Search tips
Search criteria

Results 1-24 (24)

Clipboard (0)

Select a Filter Below

Year of Publication
more »
Document Types
1.  Apical Cyst Theory: a Missing Link 
Dental hypotheses  2010;1(2):76-84.
The mechanism of the formation of apical cyst has been elusive. Several theories have long been proposed and discussed speculating how an apical cyst is developed and formed in the jaw bone resulting from endododontic infection. Two popular theories are the nutritional deficiency theory and the abscess theory. The nutritional deficiency theory assumes that the over proliferated epithelial cells will form a ball mass such that the cells in the center of the mass will be deprived of nutrition. The abscess theory postulates that when an abscess cavity is formed in connective tissue, epithelial cells proliferate and line the preexisting cavity because of their inherent tendency to cover exposed connective tissue surfaces. Based on the nature of epithelial cells and the epithelium, nutritional theory is a fairy tale, while abscess theory at best just indicates that abscess may be one of the factors that allows the stratified epithelium to form but not to explain a mechanism that makes the cyst to form.
The hypothesis
Apical cyst formation is the result of proliferation of resting epithelial cells, due to inflammation, to a sufficient number such that they are able to form a polarized and stratified epithelial lining against dead tissues or foreign materials. These stratified epithelial lining expands along the dead tissue or foreign materials and eventually wrap around them as a spherical sac, i.e. a cyst. The space in the sac is considered the external environment separating the internal (tissue) environment – the natural function of epithelium.
Evaluation of the hypothesis
This theory may be tested by introducing a biodegradable device able to slowly release epithelial cell mitogens in an in vivo environment implanted with epithelial cells next to a foreign object. This will allow the cells to continuously proliferate which may form a cystic sac wrapping around the foreign object.
PMCID: PMC4205966  PMID: 25346864
Apical cyst; Endodontic infection; Epithelium; Embryonic stem cells; Stem cells; Induced pluripotent stem (iPS) cells; Teratoma; Neoplastic; Abscess
2.  Small Molecules Affect Human Dental Pulp Stem Cell Properties Via Multiple Signaling Pathways 
Stem Cells and Development  2013;22(17):2402-2413.
One fundamental issue regarding stem cells for regenerative medicine is the maintenance of stem cell stemness. The purpose of the study was to test whether small molecules can enhance stem cell properties of mesenchymal stem cells (MSCs) derived from human dental pulp (hDPSCs), which have potential for multiple clinical applications. We identified the effects of small molecules (Pluripotin (SC1), 6-bromoindirubin-3-oxime and rapamycin) on the maintenance of hDPSC properties in vitro and the mechanisms involved in exerting the effects. Primary cultures of hDPSCs were exposed to optimal concentrations of these small molecules. Treated hDPSCs were analyzed for their proliferation, the expression levels of pluripotent and MSC markers, differentiation capacities, and intracellular signaling activations. We found that small molecule treatments decreased cell proliferation and increased the expression of STRO-1, NANOG, OCT4, and SOX2, while diminishing cell differentiation into odonto/osteogenic, adipogenic, and neurogenic lineages in vitro. These effects involved Ras-GAP-, ERK1/2-, and mTOR-signaling pathways, which may preserve the cell self-renewal capacity, while suppressing differentiation. We conclude that small molecules appear to enhance the immature state of hDPSCs in culture, which may be used as a strategy for adult stem cell maintenance and extend their capacity for regenerative applications.
PMCID: PMC3749717  PMID: 23573877
3.  Increased ICAM-1 Expression in Transformed Human Oral Epithelial Cells: Molecular Mechanism and Functional Role in Peripheral Blood Mononuclear Cell Adhesion and Lymphokine-Activated-Killer Cell Cytotoxicity 
International journal of oncology  2000;17(3):479-486.
The intercellular adhesion molecule-1 (ICAM-1, CD54) serves as a counter-receptor for the β2-integrins, LFA-1 and Mac-1, which are expressed on leukocytes. Although expression of ICAM-1 on tumor cells has a role in tumor progression and development, information on ICAM-1 expression and its role in oral cancer has not been established. Normal human oral keratinocytes (NHOK), human papilloma virus (HPV)-immortalized human oral keratinocyte lines (HOK-16B, HOK-18A, and HOK-18C), and six human oral neoplastic cell lines (HOK-16B-BaP-T1, SCC-4, SCC-9, HEp-2, Tu-177 and 1483) were used to study ICAM-1 expression and its functional role in vitro. Our results demonstrated that NHOK express negligible levels of ICAM-1, whereas immortalized human oral keratinocytes and cancer cells express significantly higher levels of ICAM-1, except for HOK-16B-BaP-T1 and HEp-2. Altered mRNA half-lives did not fully account for the increased accumulation of ICAM-1 mRNA. Adhesion of peripheral blood mononuclear cells (PBMC) to epithelial cells correlated with cell surface ICAM-1 expression levels. This adhesion was inhibited by antibodies specific for either ICAM-1 or LFA-1/Mac-1, suggesting a role for these molecules in adhesion. In contrast, lymphokine-activated-killer (LAK) cell cytotoxic killing of epithelial cells did not correlate with ICAM-1 levels or with adhesion. Nonetheless, within each cell line, blocking of ICAM-1 or LFA-1/Mac-1 reduced LAK cells killing, suggesting that ICAM-1 is involved in mediating this killing.
PMCID: PMC3513339  PMID: 10938387
ICAM-1; Oral Epithelial Cells; Human Papilloma Virus; Peripheral Blood Mononuclear Cells; Adhesion; Lymphokine-Activated Killer Cells; Cytotoxicity; Oral cancer
4.  Challenges of stem cell-based pulp and dentin regeneration: a clinical perspective 
Endodontic topics  2013;28(1):51-60.
There are two types of approaches to regenerate tissues: cell-based and cell-free. The former approach is to introduce exogenous cells into the host to regenerate tissues, and the latter is to use materials other than cells in an attempt to regenerate tissues. There has been a significant advancement in stem cell-based pulp and dentin regeneration research in the past few years. Studies in small and large animals have demonstrated that pulp/dentin-like tissues can be regenerated partially or completely in the root canal space with apical openings of 0.7-3.0 mm using dental pulp stem cells, including stem cells from apical papilla (SCAP) and subpopulations of pulp stem cells. Bone marrow mesenchymal stem cells (BMMSCs) and adipose tissue-derived MSCs (ADMSCs) have also been shown to regenerate pulp-like tissue. In contrast, the cell-free approach has not produced convincing evidence on pulp regeneration. However, one crucial concept has not been considered nor defined in the field of pulp/dentin regeneration and that is the critical size defect of dentin and pulp. Without such consideration and definition, it is difficult to predict or anticipate the extent of cell-free pulp regeneration that would occur. By reasoning, cell-free therapy is unlikely to regenerate an organ/tissue after total loss. Similarly, after a total loss of pulp, it is unlikely to regenerate without using exogenously introduced cells. A cell homing approach may provide a limited amount of tissue regeneration. Although stem cell-based pulp/dentin regeneration has shown great promise, clinical trials are difficult to launch at present. This article will address several issues that challenge and hinder the clinical applications of pulp/dentin regeneration which need to be overcome before stem cell-based pulp/dentin regeneration can occur in the clinic.
PMCID: PMC3727299  PMID: 23914150
5.  Basic Fibroblast Growth Factor Enhances Stemness of Human Stem Cells from the Apical Papilla 
Journal of endodontics  2012;38(5):614-622.
Stem cells from the apical papilla (SCAP) are a type of mesenchymal stem cells found in the developing tissue, apical papilla, of immature permanent teeth. Studies have shown that SCAP are likely to be a source of primary odontoblasts that are responsible for the formation of root dentin. Basic fibroblast growth factor (bFGF) is a signaling molecule and pleiotropic growth factor involved in tooth root development, and it promotes proliferation of a variety of cell types. The effects of bFGF on SCAP, however, have not been examined.
We investigated the regulatory effects of bFGF on the proliferation and differentiation potential of human SCAP in vitro. Changes in the cell cycle and proliferation, colony-forming unit–fibroblastic formation, alkaline phosphatase (ALP) activity, osteogenic/dentinogenic differentiation, and stem cell gene makers of SCAP, cultured in the presence or absence of bFGF, were evaluated.
Treatment with 5 ng/mL bFGF significantly increased SCAP proliferation and their colony-forming unit–fibroblastic formation efficiency. The growth factor also increased the expression of STRO-1 and the stem cell gene makers Nanog, Oct4, Sox2, and Rex1 in SCAP. In contrast, bFGF reduced the ALP activity, mineral nodule formation, and the expression of ALP, osteocalcin, bone sialoprotein, and dentin sialophosphoprotein. When SCAP cultures were expanded in the presence of bFGF for 1 week, subsequent stimulation of the osteogenic/dentinogenic condition resulted in enhanced differentiation.
Under certain conditions, bFGF enhances SCAP stemness by up-regulating stem cell gene expression, increasing proliferation ability, and potentiating differentiation potency.
PMCID: PMC3499972  PMID: 22515889
Basic fibroblast growth factor; cell differentiation; cell proliferation; osteo/dentinogenesis; stem cells from the apical papilla; stemness
6.  Cells Isolated from Inflamed Periapical Tissue Express Mesenchymal Stem Cell Markers and Are Highly Osteogenic 
Journal of endodontics  2011;37(9):1217-1224.
We previously reported the presence of mesenchymal stem/progenitor cells (MSCs) in inflamed pulp tissue. Here we asked whether MSCs also exist in inflamed periapical tissues resulting from endodontic infection. The objectives of this study were to detect the expression of MSC markers in periapical inflammatory tissues and to characterize isolated cells from these tissues.
Human periapical inflammatory tissues were collected and processed to detect MSC marker expression by immunohistochemistry. Cells were isolated and tested for cell surface marker expression by using flow cytometry and examined for multiple differentiation potential into osteogenic and adipogenic pathways. In vivo formation of mineralized tissues was assessed in a mouse model.
Immunohistochemistry showed positive staining for MSC markers STRO-1, CD90, and CD146. Isolated cells at passage 0 appeared as typical fibroblastic cells, and a few cells formed colony-forming unit-fibroblasts (CFU-Fs). After passaging, the CFU-F forming ability diminished dramatically, and the population doubling was up to 26. Flow cytometry data showed that these cells at passage 2 expressed low levels of STRO-1 and CD146 and moderate to high levels of CD90, CD73, and CD105. At passage 6, the levels of these markers decreased. When incubated in specific differentiation medium, cells demonstrated a strong osteogenic but weak adipogenic capacity. After in vivo cell transplantation, mineralized tissues formed in immunocompromised mice.
Human periapical inflammatory tissues expressed MSC markers, suggesting the presence of MSCs. Isolated cells exhibited typical mesenchymal cell immunophenotype with a capacity to form mineralized matrix in vitro and in vivo.
PMCID: PMC3499979  PMID: 21846537
Adipogenic; CD73; CD90; CD146; immunocompromised mice; inflamed periapical tissue; iPAPCs; mesenchymal stem cells; mineralized tissues; osteogenic; STRO-1
7.  Dental Pulp and Dentin Tissue Engineering and Regeneration – Advancement and Challenge 
Hard tissue is difficult to repair especially dental structures. Tooth enamel is incapable of self-repairing whereas dentin and cememtum can regenerate with limited capacity. Enamel and dentin are commonly under the attack by caries. Extensive forms of caries destroy enamel and dentin and can lead to dental pulp infection. Entire pulp amputation followed by the pulp space disinfection and filled with an artificial rubber-like material is employed to treat the infection --commonly known as root canal or endodontic therapy. Regeneration of dentin relies on having vital pulps; however, regeneration of pulp tissue has been difficult as the tissue is encased in dentin without collateral blood supply except from the root apical end. With the advent of modern tissue engineering concept and the discovery of dental stem cells, regeneration of pulp and dentin has been tested. This article will review the recent endeavor on pulp and dentin tissue engineering and regeneration. The prospective outcome of the current advancement and challenge in this line of research will be discussed.
PMCID: PMC3289134  PMID: 21196351
Tissue engineering; regeneration; enamel; dental pulp; dentin; stem cells; tooth regeneration; endodontics; periodotal ligement; dental pulp stem cells; stem cells from apical papilla; scaffold
8.  Bone Marrow Stromal Cells Produce Long-Term Pain Relief in Rat Models of Persistent Pain 
Stem Cells (Dayton, Ohio)  2011;29(8):1294-1303.
Chronic pain conditions are difficult to treat and are major health problems. Bone marrow stromal cells (BMSCs) have generated considerable interest as a candidate for cell-based therapy. BMSCs are readily accessible and are easy to isolate and expand ex vivo. Clinical studies show that direct injection of BMSCs does not produce unwanted side effects and is well tolerated and safe. Here, we show that a single systemic (intravenous) or local injection (into the lesion site) of rat primary BMSCs reversed pain hypersensitivity in rats after injury and that the effect lasted until the conclusion of the study at 22 weeks. The pain hypersensitivity was rekindled by naloxone hydrochloride, an opioid receptor antagonist that acts peripherally and centrally, when tested at 1–5 weeks after BMSC infusion. In contrast, naloxone methiodide, a peripherally acting opioid receptor antagonist, only rekindled hyperalgesia in the first 3 weeks of BMSC treatment. Focal downregulation of brainstem mu opioid receptors by RNA interference (RNAi) reversed the effect of BMSCs, when RNAi was introduced at 5- but not 1-week after BMSC transplantation. Thus, BMSCs produced long-term relief of pain and this effect involved activation of peripheral and central opioid receptors in distinct time domains. The findings prompt studies to elucidate the cellular mechanisms of the BMSC-induced pain relieving effect and translate these observations into clinical settings.
PMCID: PMC3277433  PMID: 21630378
Adult stem cells; Bone marrow stromal cells; Cellular therapy; Neuropathy; Rat model; Stem cell transplantation
9.  iPS Cells Reprogrammed From Human Mesenchymal-Like Stem/Progenitor Cells of Dental Tissue Origin 
Stem Cells and Development  2010;19(4):469-480.
Generation of induced pluripotent stem (iPS) cells holds a great promise for regenerative medicine and other aspects of clinical applications. Many types of cells have been successfully reprogrammed into iPS cells in the mouse system; however, reprogramming human cells have been more difficult. To date, human dermal fibroblasts are the most accessible and feasible cell source for iPS generation. Dental tissues derived from ectomesenchyme harbor mesenchymal-like stem/progenitor cells and some of the tissues have been treated as biomedical wastes, for example, exfoliated primary teeth and extracted third molars. We asked whether stem/progenitor cells from discarded dental tissues can be reprogrammed into iPS cells. The 4 factors Lin28/Nanog/Oct4/Sox2 or c-Myc/Klf4/Oct4/Sox2 carried by viral vectors were used to reprogram 3 different dental stem/progenitor cells: stem cells from exfoliated deciduous teeth (SHED), stem cells from apical papilla (SCAP), and dental pulp stem cells (DPSCs). We showed that all 3 can be reprogrammed into iPS cells and appeared to be at a higher rate than fibroblasts. They exhibited a morphology indistinguishable from human embryonic stem (hES) cells in cultures and expressed hES cell markers SSEA-4, TRA-1-60, TRA-1-80, TRA-2-49, Nanog, Oct4, and Sox2. They formed embryoid bodies in vitro and teratomas in vivo containing tissues of all 3 germ layers. We conclude that cells of ectomesenchymal origin serve as an excellent alternative source for generating iPS cells.
PMCID: PMC2851830  PMID: 19795982
10.  iPS Cells Reprogrammed From Mesenchymal-Like Stem/Progenitor Cells of Dental Tissue Origin 
Stem cells and development  2010;19(4):469-480.
Generation of induced pluripotent stem (iPS) cells holds a great promise for regenerative medicine and other aspects of clinical applications. Many types of cells have been successfully reprogrammed into iPS cells in the mouse system; however, reprogramming human cells have been more difficult. To date, human dermal fibroblasts are the most accessible and feasible cell source for iPS generation. Dental tissues derived from ectomesenchyme harbor mesenchymal-like stem/progenitor cells and some of the tissues have been treated as biomedical wastes, for example, exfoliated primary teeth and extracted third molars. We asked whether stem/progenitor cells from discarded dental tissues can be reprogrammed into iPS cells. The 4 factors Lin28/Nanog/Oct4/Sox2 or c-Myc/Klf4/Oct4/Sox2 carried by viral vectors were used to reprogram 3 different dental stem/progenitor cells: stem cells from exfoliated deciduous teeth (SHED), stem cells from apical papilla (SCAP), and dental pulp stem cells (DPSCs). We showed that all 3 can be reprogrammed into iPS cells and appeared to be at a higher rate than fibroblasts. They exhibited a morphology indistinguishable from human embryonic stem (hES) cells in cultures and expressed hES cell markers SSEA-4, TRA-1-60, TRA-1-80, TRA-2-49, Nanog, Oct4, and Sox2. They formed embryoid bodies in vitro and teratomas in vivo containing tissues of all 3 germ layers. We conclude that cells of ectomesenchymal origin serve as an excellent alternative source for generating iPS cells.
PMCID: PMC2851830  PMID: 19795982
11.  Stem/Progenitor Cell–Mediated De Novo Regeneration of Dental Pulp with Newly Deposited Continuous Layer of Dentin in an In Vivo Model 
Tissue Engineering. Part A  2009;16(2):605-615.
The ultimate goal of this study is to regenerate lost dental pulp and dentin via stem/progenitor cell–based approaches and tissue engineering technologies. In this study, we tested the possibility of regenerating vascularized human dental pulp in emptied root canal space and producing new dentin on existing dentinal walls using a stem/progenitor cell–mediated approach with a human root fragment and an immunocompromised mouse model. Stem/progenitor cells from apical papilla and dental pulp stem cells were isolated, characterized, seeded onto synthetic scaffolds consisting of poly-D,L-lactide/glycolide, inserted into the tooth fragments, and transplanted into mice. Our results showed that the root canal space was filled entirely by a pulp-like tissue with well-established vascularity. In addition, a continuous layer of dentin-like tissue was deposited onto the canal dentinal wall. This dentin-like structure appeared to be produced by a layer of newly formed odontoblast-like cells expressing dentin sialophosphoprotein, bone sialoprotein, alkaline phosphatase, and CD105. The cells in regenerated pulp-like tissue reacted positively to anti-human mitochondria antibodies, indicating their human origin. This study provides the first evidence showing that pulp-like tissue can be regenerated de novo in emptied root canal space by stem cells from apical papilla and dental pulp stem cells that give rise to odontoblast-like cells producing dentin-like tissue on existing dentinal walls.
PMCID: PMC2813150  PMID: 19737072
12.  Characterization of Apical Papilla and its Residing Stem Cells from Human Immature Permanent Teeth –A Pilot Study 
Journal of endodontics  2008;34(2):166-171.
Mesenchymal stem cells (MSCs) have been isolated from the pulp tissue of permanent teeth (dental pulp stem cells or DPSCs) and deciduous teeth (stem cells from human exfoliated deciduous teeth or SHED). We recently discovered another type of MSCs in the apical papilla of human immature permanent teeth termed stem cells from apical papilla (SCAP). Here we further characterized the apical papilla tissue and stem cell properties of SCAP using histological, immunohistochemical and immunocytofluorescent analyses. We found that apical papilla is distinctive to pulp in terms of containing less cellular and vascular components than those in pulp. Cells in apical papilla proliferated 2- to 3-fold greater than those in pulp in organ cultures. Both SCAP and DPSCs were as potent in osteo/dentinogenic differentiation as MSCs from bone marrows while weaker in adipogenic potential. The immunophenotype of SCAP is similar to that of DPSCs on the osteo/dentinogenic and growth factor receptor gene profiles. Double staining experiments showed that STRO-1 co-expressed with dentinogenic markers such as bone sialophosphoprotein (BSP), osteocalcin (OCN) and growth factors FGFR1 and TGFβRI in cultured SCAP. Additionally, SCAP express a wide variety of neurogenic markers such as nestin and neurofilament M upon stimulation with a neurogenic medium. We conclude that SCAP are similar to DPSCs but a distinct source of potent dental stem/progenitor cells. Their implications in root development and apexogenesis are discussed.
PMCID: PMC2714367  PMID: 18215674
Apical papilla; immature teeth; MSCs; SCAP; DPSCs; PDLSCs; BMMSCs; apexogenesis; immunohistochemistry; immunocytofluorescence
13.  The Hidden Treasure in Apical Papilla: The Potential Role in Pulp/Dentin Regeneration and BioRoot Engineering 
Journal of endodontics  2008;34(6):645-651.
Some clinical case reports have shown that immature permanent teeth with periradicular periodontitis or abscess can undergo apexogenesis after conservative endodontic treatment. A call for a paradigm shift and new protocol for the clinical management of these cases has been brought to attention. Concomitantly, a new population of mesenchymal stem cells residing in the apical papilla of permanent immature teeth recently has been discovered and was termed stem cells from the apical papilla (SCAP). These stem cells appear to be the source of odontoblasts that are responsible for the formation of root dentin. Conservation of these stem cells when treating immature teeth may allow continuous formation of the root to completion. This article reviews current findings on the isolation and characterization of these stem cells. The potential role of these stem cells in the following respects will be discussed: (1) their contribution in continued root maturation in endodontically treated immature teeth with periradicular periodontitis or abscess and (2) their potential utilization for pulp/dentin regeneration and bioroot engineering.
PMCID: PMC2653220  PMID: 18498881
Apexogenesis; apical papilla; bioroot engineering; dental pulp stem cells; immature teeth; periodontal ligament stem cells; pulp regeneration; stem cells from human exfoliated deciduous teeth; stem cells from the apical papilla
14.  Establishment of transgene-free induced pluripotent stem cells reprogrammed from human stem cells of apical papilla for neural differentiation 
Induced pluripotent stem cells (iPSCs) are a potent cell source for neurogenesis. Previously we have generated iPSCs from human dental stem cells carrying transgene vectors. These exogenous transgenes may affect iPSC behaviors and limit their clinical applications. The purpose of this study was to establish transgene-free iPSCs (TF-iPSCs) reprogrammed from human stem cells of apical papilla (SCAP) and determine their neurogenic potential.
A single lentiviral 'stem cell cassette' flanked by the loxP site (hSTEMCCA-loxP), encoding four human reprogramming factors, OCT4, SOX2, KLF4, and c-MYC, was used to reprogram human SCAP into iPSCs. Generated iPSCs were transfected with plasmid pHAGE2-EF1α-Cre-IRES-PuroR and selected with puromycin for the TF-iPSC subclones. PCR was performed to confirm the excision of hSTEMCCA. TF-iPSC clones did not resist to puromycin treatment indicating no pHAGE2-EF1α-Cre-IRES-PuroR integration into the genome. In vitro and in vivo analyses of their pluripotency were performed. Embryoid body-mediated neural differentiation was undertaken to verify their neurogenic potential.
TF-SCAP iPSCs were generated via a hSTEMCCA-loxP/Cre system. PCR of genomic DNA confirmed transgene excision and puromycin treatment verified the lack of pHAGE2-EF1α-Cre-IRES-PuroR integration. Transplantation of the TF-iPSCs into immunodeficient mice gave rise to teratomas containing tissues representing the three germ layers -- ectoderm (neural rosettes), mesoderm (cartilage and bone tissues) and endoderm (glandular epithelial tissues). Embryonic stem cell-associated markers TRA-1-60, TRA-2-49 and OCT4 remained positive after transgene excision. After neurogenic differentiation, cells showed neural-like morphology expressing neural markers nestin, βIII-tubulin, NFM, NSE, NeuN, GRM1, NR1 and CNPase.
TF-SCAP iPSCs reprogrammed from SCAP can be generated and they may be a good cell source for neurogenesis.
PMCID: PMC3580434  PMID: 23095454
15.  A Model for Antimicrobial Gene Therapy: Demonstration of Human β-Defensin 2 Antimicrobial Activities In Vivo 
Human gene therapy  2002;13(17):2017-2025.
We transfected host cells with an antimicrobial peptide/protein-encoding gene as a way to enhance host defense mechanisms against infection. The human b-defensin 2 (HBD-2) gene was chosen as a model because its protein does not require cell type-specific processing. Using a retroviral vector carrying HBD-2 cDNA, we treated several mouse or human cell lines and primary cell cultures including fibroblasts, salivary gland cells, endothelial cells, and T cells. All transduced cells produced detectable HBD-2. In Escherichia coli gel overlay experiments, secreted HBD-2 from selected cell lines showed potent antimicrobial activity electrophoretically identical to that of purified HBD-2. We then used a mouse model (nonobese diabetic/severely compromised immunodeficient [NOD/SCID]) to test HBD-2 antimicrobial activities in vivo. HT-1080 cells carrying HBD-2 or control vector were implanted subcutaneously into NOD/SCID mice to allow tumor formation. Escherichia coli was then injected into each tumor mass. Tumors were resected after 16 hr and homogenized for bacterial colony-forming unit analysis. Compared with control tumors, HBD-2-bearing tumors contained only 7.8 6 3.3% viable bacteria. On the basis of this demonstration of HBD-2 in vivo antimicrobial activity, enhancement of antibacterial host defense by HBD-2 gene therapy may be feasible.
PMCID: PMC1790959  PMID: 12489997
16.  Predictors of Intravesical Therapy Use in Non-Muscle Invasive Bladder Cancer: Results from the Surveillance, Epidemiology, And End-Results Program’s 2003 Patterns of Care Project 
The Journal of Urology  2008;180(2):520-524.
In response to variations in cancer care, organizations have developed clinical guidelines. In the case of non-muscle invasive bladder cancer (also known as superficial bladder cancer), two similar sets of guidelines were released in the late 1990’s that provide care recommendations. The purpose of this study was to examine patterns of intravesical therapy utilization in non-muscle invasive bladder cancer in 2003, to determine if disparities in the quality of cancer care remained.
Data from the Surveillance, Epidemiology, and End-Results (SEER) Program’s 2003 bladder cancer patterns of care project were used. Subjects newly diagnosed with non-muscle invasive bladder cancer in 2003 were included. Clinical and sociodemographic data were obtained from the SEER program and detailed medical record review. Statistical analyses were performed to identify independent predictors of intravesical therapy use in the entire cohort and in a subset of high-risk patients.
685 patients were included in the study. 216 (31.5%) patients received intravesical therapy. In addition to higher tumor stage and grade, intravesical therapy use was independently associated with race/ethnicity and geographic region. In the subset of 350 high-risk patients, 42% received intravesical therapy. Stage, grade, race/ethnicity and geographic region were independently associated with intravesical therapy use in this sub-cohort.
These data suggest there is underutilization of intravesical therapy, even in patients with high-risk non-muscle invasive bladder cancer, and disparities in the quality of care exist. Barriers to utilization of this cancer treatment must be identified, particularly in higher-risk individuals, and providers must become more aware of existing clinical guidelines.
PMCID: PMC3327445  PMID: 18550088
non-muscle invasive bladder cancer; intravesical therapy; disparities; quality of care; clinical guidelines
17.  Induced Pluripotent Stem Cells—A New Foundation in Medicine 
Generation of induced pluripotent stem (iPS) cells using defined factors has been considered a ground-breaking step towards establishing patient-specific pluripotent stem cells for various applications. The isolation of human embryonic stem (ES) cells set the standard that pluripotent stem cells are attainable as potentially immortal cells for regeneration of many types of tissues. Different approaches have been tested to obtain pluripotent stem cells by circumventing the need for embryos. iPS cells appear to be an ideal substitute for ES cells. Since the first demonstration of creating iPS cells in 2006, tremendous efforts have been made into improving iPS cell generation methods and understanding the reprogramming mechanism as well as the nature of iPS cells. To improve iPS cell generation, several approaches have been taken: (1) eliminate the viral vector integration after delivering the defined factors; (2) select different cell types that more effectively give rise to iPS cells; (3) use of chemicals to facilitate reprogramming; (4) use of protein factors to reprogram cells. The iPS cells are also being rigorously characterized in comparison to ES cells. All these efforts are made for the purpose of making iPS cells closer to clinical applications. This article will give an overview of the following areas: (1) mechanisms of iPS cell derivation; (2) characterization of iPS cells; (3) iPS cells for cell-based therapy; and (4) iPS cells for studying disease mechanism. Questions as to what aspects of iPS cells require further understanding before they may be put to clinical use are also discussed.
PMCID: PMC3298413  PMID: 22408700
cancer-iPS cells; embryonic stem (ES) cells; genome-wide epigenetic profile; global gene expression profile; induced pluripotent stem (iPS) cells; regenerative medicine; tissue regeneration
18.  Mouse salivary glands and human β-defensin-2 as a study model for antimicrobial gene therapy: technical considerations☆ 
Transduction of salivary glands with antimicrobial peptide genes has great potential for oral infection control. Our ultimate goal is to introduce antimicrobial peptide genes into salivary glands that secrete these peptides into saliva to control bacterial/fungal infection in the oral cavity. However, an animal study model to test this potential has not been established. Therefore, we determined to test (i) whether the potent antimicrobial peptide human β-defensin-2 (hBD-2) can be overexpressed in saliva after transduction of salivary glands and (ii) whether oral fungal infection can be developed in a NOD/SCID murine model. Lentiviral vector SIN18cPPTRhMLV bearing hBD-2 cDNA was introduced into SCID mouse submandibular glands via cannulation. Reverse transcription polymerase chain reaction (RT-PCR), immunohistochemistry or enzyme-linked immunosorbent assay (ELISA) were performed to detect hBD-2 expression in glands or in saliva. Candida albicans 613p was inoculated orally into SCID mice to establish oral candidiasis. Whilst expression of hBD-2 was detected in mouse salivary glands by RT-PCR and immunohistochemistry 1 day or 1 week following delivery of lentivirus, hBD-2 was not detected in saliva. There was recoverable C. albicans from the oral cavity and gastrointestinal tract 4 days to 4 weeks after infection, but there was no establishment of observable oral candidiasis in SCID mice under a stereomicroscope. Our data indicate that lentiviral vectors transduce mouse salivary glands, but not at a sufficient level to allow hBD-2 detection in saliva. Other vectors for gene transduction and additional treatment of SCID mice to establish oral candidiasis are needed in order to utilise mouse salivary glands to test antimicrobial gene therapy.
PMCID: PMC3285981  PMID: 16963233
hBD-2; Lentiviral vectors; Mouse salivary glands; Candida albicans; SCID mice
19.  Blockade of TLR2 Inhibits Porphyromonas gingivalis Suppression of Mineralized Matrix Formation by Human Dental Pulp Stem Cells 
Journal of Endodontics  2011;37(6):812-818.
Human dental pulp stem/progenitor cells (hDPSC) can differentiate into odontoblast-like cells and express dentin sialophosphoprotein (DSPP) and osteocalcin (OCN); thus, they may be used to regenerate dentin. However, residual bacterial components in the root canal may suppress this activity.
This study investigated the effect of a Porphyromonas gingivalis component on the expression of DSPP and OCN by stimulated hDPSCs and the influence of blockade of TLR2-mediated P. gingivalis host recognition.
Stimulated hDPSCs were exposed to varying concentrations of P. gingivalis lipopolysaccharide (LPS), and the expression of DSPP and OCN was measured. Similar groups of stimulated hDPSCs were exposed to TLR2 blocking agents before exposure to LPS.
hDPSCs exposed to 5, 10, and 20 µg/mL LPS exhibited a dose-dependent reduction in the expression of DSPP (3.19 ± 0.18, 2.60 ± 0.49, and 1.15 ± 0.29, respectively) and OCN (3.51 ± 1.18, 2.60 ± 0.67 and 1.66 ± 0.89, respectively). The expression of DSPP and OCN after exposure to 20 µg/mL of LPS was significantly lower than measured for unexposed stimulated cells (analysis of variance and post hoc Tukey test, P < .05). The blockade of TLR2 using an extra- and intracellular agent affected DSPP (4.67 ± 0.97 and 5.29 ± 1.66, respectively) and OCN (5.25 ± 1.69 and 5.82 ± 2.38, respectively) expression at levels comparable to stimulated cells unexposed to 20 µg/mL LPS (6.32 ± 2.47 and 4.70 ± 1.60 for DSPP and OCN, respectively).
The suppressing effect of P. gingivalis on mineralized matrix formation by hDPSCs is confirmed, and this suppression can be moderated by TLR2 blockade.
PMCID: PMC3282592  PMID: 21787495
Dental pulp stem cells; dentin sialophosphoprotein; osteocalcin; Porphyromonas gingivalis; TLR2
20.  Capacity of human β-defensin expression in gene-transduced and cytokine-induced cells✩ 
The purpose of this study was to determine the capacity of cells transduced with human β-defensins (HBDs) to express antimicrobial peptides, since sufficient expression level is required for effective antimicrobial activity. Retroviral vector pBabeNeo and lentiviral vector SIN18cPPTRhMLV (SIN18) carrying HBDs were utilized to transduce non-HBD-expressing cells such as fibroblasts or HBD-producing oral epithelial cells. We found that HBD-3 gene transfer to fibroblasts was possible not via retrovirus but by direct vector transfection. SIN18 had high transduction efficiencies (80.9–99.9%) and transduced cells expressed higher amounts of HBD-2 than those by pBabe-Neo. Primary human gingival epithelial cells (HGECs) expressed greater amounts of HBD-2 than primary fibroblasts after lentiviral transduction. Additionally, HBD-2 secretion from transduced HGECs cells was further increased when stimulated with IL-1 or TNFα. Our data indicate that while HBD-2 expression is limited in primary fibroblasts, its expression in HGECs may be maximized by gene transduction plus cytokine induction.
PMCID: PMC3282591  PMID: 16298338
HBD-2; HBD-3; Lentiviral vectors; Retroviral vectors; IL-1; TNFα; Gingival epithelial cells
21.  Stem/progenitor cells from inflamed human dental pulp retain tissue regeneration potential 
Regenerative medicine  2010;5(4):617-631.
Potent stem/progenitor cells have been isolated from normal human dental pulps termed dental pulp stem cells (DPSCs). However, it is unknown whether these cells exist in inflamed pulps (IPs).
To determine whether DPSCs can be identified and isolated from IPs; and if they can be successfully cultured, whether they retain tissue regeneration potential in vivo.
Materials & methods
DPSCs from freshly collected normal pulps (NPs) and IPs were characterized in vitro and their tissue regeneration potential tested using an in vivo study model.
The immunohistochemical analysis showed that IPs expressed higher levels of mesenchymal stem cell markers STRO-1, CD90, CD105 and CD146 compared with NPs (p < 0.05). Flow cytometry analysis showed that DPSCs from both NPs and IPs expressed moderate to high levels of CD146, stage-specific embryonic antigen-4, CD73 and CD166. Total population doubling of DPSCs-IPs (44.6 ± 2.9) was lower than that of DPSCs-NPs (58.9 ± 2.5) (p < 0.05), and DPSCs-IPs appeared to have a decreased osteo/dentinogenic potential compared with DPSCs-NPs based on the mineral deposition in cultures. Nonetheless, DPSCs-IPs formed pulp/dentin complexes similar to DPSCs-NPs when transplanted into immunocompromised mice.
DPSCs-IPs can be isolated and their mesenchymal stem cell marker profiles are similar to those from NPs. Although some stem cell properties of DPSCs-IPs were altered, cells from some samples remained potent in tissue regeneration in vivo.
PMCID: PMC3035701  PMID: 20465527
cytokine; dental pulp stem cell; IL-β; immunocompromised mice; inflamed pulp; pulp/dentin complex; tissue regeneration; TNF-α
22.  Adrenocortical carcinosarcoma: a case report and review of the literature 
Diagnostic Pathology  2010;5:51.
Adrenocortical carcinosarcoma is an extremely rare and aggressive variant of adrenocortical carcinoma characterized by the presence of both carcinomatous and sarcomatous components, with the latter often showing heterologous differentiation. Due to the rarity and unusual histology, it may pose a diagnostic challenge. In order to increase awareness and identify potential diagnostic pitfalls, we report the ninth case of non-functioning adrenocortical carcinosarcoma in a 45-year-old man who presented with worsening epigastric pain and a left large retroperitoneal mass in close proximity to the body/tail of pancreas and third portion of the duodenum with displacement of the kidney without parenchymal invasion and multiple liver nodules detected by computed tomographic scan. On en bloc resection, the tumor grossly did not involve the pancreas, kidney or colon. Histologically, the tumor was composed of two distinct components - an epithelioid component with granular cytoplasm that stained for synaptophysin, Melan-A, calretinin, and vimentin compatible with adrenocortical differentiation, and a pleomorphic to spindled component that was positive for desmin and myogenin, compatible with rhabdomyosarcomatous differentiation. A wedge biopsy of a liver nodule showed morphologic features similar to the epithelial component of the primary tumor. The patient died three months after surgery due to locoregional and distant recurrence. Adrenocortical carcinosarcoma is a rare malignancy that adds to the differential diagnostic considerations for a retroperitoneal epithelioid malignancy. Awareness of this as a possibility will help in distinguishing this tumor from other carcinomas, melanomas, and true sarcomas.
PMCID: PMC3224959  PMID: 20687934
23.  Interleukin-8 and Intercellular Adhesion Molecule 1 Regulation in Oral Epithelial Cells by Selected Periodontal Bacteria: Multiple Effects of Porphyromonas gingivalis via Antagonistic Mechanisms 
Infection and Immunity  2001;69(3):1364-1372.
Interaction of bacteria with mucosal surfaces can modulate the production of proinflammatory cytokines and adhesion molecules produced by epithelial cells. Previously, we showed that expression of interleukin-8 (IL-8) and intercellular adhesion molecule 1 (ICAM-1) by gingival epithelial cells increases following interaction with several putative periodontal pathogens. In contrast, expression of IL-8 and ICAM-1 is reduced after Porphyromonas gingivalis ATCC 33277 challenge. In the present study, we investigated the mechanisms that govern the regulation of these two molecules in bacterially infected gingival epithelial cells. Experimental approaches included bacterial stimulation of gingival epithelial cells by either a brief challenge (1.5 to 2 h) or a continuous coculture throughout the incubation period. The kinetics of IL-8 and ICAM-1 expression following brief challenge were such that (i) secretion of IL-8 by gingival epithelial cells reached its peak 2 h following Fusobacterium nucleatum infection whereas it rapidly decreased within 2 h after P. gingivalis infection and remained decreased up to 30 h and (ii) IL-8 and ICAM-1 mRNA levels were up-regulated rapidly 2 to 4 h postinfection and then decreased to basal levels 8 to 20 h after infection with either Actinobacillus actinomycetemcomitans, F. nucleatum, or P. gingivalis. Attenuation of IL-8 secretion was facilitated by adherent P. gingivalis strains. The IL-8 secreted from epithelial cells after F. nucleatum stimulation could be down-regulated by subsequent infection with P. gingivalis or its culture supernatant. Although these results suggested that IL-8 attenuation at the protein level might be associated with P. gingivalis proteases, the Arg- and Lys-gingipain proteases did not appear to be solely responsible for IL-8 attenuation. In addition, while P. gingivalis up-regulated IL-8 mRNA expression, this effect was overridden when the bacteria were continuously cocultured with the epithelial cells. The IL-8 mRNA levels in epithelial cells following sequential challenge with P. gingivalis and F. nucleatum and vice versa were approximately identical and were lower than those following F. nucleatum challenge alone and higher than control levels or those following P. gingivalis challenge alone. Thus, together with the protease effect, P. gingivalis possesses a powerful strategy to ensure the down-regulation of IL-8 and ICAM-1.
PMCID: PMC98029  PMID: 11179300
24.  Interactions between Periodontal Bacteria and Human Oral Epithelial Cells: Fusobacterium nucleatum Adheres to and Invades Epithelial Cells 
Infection and Immunity  2000;68(6):3140-3146.
Bacteria are causative agents of periodontal diseases. Interactions between oral bacteria and gingival epithelial cells are essential aspects of periodontal infections. Using an in vitro tissue culture model, a selected group of gram-negative anaerobic bacteria frequently associated with periodontal diseases, including Bacteroides forsythus, Campylobacter curvus, Eikenella corrodens, Fusobacterium nucleatum, Porphyromonas gingivalis, and Prevotella intermedia, were examined for their ability to adhere to and invade primary cultures of human gingival epithelial cells (HGEC). The effects of these bacteria on the production of interleukin-8 (IL-8), a proinflammatory chemokine, were also measured. These studies provided an initial demonstration that F. nucleatum adhered to and invaded HGEC and that this was accompanied by high levels of IL-8 secretion from the epithelial cells. The attachment and invasion characteristics of F. nucleatum were also tested using KB cells, an oral epithelial cell line. The invasion was verified by transmission electron microscopy and with metabolic inhibitors. Invasion appeared to occur via a “zipping” mechanism and required the involvement of actins, microtubules, signal transduction, protein synthesis, and energy metabolism of the epithelial cell, as well as protein synthesis by F. nucleatum. A spontaneous mutant, lam, of F. nucleatum, isolated as defective in autoagglutination, was unable to attach to or invade HGEC or KB cells, further indicating the requirement of bacterial components in these processes. Sugar inhibition assays indicated that lectin-like interactions were involved in the attachment of F. nucleatum to KB cells. Investigation of these new virulence phenotypes should improve our understanding of the role of F. nucleatum in periodontal infections.
PMCID: PMC97547  PMID: 10816455

Results 1-24 (24)