PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Same, same but different: symbiotic bacterial associations in GBR sponges 
Symbioses in marine sponges involve diverse consortia of microorganisms that contribute to the health and ecology of their hosts. The microbial communities of 13 taxonomically diverse Great Barrier Reef (GBR) sponge species were assessed by DGGE and 16S rRNA gene sequencing to determine intra and inter species variation in bacterial symbiont composition. Microbial profiling revealed communities that were largely conserved within different individuals of each species with intra species similarity ranging from 65–100%. 16S rRNA gene sequencing revealed that the communities were dominated by Proteobacteria, Chloroflexi, Acidobacteria, Actinobacteria, Nitrospira, and Cyanobacteria. Sponge-associated microbes were also highly host-specific with no operational taxonomic units (OTUs) common to all species and the most ubiquitous OTU found in only 5 of the 13 sponge species. In total, 91% of the OTUs were restricted to a single sponge species. However, GBR sponge microbes were more closely related to other sponge-derived bacteria than they were to environmental communities with sequences falling within 50 of the 173 previously defined sponge-(or sponge-coral) specific sequence clusters (SC). These SC spanned the Acidobacteria, Actinobacteria, Proteobacteria, Bacteroidetes, Chloroflexi, Cyanobacteria, Gemmatimonadetes, Nitrospira, and the Planctomycetes-Verrucomicrobia-Chlamydiae superphylum. The number of sequences assigned to these sponge-specific clusters across all species ranged from 0 to 92%. No relationship between host phylogeny and symbiont communities were observed across the different sponge orders, although the highest level of similarity was detected in two closely related Xestospongia species. This study identifies the core microbial inhabitants in a range of GBR sponges thereby providing the basis for future studies on sponge symbiotic function and research aiming to predict how sponge holobionts will respond to environmental perturbation.
doi:10.3389/fmicb.2012.00444
PMCID: PMC3548243  PMID: 23346080
sponge; microorganism; symbiont; diversity; Great Barrier Reef
2.  Prognostic significance of thymidylate synthase, dihydropyrimidine dehydrogenase and thymidine phosphorylase protein expression in colorectal cancer patients treated with or without 5-fluorouracil-based chemotherapy 
Background
Low tumour expression levels of thymidylate synthase (TS), dihydropyrimidine dehydrogenase (DPD) and thymidine phosphorylase (TP) have been linked with improved outcome for colorectal cancer (CRC) patients treated with 5-fluorouracil (5-FU). It is unclear whether this occurs because such tumours have better prognosis or they are more sensitive to 5-FU treatment.
Patients and methods
Associations between TS, DPD and TP levels, determined by tissue microarrays and immunohistochemistry, and survival was evaluated in 945 CRC patients according to treatment status.
Results
Low TS and DPD expression associated with worse prognosis in stage II [hazard ratio (HR) = 1.69, 95% confidence interval (CI) (1.09–2.63) and HR = 1.92 (95% CI 1.23–2.94), respectively] and stage III CRC patients treated by surgery alone [HR = 1.39 (95% CI 0.92–2.13) and HR = 1.49 (95% CI 1.02–2.17), respectively]. Low TS, DPD and TP associated with trends for better outcome in stage III patients treated with 5-FU [HR = 0.81 (95% CI 0.49–1.33), HR = 0.70 (95% CI 0.42–1.15) and HR = 0.66 (95% CI 0.39–1.12), respectively].
Conclusion
Low TS and DPD expression are prognostic for worse outcome in CRC patients treated by surgery alone, whereas low TS, DPD and TP expression are prognostic for better outcome in patients treated with 5-FU chemotherapy. These results provide indirect evidence that low TS, DPD and TP protein expression are predictive of good response to 5-FU chemotherapy.
doi:10.1093/annonc/mdm599
PMCID: PMC2931808  PMID: 18245778
colorectal cancer; fluorouracil; predictive; prognostic; thymidylate synthase

Results 1-2 (2)