profiles of four candidate transcriptional regulators (Irr, Fur, RirA, and BatR) described in the order Rhizobiales, with the greatest overall change in the transcription of irr (a >5-fold decrease) at a “louse-like” temperature, suggesting that Irr may function as an hbpC repressor. Second, a B. quintana strain hyperexpressing Irr was constructed; it exhibits a “bloodstream-like” hbp transcript profile in the absence of an environmental stimulus (i.e., hbpC is repressed and hbpA, hbpD, and hbpE mRNAs are relatively abundant). Furthermore, when this strain is grown at a “louse-like” temperature, an inversion of the transcript profile occurs, where derepression of hbpC and repression of hbpA, hbpD, and hbpE are readily evident, strongly suggesting that Irr and temperature influence hbp family expression. Third, electrophoretic mobility shift analyses show that recombinant Irr binds specifically to the hbpC promoter region at a sequence that is highly conserved in Bartonella hbp genes, which we designated the hbp family box, or “H-box.” Fourth, we used the H-box to search the B. quintana genome and discovered a number of intriguing open reading frames, e.g., five members of a six-member family of cohemolysin autotransporters. Finally, qRT-PCR data regarding the effects of Fur and RirA overexpression on the hbp family are provided; they show that Fur's effect on the hbp family is relatively minor but RirA generates a “bloodstream-like” hbp transcript profile in the absence of an environmental stimulus, as observed for the Irr-hyperexpressing strain.
doi:10.1128/IAI.00497-07
PMCID: PMC1951173  PMID: 17576755

Results 1-14 (14)