Search tips
Search criteria

Results 1-25 (68)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Endoplasmic reticulum aminopeptidase-1 alleles associated with increased risk of Ankylosing Spondylitis reduce HLA-B27 mediated presentation of multiple antigens 
Autoimmunity  2013;46(8):497-508.
Ankylosing spondylitis (AS) is a chronic systemic arthritic disease that leads to significant disability and loss of quality of life in the ~0.5% of the worldwide human population it affects. There is currently no cure for AS and mechanisms underlying its pathogenesis remain unclear. AS is highly genetic, with over 70% of the genetic risk being associated with the presence of HLA-B27 and endoplasmic reticulum aminopeptidase-1 (ERAP1) alleles. Furthermore, gene-gene interactions between HLA-B27 and ERAP1 AS risk alleles have recently been confirmed. Here, we demonstrate that various ERAP1 alleles can differentially mediate surface expression of antigens presented by HLA-B27 on human cells. Specifically, for all peptides tested, we found that an ERAP1 variant containing high AS risk SNPs reduced the amount of the peptide presented by HLA-B27, relative to low AS risk ERAP1 variants. These results were further validated using peptide catalysis assays in vitro, suggesting that high AS risk alleles have an enhanced catalytic activity that more rapidly destroys many HLA-B27-destined peptides, a result that correlated with decreased HLA-B27 presentation of the same peptides. These findings suggest that one mechanism underlying AS pathogenesis may involve an altered ability for AS patients harboring both HLA-B27 and high AS risk ERAP1 alleles to correctly display a variety of peptides to the adaptive arm of the immune system, potentially exposing such individuals to higher AS risk due to abnormal display of pathogen or self derived peptides by the adaptive immune system.
PMCID: PMC4104477  PMID: 24028501
ankylosing spondylitis; autoimmunity; antigen presentation; HLA-B27; endoplasmic reticulum aminopeptidase-1; inflammation; antigenic epitope
2.  Potential roles of Activation-Induced cytidine Deaminase in promotion or prevention of autoimmunity in humans 
Autoimmunity  2013;46(2):148-156.
Autoimmune manifestations are paradoxical and frequent complications of primary immunodeficiencies, including T and/or B cell defects. Among pure B cell defects, the Activation-induced cytidine Deaminase (AID)-deficiency, characterized by a complete lack of immunoglobulin class switch recombination and somatic hypermutation, is especially complicated by autoimmune disorders. We summarized in this review the different autoimmune and inflammatory manifestations present in twelve patients out of a cohort of 45 patients. Moreover, we also review the impact of AID mutations on B-cell tolerance and discuss hypotheses that may explain why central and peripheral B-cell tolerance was abnormal in the absence of functional AID. Hence, AID plays an essential role in controlling autoreactive B cells in humans and prevents the development of autoimmune syndromes.
PMCID: PMC4077434  PMID: 23215867
Primary immunodeficiency; class switch recombination-deficiency; tolerance
3.  Pathogenic mechanisms in systemic lupus erythematosus 
Autoimmunity  2010;43(1):1-6.
Systemic lupus erythematosus (SLE) is a chronic inflammatory disease characterized by the dysfunction of T cells, B cells, and dendritic cells and by the production of antinuclear autoantibodies. This editorial provides a synopsis of newly discovered genetic factors and signaling pathways in lupus pathogenesis that are documented in 11 state-of-the-art reviews and original articles. Mitochondrial hyperpolarization underlies mitochondrial dysfunction, depletion of ATP, oxidative stress, abnormal activation, and death signal processing in lupus T cells. The mammalian target of rapamycin, which is a sensor of the mitochondrial transmembrane potential, has been successfully targeted for treatment of SLE with rapamycin or sirolimus in both patients and animal models. Inhibition of oxidative stress, nitric oxide production, expression of endogenous retroviral and repetitive elements such as HRES-1, the long interspersed nuclear elements 1, Trex1, interferon alpha (IFN-α), toll-like receptors 7 and 9 (TLR-7/9), high-mobility group B1 protein, extracellular signal-regulated kinase, DNA methyl transferase 1, histone deacetylase, spleen tyrosine kinase, proteasome function, lysosome function, endosome recycling, actin cytoskeleton formation, the nuclear factor kappa B pathway, and activation of cytotoxic T cells showed efficacy in animal models of lupus. Although B cell depletion and blockade of anti-DNA antibodies and T–B cell interaction have shown success in animal models, human studies are currently ongoing to establish the value of several target molecules for treatment of patients with lupus. Ongoing oxidative stress and inflammation lead to accelerated atherosclerosis that emerged as a significant cause of mortality in SLE.
PMCID: PMC4046632  PMID: 20014960
lupus; genetics; mitochondria; nitric oxide; endosome traffic
4.  DNA methylation modulates HRES1/p28 expression in B cells from patients with Lupus 
Autoimmunity  2013;47(4):265-271.
Systemic lupus erythematosus (SLE) disease is an autoimmune disease of unknown aetiology that affects predominantly women of child bearing age. Since previous studies, including ours, have demonstrated that CD4+ T cells and B cells from SLE patients are defective in their ability to methylate their DNA upon antigen stimulation, the aim of this study was to investigate whether DNA demethylation affects the transcription of HRES-1 in B cells. HRES-1 is the prototype of Human Endogenous Retrovirus (HERV) overexpressed in SLE. We have observed that SLE B cells were characterized by their incapacity to methylate the HRES-1 promoter, both in unstimulated and in anti-IgM stimulated B cells. In turn, HRES-1/p28 expression was increased in SLE B cells after B cell receptor engagement, but not in controls. In SLE B cells the Erk/DNMT1 pathway was defective. In addition, blocking the autocrine-loop of IL-6 in SLE B cells with an anti-IL-6 receptor monoclonal antibody restores DNA methylation and control of HRES-1/p28 expression became effective. As a consequence, a better understanding of HERV dysregulation in SLE reinforces our comprehension of the disease and opens new therapeutic perspectives.
PMCID: PMC4034120  PMID: 24117194
B cells; DNA methylation; Erk; HRES-1; IL-6; systemic lupus erythematosus
5.  Metabolic control of the epigenome in systemic Lupus erythematosus 
Autoimmunity  2013;47(4):256-264.
Epigenetic mechanisms are proposed to underlie aberrant gene expression in systemic lupus erythematosus (SLE) that results in dysregulation of the immune system and loss of tolerance. Modifications of DNA and histones require substrates derived from diet and intermediary metabolism. DNA and histone methyltransferases depend on S-adenosylmethionine (SAM) as a methyl donor. SAM is generated from adenosine triphosphate (ATP) and methionine by methionine adenosyltransferase (MAT), a redox-sensitive enzyme in the SAM cycle. The availability of B vitamins and methionine regulate SAM generation. The DNA of SLE patients is hypomethylated, indicating dysfunction in the SAM cycle and methyltransferase activity. Acetyl-CoA, which is necessary for histone acetylation, is generated from citrate produced in mitochondria. Mitochondria are also responsible for de novo synthesis of flavin adenine dinucleotide (FAD) for histone demethylation. Mitochondrial oxidative phosphorylation is the dominant source of ATP. The depletion of ATP in lupus T cells may affect MAT activity as well as adenosine monophosphate (AMP) activated protein kinase (AMPK), which phosphorylates histones and inhibits mechanistic target of rapamycin (mTOR). In turn, mTOR can modify epigenetic pathways including methylation, demethylation, and histone phosphorylation and mediates enhanced T-cell activation in SLE. Beyond their role in metabolism, mitochondria are the main source of reactive oxygen intermediates (ROI), which activate mTOR and regulate the activity of histone and DNA modifying enzymes. In this review we will focus on the sources of metabolites required for epigenetic regulation and how the flux of the underlying metabolic pathways affects gene expression.
PMCID: PMC4034124  PMID: 24128087
Epigenetics; genetics; metabolism; SLE
6.  Therapeutic potential of TGF-β-induced CD4+Foxp3+ regulatory T cells in autoimmune diseases 
Autoimmunity  2010;44(1):43-50.
Foxp3+ T regulatory cell (Treg) subsets play a crucial role in the maintenance of immune homeostasis against self-antigen. The lack or dysfunction of these cells is responsible for the pathogenesis and development of many autoimmune diseases. Therefore, manipulation of these cells may provide a novel therapeutic approach to treat autoimmune diseases. In this review, we provide current opinions concerning the classification, developmental and functional characterizations of Treg subsets. A particular emphasis will be focused on the therapeutic role of TGF-β-induced CD4+Foxp3+ cells (iTregs) in established autoimmune disease. Moreover, the similarity and disparity of iTregs and naturally occurring, thymus-derived CD4+CD25+Foxp3+ regulatory T cells (nTregs) have also be discussed. While the proinflammatory cytokine IL-6 can convert nTregs to IL-17-producing cells, iTregs induced by TGF-β are resistant to the effects of this cytokine. Understanding this difference may play a key role in determining how Tregs can be used in the treatment of established autoimmune diseases.
PMCID: PMC4038306  PMID: 20670119
Autoimmune diseases; Immunoregulation; Regulatory T cells; TGF-β; Foxp3; Th17 cells
7.  Systems biology of lupus: Mapping the impact of genomic and environmental factors on gene expression signatures, cellular signaling, metabolic pathways, hormonal and cytokine imbalance, and selecting targets for treatment 
Autoimmunity  2010;43(1):32-47.
Systemic lupus erythematosus (SLE) is characterized by the dysfunction of T cells, B cells, and dendritic cells, the release of pro-inflammatory nuclear materials from necrotic cells, and the formation of antinuclear antibodies (ANA) and immune complexes of ANA with DNA, RNA, and nuclear proteins. Activation of the mammalian target of rapamycin (mTOR) has recently emerged as a key factor in abnormal activation of Tand B cells in SLE. In T cells, increased production of nitric oxide and mitochondrial hyperpolarization (MHP) were identified as metabolic checkpoints upstream of mTOR activation. mTOR controls the expression T-cell receptor-associated signaling proteins CD4 and CD3ζ through increased expression of the endosome recycling regulator Rab5 and HRES-1/Rab4 genes, enhances Ca2+ fluxing and skews the expression of tyrosine kinases both in T and B cells, and blocks the expression of Foxp3 and the generation of regulatory T cells. MHP, increased activity of mTOR, Rab GTPases, and Syk kinases, and enhanced Ca2+ flux have emerged as common Tand B cell biomarkers and targets for treatment in SLE.
PMCID: PMC4020422  PMID: 20001421
Lupus; mitochondria; nitric oxide; glutathione; mammalian target of rapamycin; Syk
8.  Regulation of basement membrane-reactive B cells in BXSB, (NZBxNZW)F1, NZB, and MRL/lpr lupus mice 
Autoimmunity  2013;46(3):188-204.
Autoantibodies to diverse antigens escape regulation in systemic lupus erythematosus under the influence of a multitude of predisposing genes. To gain insight into the differential impact of diverse genetic backgrounds on tolerance mechanisms controlling autoantibody production in lupus, we established a single lupus-derived nephritis associated anti-basement membrane Ig transgene on each of four inbred murine lupus strains, including BXSB, (NZBxNZW)F1, NZB, and MRL/lpr, as approved by the Duke University and the Durham Veterans Affairs Medical Centers’ Animal Care and Use Committees. In nonautoimmune C57BL/6 mice, B cells bearing this anti-laminin Ig transgene are stringently regulated by central deletion, editing, and anergy. Here, we show that tolerance is generally intact in unmanipulated Ig transgenic BXSB, (NZBxNZW)F1, and NZB mice, based on absence of serum transgenic anti-laminin autoantibodies and failure to recover spontaneous anti-laminin monoclonal antibodies. Four- to six-fold depletion of splenic B cells in transgenic mice of these strains, as well as in MRL/lpr transgenic mice, and reduced frequency of IgM+ bone marrow B cells suggest that central deletion is grossly intact. Nonetheless the four strains demonstrate distinct transgenic B cell phenotypes, including endotoxin-stimulated production of anti-laminin antibodies by B cells from transgenic NZB mice, and in vitro hyperproliferation of both endotoxin- and BCR-stimulated B cells from transgenic BXSB mice, which are shown to have an enrichment of CD21-high marginal zone cells. Rare anti-laminin transgenic B cells spontaneously escape tolerance in MRL/lpr mice. Further study of the mechanisms underlying these strain-specific B cell fates will provide insight into genetic modification of humoral autoimmunity in lupus.
PMCID: PMC3625511  PMID: 23157336
autoantibodies; tolerance; transgenic mice; deletion; laminin
9.  Alpha beta-crystallin expression and presentation following infection with murine gammaherpesvirus 68 
Autoimmunity  2013;46(6):399-408.
Alpha beta-crystallin (CRYAB) is a small heat shock protein that can function as a molecular chaperone and has protective effects for cells undergoing a variety of stressors. Surprisingly, CRYAB has been identified as one of the dominant autoantigens in multiple sclerosis. It has been suggested that autoimmune mediated destruction of this small heat shock protein may limit its protective effects, thereby exacerbating inflammation and cellular damage during multiple sclerosis. It is not altogether clear how autoimmunity against CRYAB might develop, or whether there are environmental factors which might facilitate the presentation of this autoantigen to CD4+ T lymphocytes. In the present study, we utilized an animal model of an Epstein Barr Virus (EBV)-like infection, murine gammaherpesvirus 68 (HV-68), to question whether such a virus could modulate the expression of CRYAB by antigen presenting cells. Following exposure to HV-68 and several other stimuli, in vitro secretion of CRYAB and subsequent intracellular accumulation were observed in cultured macrophages and dendritic cells. Following infection of mice with this virus, it was possible to track CRYAB expression in the spleen and in antigen presenting cell subpopulations, as well as its secretion into the blood. Mice immunized with human CRYAB mounted a significant immune response against this heat shock protein. Further, dendritic cells that were exposed to HV-68 could stimulate CD4+ T cells from CRYAB immunized mice to secrete interferon gamma. Taken together these studies are consistent with the notion of a gammaherpesvirus-induced CRYAB response in professional antigen presenting cells in this mouse model.
PMCID: PMC3968851  PMID: 23586607
Alpha beta-crystallin; autoimmunity; gammaherpesvirus; multiple sclerosis
10.  Somatic Mutagenesis in Autoimmunity 
Autoimmunity  2013;46(2):102-114.
Our laboratory investigates systemic autoimmune disease in the context of mouse models of systemic lupus erythematosus (SLE). SLE is associated with high titers of serum autoantibodies of the IgG class that are predominantly directed against nuclear antigens, with pathological manifestations that are considered by many to be characteristic of an immune-complex mediated disease. In this review, we focus on the known and potential roles of somatic mutagenesis in SLE. We will argue that antinuclear antibodies (ANA) arise predominantly from nonautoreactive B cells that are transformed into autoreactive cells by the process of somatic hypermutation (SHM), which is normally associated with affinity maturation during the germinal center reaction. We will also discuss the role of SHM in creating antigenic peptides in the V region of the B cell receptor (BCR) and its potential to open an avenue of unregulated T cell help to autoreactive B cells. Finally, we will end this review with new experimental evidence suggesting that spontaneous somatic mutagenesis of genes that regulate B cell survival and activation is a rate-limiting causative factor in the development of ANA.
PMCID: PMC3743419  PMID: 23249093
Somatic mutation; Autoimmunity; Anti-nuclear Antibodies; Lupus; Haplodeficiency
11.  ZnT8 autoantibody titers in type 1 diabetes patients decline rapidly after clinical onset 
Autoimmunity  2010;43(8):598-606.
Autoantibodies to the islet-specific zinc transporter isoform 8 (ZnT8) are detected in the majority of type 1 diabetes patients prior to and at clinical diagnosis. The presence of ZnT8Ab after diagnosis has not been investigated. This study analyzed the autoantibody response to ZnT8 in regard to age at onset and disease duration. Two new onset type 1 diabetes patient cohorts with different age distributions at onset (2–17 and 15–34 years of age at onset), a longitudinal subset of the younger type 1 diabetes patient cohort (n = 32), and a cohort of GAD65Ab-positive LADA patients (n = 47) was analyzed for the presence of autoantibodies directed to the two major isoforms, ZnT8-Arginine (ZnT8R) and ZnT8-Tryptophan (ZnT8W). The majority of type 1 diabetes patients tested positive for ZnT8Ab to both isoforms. ZnT8Ab titers were significantly higher in the younger type 1 diabetes patients as compared with the older cohort (ZnT8RAb at a median of 148 and 29 U/ml, respectively, p < 0.001) (ZnT8WAb at a median of 145 and 58 U/ml, respectively, p < 0.01). ZnT8RAb and ZnT8WAb titers were significantly lower in the LADA patients (ZnT8RAb at a median of 14 U/ml, ZnT8WAb at a median of 25 U/ml) as compared with either type 1 diabetes cohorts. In our longitudinal analysis of type 1 diabetes patients after clinical diagnosis, ZnT8Ab levels to both isoforms declined significantly during the initial year of disease (ZnT8RAb from a median of 320–162 U/ml, p = 0.0001; ZnT8WAb from a median of 128–46 U/ml, p = 0.0011). The antibody titers further declined during the following 4 years (p < 0.0001). We conclude that ZnT8Ab presents a useful marker for type 1 diabetes, especially in younger patients at disease diagnosis.
PMCID: PMC3903401  PMID: 20298127
Autoimmune diabetes; ZnT8; autoantibodies; longitudinal; radioligand binding assay
12.  A new site directed transgenic Rheumatoid Factor mouse model demonstrates extrafollicular class switch and plasmablast formation 
Autoimmunity  2010;43(8):10.3109/08916930903567500.
The AM14 rheumatoid factor (RF) transgenic (Tg) mouse has been valuable for studying how self-reactive B cells are regulated beyond central tolerance, because they remain ignorant in normal mice. AM14 B cell activation can be studied on autoimmune-prone strains or by inducing activation with IgG2a anti-chromatin antibodies. Despite the utility of conventional Ig-Tg mice, site-directed Ig Tg (sd-Tg) mice provide a more physiological model for B cell responses, allowing class switch and somatic hypermutation. We report here the creation of an AM14 sd-Tg mouse and describe its phenotype on both normal and autoimmune-prone backgrounds. AM14 sd-Tg B cells develop normally but remain unactivated on the BALB/c background, even after significant aging. In contrast, on the autoimmune prone strain MRL/lpr, AM14 sd-Tg B cells become activated and secrete large amounts of IgG RF antibody into the serum. Class-switched antibody forming cells were found in the spleen and bone marrow. IgG RF plasmablasts were also observed in extrafollicular clusters in the spleens of aged AM14 sd-Tg MRL/lpr mice. Class switch and antibody secretion were observed additionally in AM14 sd-Tg BALB/c B cells activated in vivo using IgG2a anti-chromatin antibodies. Development of IgG autoantibodies is a hallmark of severe autoimmunity, and is related to pathogenesis. Using the AM14 sd-Tg, we now show that switched autoantibody-forming cells develop robustly outside germinal centers, further confirming the extrafollicular expression of AID. This model will allow more physiological studies of B cell biology in the future, including memory responses marked by class switch.
PMCID: PMC3818904  PMID: 20370572
plasmablast; isotype switch; lupus; extrafollicular response
13.  The Role of Epigenetics in Aging and Autoimmunity 
Autoimmunity  2008;41(4):329-335.
The decline in immunocompetence with age is accompanied by the increase in the incidence of autoimmune diseases. Aging of the immune system, or immunosenescence, is characterized by a decline of both T and B cell function, and paradoxically the presence of low grade chronic inflammation. There is growing evidence that epigenetics, the study of inherited changes in gene expression that are not encoded by the DNA sequence itself, changes with aging. Interestingly, emerging evidence suggests a key role for epigenetics in human pathologies, including inflammatory and neoplastic disorders. Here we will review the potential mechanisms that contribute to the increase in autoimmune responses in aging. In particular, we will discuss how epigenetic alterations, especially DNA methylation and histone acetylation, are accumulated during aging and how these events contribute to autoimmunity risk.
PMCID: PMC3791432  PMID: 18432411
aging; immunity and epigenetics
14.  Regulation of Aicda expression and AID activity 
Autoimmunity  2013;46(2):83-101.
Activation-induced cytidine deaminase (AID) is expressed in a B cell differentiation stage-specific fashion and is essential for immunoglobulin (Ig) gene class switch DNA recombination (CSR) and somatic hypermutation (SHM). CSR and SHM play a central role in the maturation of antibody and autoantibody responses. AID displays a mutagenic activity by catalyzing targeted deamination of deoxycytidine (dC) residues in DNA resulting in dU:dG mismatches, which are processed into point-mutations in SHM or double-strand breaks (DSBs) in CSR. Although AID specifically targets the Ig gene loci (IgH, Igκ and Igλ), it can also home into a wide array of non-Ig genes in B- and non-B-cell backgrounds. Aberrant expression of AID is associated with multiple diseases such as allergy, inflammation, autoimmunity and cancer. In autoimmune systemic lupus erythematosus, dysregulated AID expression underpins increased CSR, SHM and autoantibody production. As a potent mutator, AID is under stringent transcriptional, post-transcriptional and post-translational regulation. AID is also regulated in its targeting and enzymatic function. In resting naïve or memory B cells, AID transcripts and protein are undetectable. These, however, are readily and significantly upregulated in B cells induced to undergo CSR and/or SHM. Transcription factors, such as HoxC4 and NF-κB, which are upregulated in a B cell lineage- and/or differentiation stage-specific manner, regulate the induction of AID. HoxC4 induces AID expression by directly binding to the AID gene promoter through an evolutionarily conserved 5’-ATTT-3’ motif. HoxC4 is induced by the same stimuli that induce AID and CSR. It is further upregulated by estrogen through three estrogen responsive elements in its promoter region. The targeting of AID to switch (S) regions is mediated by 14-3-3 adaptor proteins, which specifically bind to 5′-AGCT-3′ repeats that are exist at high frequency in S region cores. Like HoxC4, 14-3-3 adaptors are induced by the same stimuli that induce AID. These include “primary” inducing stimuli, that is, those that play a major role in inducing AID, i.e., engagement of CD40 by CD154, engagement of Toll-like receptors (TLRs) by microbial-associated molecular patterns (MAMPs) and cross-linking of the BCR, as synergized by “secondary” inducing stimuli, that is, those that synergize for AID induction and specify CSR to different isotypes, i.e., switch-directing cytokines IL-4, TGF-β or IFN-γ. In this review, we focus on the multi-levels regulation of AID expression and activity. We also discuss the dysregulation or misexpression of AID in autoimmunity and tumorigenesis.
PMCID: PMC3762583  PMID: 23181381
activation-induced cytidine deaminase (AID); 14-3-3; antibody; autoantibody; class switch DNA recombination (CSR); HoxC4; mutagenesis; NF-κB; somatic hypermutation (SHM)
15.  AID dysregulation in lupus-prone MRL/Faslpr/lpr mice increases class switch DNA recombination and promotes interchromosomal c-Myc/IgH loci translocations: modulation by HoxC4 
Autoimmunity  2011;44(8):585-598.
Immunoglobulin (Ig) gene somatic hypermutation (SHM) and class switch DNA recombination (CSR) play important roles in the generation of autoantibodies in systemic lupus erythematosus. Systemic lupus is characterized by the production of an array of pathogenic high-affinity mutated and class-switched, mainly IgG, antibodies to a variety of self-antigens, including nuclear components, such as dsDNA, histones and chromatin. We previously found that MRL/Faslpr/lpr mice, which develop a systemic autoimmune syndrome sharing many features with human lupus, display greatly upregulated CSR, particularly to IgG2a, in B cells of the spleen, lymph nodes and Peyer’s patches. In MRL/Faslpr/lpr mice, the significant upregulation of CSR is associated with increased expression of activation-induced cytidine deaminase (AID), which is critical for CSR and SHM. We also found that HoxC4 directly activates the promoter of the AID gene to induce AID expression, CSR and SHM. Here, we show that in both lupus patients and lupus-prone MRL/Faslpr/lpr mice, the expression of HoxC4 and AID is significantly upregulated. To further analyze the role of HoxC4 in lupus, we generated HoxC4−/− MRL/Faslpr/lpr mice. In these mice, HoxC4-deficiency resulted in reduced AID expression, impaired CSR and decreased serum anti-dsDNA IgG, particularly IgG2a, autoantibodies, which were associated with a reduction in IgG deposition in kidney glomeruli. In addition, consistent with our previous findings that in MRL/Faslpr/lpr mice, upregulated AID expression is associated with extensive DNA lesions, comprising deletions and insertions in the IgH locus, we found c-Myc to IgH(c-Myc/IgH) translocations to occur frequently in B cells of MRL/Faslpr/lpr mice. The frequency of such translocations was significantly reduced in HoxC4−/− MRL/Faslpr/lpr mice. These findings suggest that in lupus B cells, upregulation of HoxC4 plays a major role in dysregulation of AID expression, thereby increasing CSR and autoantibody production, and promoting c-Myc/IgH translocations.
PMCID: PMC3762595  PMID: 21585311
Activation-induced cytidine deaminase (AID); B cell lymphoma; cancer; class switch DNA recombination (CSR); c-Myc/IgH translocation; HoxC4; MRL/Faslpr/lpr mice; systemic lupus erythematosus (SLE)
16.  Activation-induced deaminase contributes to the antibody-independent role of B cells in the development of autoimmunity 
Autoimmunity  2012;45(6):440-448.
B cells contribute to autoimmunity both as secretors of pathogenic antibodies and through the activation of autoreactive T cells. B cells and antibodies acquire higher affinity to self-antigen through a process known as immunoglobulin hypermutation or SHM. The contribution of SHM to pathogenic antibody development in lupus has been established in various autoimmune mouse models and by examining antibodies from patients. However, its role in the antibody-independent contribution of B cells to autoimmunity has not been examined. Herein, we generate lupus-prone MRL/lpr mice with a limited IgM-only B cell repertoire, no secreted antibodies and no SHM. This enabled us to isolate the role of somatic hypermutation in B cell-mediated autoimmunity and found that SHM-deficiency correlated with a reduction in autoreactive B cells, a decrease in T cell activation and in kidney lymphocytic infiltration. These data establish AID as an important contributor to the antibody-independent role of B cells in autoimmunity.
PMCID: PMC3496248  PMID: 22559231
somatic hypermutation; AID; B cells; T cells; lupus
17.  Regulatory B cells in autoimmune diseases and mucosal immune homeostasis 
Autoimmunity  2010;44(1):58-68.
B lymphocytes contribute to physiological immunity through organogenesis of secondary lymphoid organs, presentation of antigen to T cells, production of antibodies, and secretion of cytokines. Their role in several autoimmune diseases, mainly as producers of pathogenic antibodies, is also well known. However, certain subsets of B cells are emerging as the important regulatory cell populations in both mouse and human. The regulatory functions of B cells have been demonstrated in a variety of mouse models of autoimmune diseases including collagen-induced arthritis (CIA), experiment autoimmune encephalomyelitis (EAE), anterior chamber-associated immune deviation (ACAID), diabetes, contact hypersensitivity (CHS), and intestinal mucosal inflammation. Accumulating evidence from both mouse and human studies confirms the existence of regulatory B cells, and is beginning to define their mechanisms of action. In this article, we first review the history of B cells with regulatory function in autoimmune diseases, and summarize the current understanding about the characterizations of such B-cell subsets. We then discuss the possible regulatory mechanisms of B cells, and specifically define the role of regulatory B cells in immune homeostasis in the intestine.
PMCID: PMC3743407  PMID: 20701454
Regulatory B cells; immunoregulation; autoimmune diseases; molecular mechanism; mucosal homeostasis
18.  Increased T regulatory cells leads to development of Th2 immune response in male SJL mice 
Autoimmunity  2010;44(3):219-228.
SJL mice represent a mouse model in which young adult females are susceptible to autoimmune disease while age matched male are relatively resistant. T cells primed in female SJL mice secrete cytokines associated with a Th1 phenotype. By contrast, T cells primed in males secrete cytokines associated with a Th2 phenotype. Activation of Th2-type T cells in males versus Th1 cells in females correlates with increased CD4+CD25+ T regulatory cells (Treg) in males. T cells primed in males depleted of CD4+CD25+ T cells preferentially secrete IFN-γ and decreased IL-4 and IL-10 compared to CD4+CD25+ T cells sufficient males suggesting that Treg influence subsequent antigen specific cytokine secretion. Treg from males and females exhibit equivalent in vitro T cell suppression. Treg from males expressed increased CTLA-4 and CD62L and preferentially secrete IL-10. These data suggest that an increased frequency of IL-10 secreting Treg in male SJL mice may contribute to resistance to autoimmune disease by favoring development of Th2 immune responses.
PMCID: PMC3733367  PMID: 20883149
autoimmunity; EAE; regulatory T cells; cytokines; mice
19.  B cells as effectors and regulators of sex-biased arthritis 
Autoimmunity  2012;45(5):364-376.
B cells have been implicated both with pathogenic as well as protective capabilities in induction and regulation of autoimmune diseases. Rheumatoid arthritis (RA) is an autoimmune disease that occurs more often in women than men. A significant role of B cells as antibody producing and antigen-presenting cells has been demonstrated in RA. Predisposition to RA is associated with the presence of certain HLA class II alleles that share sequences with DRB1*0401. To determine the role of HLA genes and B cells in vivo, we have generated transgenic mice carrying HLA genes, DRB1*0401 and DQ8, known to be associated with susceptibility to RA. Humanized mice can be induced to develop arthritis that mimics human disease in clinical, histopathological and sex bias. Effect of hormones on immune cells and their function has been described in humans and mice and has been suggested to be the major reason for female bias of autoimmune diseases. An immune response to an antigen requires presentation by HLA molecules thus suggesting a critical role of MHC in combination with sex hormones in susceptibility to develop rheumatoid arthritis. Based on our observations, we hypothesize that modulation of B cells by estrogen, presentation of modified antigens by DR4 and production of antigen-specific B cell modulating cytokines leads to autoreactivity in females. These data suggest that considering patient’s sex may be crucial in selecting the optimal treatment strategy. Humanized mice expressing RA susceptible and resistant haplotype provide a means to investigate mechanism sex-bias of arthritis and future strategies for therapy.
PMCID: PMC3720982  PMID: 22429183
B regulatory cells; antigen presentation; MHC polymorphism; HLA transgenic mice; Rheumatoid arthritis
20.  Systematic simulation of cross-reactivity predicts ambiguity in Tk memory: It may save lives of the infected, but limits specificities vital for further responses 
Autoimmunity  2011;44(4):315-327.
The present study uses the agent-based model IMMSIM to simulate immune responses to a viral infection, with a focus on the impact of preformed memory (homologous and heterologous) on the quality and the efficacy of the response. The in machina results confirm the observed thwarting of new, naïve responses exerted by cross-reacting memory, but they also reveal that the competitive inhibition is made possible by the different time frame used by the primary and the secondary response, a well-known fact, epitomized by the interval of about 75 time steps between their peaks. This novel finding justifies the depression of naïve responses and the long-term consequences it could bring about and the role of memory as a player in a survival of the fittest game.
PMCID: PMC3703517  PMID: 21231890
Cross-reacting memory; dynamic competition; clonal dominance
21.  Immune Pathology Associated with Altered Actin Cytoskeleton Regulation 
Autoimmunity  2010;43(1):64-75.
The actin cytoskeleton plays a crucial role in in a variety of important cellular processes required for normal immune function, including locomotion, intercellular interactions, endocytosis, cytokinesis, signal transduction and maintenance of cell morphology. Recent studies have uncovered not only many of the components and mechanisms that regulate the cortical actin cytoskeleton, but have also revealed significant immunopathologic consequences associated with genetic alteration of actin cytoskeletal regulatory genes. These advances have provided new insights into the role of cortical actin cytoskeletal regulation in a number of immune cell functions, and have identified cytoskeletal regulatory proteins critical for normal immune system activity and susceptibility to autoimmunity.
PMCID: PMC3660107  PMID: 20001423
22.  Myasthenogenicity of the main immunogenic region and endogenous muscle nicotinic acetylcholine receptors 
Autoimmunity  2011;45(3):245-252.
In myasthenia gravis (MG) and experimental autoimmune MG (EAMG) many pathologically significant autoantibodies are directed at the main immunogenic region (MIR), a conformation-dependent region at the extracellular tip of α1 subunits of muscle nicotinic acetylcholine receptors (AChRs). Human muscle AChR α1 MIR sequences were integrated into Aplysia ACh binding protein (AChBP). The chimera was potent at inducing both acute and chronic EAMG, though less potent than Torpedo electric organ AChR. Wild-type AChBP also induced EAMG but was less potent, and weakness developed slowly without an acute phase. AChBP is more closely related in sequence to neuronal α7 AChRs which are also homomeric, however autoimmune responses were induced to muscle AChR, but not to neuronal AChR subtypes. The greater accessibility of muscle AChRs to antibodies, compared to neuronal AChRs, may allow muscle AChRs to induce self-sustaining autoimmune responses. The human α1 subunit MIR is a potent immunogen for producing pathologically significant autoantibodies. Additional epitopes in this region or other parts of the AChR extracellular domain contribute significantly to myasthenogenicity. We show that an AChR-related protein can induce EAMG. Thus, in principle, an AChR-related protein could induce MG. AChBP is a water soluble protein resembling the extracellular domain of AChRs, yet rats which developed EAMG had autoantibodies to AChR cytoplasmic domains. We propose that an initial autoimmune response, directed at the MIR on the extracellular surface of muscle AChRs, leads to an autoimmune response sustained by muscle AChRs. Autoimmune stimulation sustained by endogenous muscle AChR may be a target for specific immunosuppression.
PMCID: PMC3250566  PMID: 21950318
myasthenia gravis; autoantibodies; AChBP; AChR; MIR
23.  [No title available] 
PMCID: PMC3638788  PMID: 22432771
24.  [No title available] 
PMCID: PMC3639139  PMID: 22443691
25.  Heterologous immunity: immunopathology, autoimmunity and protection during viral infections 
Autoimmunity  2011;44(4):328-347.
PMCID: PMC3633594  PMID: 21250837
heterologous immunity; T cell cross-reactivity; autoimmunity; viruses; immune modeling

Results 1-25 (68)