PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-1 (1)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
Year of Publication
Document Types
1.  Differences in biofilm formation and antimicrobial resistance of Pseudomonas aeruginosa isolated from airways of mechanically ventilated patients and cystic fibrosis patients 
Pseudomonas aeruginosa biofilms exhibit increased antimicrobial resistance compared with planktonic isolates and are implicated in the pathogenesis of both acute and chronic lung infections. Whilst antibiotic choices for both infections are based on planktonic antibiotic susceptibility results, differences in biofilm-forming ability between the two diseases have not previously been explored. The aim of this study was to compare differences in biofilm formation and antibiotic resistance of P. aeruginosa isolated from intubated patients and from patients with chronic pulmonary disease associated with cystic fibrosis (CF). The temporal evolution of antibiotic resistance in clonal P. aeruginosa strains isolated from CF patients during periods of chronic infection and acute pulmonary exacerbation was also evaluated. Biofilm formation and biofilm antibiotic susceptibilities were determined using a modified microtitre plate assay and were compared with antibiotic susceptibility results obtained using traditional planktonic culture. Clonality was confirmed using random amplified polymorphic DNA polymerase chain reaction (RAPD-PCR) analysis. Pseudomonas aeruginosa isolates collected from intubated patients produced substantially more biofilms compared with CF isolates. There was considerable heterogeneity in biofilm-forming ability among the CF isolates and this was unrelated to pulmonary status. Biofilm antibiotic resistance developed rapidly among clonal CF isolates over time, whilst traditional antibiotic resistance determined using planktonic cultures remained stable. There was a significant positive correlation between imipenem/cilastatin and ceftazidime resistance and biofilm-forming ability. The variability in biofilm-forming ability in P. aeruginosa and the rapid evolution of biofilm resistance may require consideration when choosing antibiotic therapy for newly intubated patients and CF patients.
doi:10.1016/j.ijantimicag.2010.12.017
PMCID: PMC3176759  PMID: 21382698
Pseudomonas aeruginosa; Bacterial biofilm; Antimicrobial resistance; Mechanical ventilation; Cystic fibrosis

Results 1-1 (1)