Search tips
Search criteria

Results 1-8 (8)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Effects of environmental conditions on onset of xylem growth in Pinus sylvestris under drought 
Tree physiology  2011;31(5):483-493.
We determined influence of environmental factors (air and soil temperature, precipitation, photoperiod) on onset of xylem growth in Scots pine (Pinus sylvestris L.) within a dry inner Alpine valley (750 m a.s.l., Tyrol, Austria) by repeatedly sampling micro-cores throughout 2007-2010 at two sites (xeric and dry-mesic) at the start of the growing season. Temperature sums were calculated in degree-days (DD) ≥ 5 °C from 1 January and 20 March, i.e. spring equinox, to account for photoperiodic control of release from winter dormancy. Threshold temperatures at which xylogenesis had a 0.5 probability of being active were calculated by logistic regression. Onset of xylem growth, which was not significantly different between the xeric and dry-mesic site, ranged from mid-April in 2007 to early May in 2008. Among most study years statistically significant differences (P < 0.05) in onset of xylem growth were detected. Mean air temperature sums calculated from 1 January until onset of xylem growth were 230 ± 44 DD (mean ± standard deviation) at the xeric and 205 ± 36 DD at the dry-mesic site. Temperature sums calculated from spring equinox until onset of xylem growth showed quite less variability during the four year study period amounting to 144 ± 10 and 137 ± 12 DD at the xeric and dry-mesic site, respectively. At both sites xylem growth was active when daily minimum, mean and maximum air temperatures were 5.3, 10.1 and 16.2 °C, respectively. Soil temperature thresholds and DD until onset of xylem growth differed significantly between sites indicating minor importance of root-zone temperature for onset of xylem growth. Although spring precipitation is known to limit radial growth in P. sylvestris exposed to dry inner Alpine climate, results of this study revealed that (i) a daily minimum air temperature threshold for onset of xylem growth in the range of 5-6 °C exists and (ii) air temperature sum rather than precipitation or soil temperature triggers start of xylem growth. Based on these findings we suggest that drought stress forces P. sylvestris to draw upon water reserves in the stem for enlargement of first tracheids after cambial resumption in spring.
PMCID: PMC3427020  PMID: 21593011
dry inner Alpine valley; heat-sum; phenology; Scots pine; wood formation; xylogenesis
2.  Cavitation in dehydrating xylem of Picea abies: energy properties of ultrasonic emissions reflect tracheid dimensions 
Tree physiology  2011;31(1):59-67.
Ultrasonic emission (UE) testing is used to analyse the vulnerability of xylem to embolism, but the number of UEs often does not sufficiently reflect effects on hydraulic conductivity. We monitored the absolute energy of UE signals in dehydrating xylem samples hypothesizing that (i) conduit diameter is correlated with UE energy and (ii) monitoring of UE energy may enhance the utility of this technique for analysis of xylem vulnerability. Split xylem samples were prepared from trunk wood of Picea abies, and four categories of samples, derived from mature (I: earlywood, II: 30–50% latewood, III: >50% latewood) or juvenile wood (IV: earlywood) were used. Ultrasonic emissions during dehydration were registered and anatomical parameters (tracheid lumen area, number per area) were analysed from cross-sections. Attenuation of UE energy was measured on a dehydrating wood beam by repeated lead breaks. Vulnerability to drought-induced embolism was analysed on dehydrating branches by hydraulic, UE number or UE energy measurements. In split samples, the cumulative number of UEs increased linearly with the number of tracheids per cross-section, and UE energy was positively correlated with the mean lumen area. Ultrasonic emission energies of earlywood samples (I and IV), which showed normally distributed tracheid lumen areas, increased during dehydration, whereas samples with latewood (II and III) exhibited a right-skewed distribution of lumina and UE energies. Ultrasonic emission energy was hardly influenced by moisture content until ~40% moisture loss, and decreased exponentially thereafter. Dehydrating branches showed a 50% loss of conductivity at −3.6 MPa in hydraulic measurements and at −3.9 and −3.5 MPa in UE analysis based on cumulative number or energy of signals, respectively. Ultrasonic emission energy emitted by cavitating conduits is determined by the xylem water potential and by the size of element. Energy patterns during dehydration are thus influenced by the vulnerability to cavitation, conduit size distribution as well as attenuation properties. Measurements of UE energy may be used as an alternative to the number of UEs in vulnerability analysis.
PMCID: PMC3199436  PMID: 21389002
earlywood; latewood; Picea abies; signal energy; tracheid dimension; ultrasonic emission; vulnerability to xylem embolism
3.  Hydraulic and mechanical properties of young Norway spruce clones related to growth and wood structure 
Tree physiology  2007;27(8):1165-1178.
Stem segments of eight five-year-old Norway spruce (Picea abies (L.) Karst.) clones differing in growth characteristics were tested for maximum specific hydraulic conductivity (ks100), vulnerability to cavitation and behavior under mechanical stress. The vulnerability of the clones to cavitation was assessed by measuring the applied air pressure required to cause 12 and 50% loss of conductivity (Ψ12, Ψ50) and the percent loss of conductivity at 4 MPa applied air pressure (PLC4MPa). The bending strength and stiffness and the axial compression strength and stiffness of the same stem segments were measured to characterize wood mechanical properties. Growth ring width, wood density, latewood percentage, lumen diameter, cell wall thickness, tracheid length and pit dimensions of earlywood cells, spiral grain and microfibril angles were examined to identify structure–function relationships. High ks100 was strongly and positively related to spiral grain angle, which corresponded positively to tracheid length and pit dimensions. Spiral grain may reduce flow resistance of the bordered pits of the first earlywood tracheids, which are characterized by rounded tips and an equal distribution of pits along the entire length. Wood density was unrelated to hydraulic vulnerability parameters. Traits associated with higher hydraulic vulnerability were long tracheids, high latewood percentage and thick earlywood cell walls. The positive relationship between earlywood cell wall thickness and vulnerability to cavitation suggest that air seeding through the margo of bordered pits may occur in earlywood. There was a positive phenotypic and genotypic relationship between ks100 and PLC4MPa, and both parameters were positively related to tree growth rate. Variability in mechanical properties depended mostly on wood density, but also on the amount of compression wood. Accordingly, hydraulic conductivity and mechanical strength or stiffness showed no tradeoff.
PMCID: PMC3197722  PMID: 17472942
biomechanics; functional anatomy; hydraulic conductivity; Picea abies; tradeoffs; vulnerability to cavitation
4.  Shrinkage processes in standard-size Norway spruce wood specimens with different vulnerability to cavitation 
Tree physiology  2009;29(11):1419-1431.
The aim of this study was to observe the radial shrinkage of Norway spruce [Picea abies (L. Karst.)] trunkwood specimens with different hydraulic vulnerability to cavitation from the fully saturated state until the overall shrinkage reaches a stable value, and to relate wood shrinkage and recovery from shrinkage to cavitations of the water column inside the tracheids. Radial shrinkage processes in standard-size sapwood specimens (6 mm × 6 mm × 100 mm; radial, tangential and longitudinal) obtained at different positions within the trunk, representing different ages of the cambium, were compared. Cavitation events were assessed by acoustic emission (AE) testing, hydraulic vulnerability by the AE feature analysis and shrinkage was calculated from the changes in contact pressure between the 150 kHz AE transducer and the wood specimen. Two shrinkage processes were observed in both juvenile (annual rings 1 and 2) and mature wood (annual rings 17–19), the first one termed tension shrinkage and the second one cell wall shrinkage process, which started when most of the tracheids reached relative water contents below fiber saturation. Maximum tension shrinkage coincided with high-energy AEs, and the periods of shrinkage recovery could be traced to tension release due to cavitation. Juvenile wood, which was less sensitive to cavitation, had lower earlywood tracheid diameters and was less prone to deformation due to tensile strain than mature wood, showed a lower cell wall shrinkage, and thus total shrinkage. Earlywood lumen diameters and maximum tension shrinkage were strongly positively related to each other, meaning that bigger tracheids are more prone to deformation at the same water tension than the smaller tracheids.
PMCID: PMC3196842  PMID: 19797244
acoustic emission testing; conduit reinforcement; tensile strain; wood shrinkage
5.  Tradeoffs between hydraulic and mechanical stress responses of mature Norway spruce trunk wood 
Tree physiology  2008;28(8):1179-1188.
We tested the effects of growth characteristics and basic density on hydraulic and mechanical properties of mature Norway spruce (Picea abies (L.) Karst.) wood from six 24-year-old clones, grown on two sites in southern Sweden differing in water availability. Hydraulic parameters assessed were specific hydraulic conductivity at full saturation (ks100) and vulnerability to cavitation (Ψ50), mechanical parameters included bending strength (σb), modulus of elasticity (MOE), compression strength (σa) and Young’s modulus (E). Basic density, diameter at breast height, tree height, and hydraulic and mechanical parameters varied considerably among clones. Clonal means of hydraulic and mechanical properties were strongly related to basic density and to growth parameters across sites, especially to diameter at breast height. Compared with stem wood of slower growing clones, stem wood of rapidly growing clones had significantly lower basic density, lower σb, MOE, σa and E, was more vulnerable to cavitation, but had higher ks100. Basic density was negatively correlated to Ψ50 and ks100. We therefore found a tradeoff between Ψ50 and ks100. Clones with high basic density had significantly lower hydraulic vulnerability, but also lower hydraulic conductivity at full saturation and thus less rapid growth than clones with low basic density. This tradeoff involved a negative relationship between Ψ50 and σb as well as MOE, and between ks100 and σb, MOE and σa. Basic density and Ψ50 showed no site-specific differences, but tree height, diameter at breast height, ks100 and mechanical strength and stiffness were significantly lower at the drier site. Basic density had no influence on the site-dependent differences in hydraulic and mechanical properties, but was strongly negatively related to diameter at breast height. Selecting for growth may thus lead not only to a reduction in mechanical strength and stiffness but also to a reduction in hydraulic safety.
PMCID: PMC3196968  PMID: 18519249
biomechanics; hydraulic conductivity; Picea abies; vulnerability to cavitation
6.  Impact of drought on the temporal dynamics of wood formation in Pinus sylvestris 
Tree physiology  2010;30(4):490-501.
We determined the temporal dynamics of cambial activity and xylem cell differentiation of Scots pine (Pinus sylvestris L.) within a dry inner Alpine valley (750 m asl, Tyrol, Austria), where radial growth is strongly limited by drought in spring. Repeated micro-sampling of the developing tree ring of mature trees was carried out during 2 contrasting years at two study plots that differ in soil water availability (xeric and dry-mesic site).
In 2007, when air temperature at the beginning of the growing season in April exceeded the long-term mean by 6.4 °C, cambial cell division started in early April at both study plots. A delayed onset of cambial activity of c. 2 wk was found in 2008, when average climate conditions prevailed in spring, indicating that resumption of cambial cell division after winter dormancy is temperature-controlled. Cambial cell division consistently ended about the end of June/early July in both study years. Radial enlargement of tracheids started almost 3 wk earlier in 2007 compared with 2008 at both study plots. At the xeric site, the maximum rate of tracheid production in 2007 and 2008 was reached in early and mid-May, respectively, and c. 2 wk later, at the dry-mesic site. Since in both study years, more favorable growing conditions (i.e., an increase in soil water content) were recorded during summer, we suggest a strong sink competition for carbohydrates to mycorrhizal root and shoot growth. Wood formation stopped c. 4 wk earlier at the xeric compared with the dry-mesic site in both years, indicating a strong influence of drought stress on cell differentiation. This is supported by radial widths of earlywood cells, which were found to be significantly narrower at the xeric than at the dry-mesic site (P < 0.05).
Repeated cellular analyses during the two growing seasons revealed that, although spatial variability in the dynamics and duration of cell differentiation processes in Pinus sylvestris exposed to drought is strongly influenced by water availability, the onset of cambial activity and cell differentiation is controlled by temperature.
PMCID: PMC3046340  PMID: 20197285
Cambium; dry inner Alpine valley; intra-annual growth; Scots pine; tracheid production; xylogenesis
7.  Intra-annual dynamics of stem CO2 efflux in relation to cambial activity and xylem development in Pinus cembra 
Tree physiology  2009;29(5):641-649.
The relationship between stem CO2 efflux (ES), cambial activity and xylem production in Pinus cembra was determined at the timberline (1950 m a.s.l.) of the Central Austrian Alps, throughout one year. ES was measured continuously from June 2006 to August 2007 using an infrared gas-analysis system. Cambial activity and xylem production was determined by repeated microcore sampling of the developing tree ring and radial increment was monitored using automated point dendrometers. Aside of temperature, the number of living tracheids and cambial cells was predominantly responsible for ES: ES normalized to 10°C (ES10) was significantly correlated to number of living cells throughout the year (r2 = 0,574; p < 0,001). However, elevated ES and missing correlation between ES10 and xylem production was detected during cambial reactivation in April and during transition from active phase to rest, which occurred in August and lasted until early September. Results of this study indicate that (i) during seasonal variations in cambial activity non-linearity between ES and xylem production occurs and (ii) elevated metabolic activity during transition stages in the cambial activity-dormancy cycle influence the carbon budget of Pinus cembra. Daily radial stem increment was primarily influenced by the number of enlarging cells and was not correlated to ES.
PMCID: PMC3013296  PMID: 19203979
cambial reactivation; dormancy; Pinus cembra; radial stem growth; sap flow; stem CO2 efflux; stem respiration; xylem production
8.  Complete nucleotide sequence of Dendrocalamus latiflorus and Bambusa oldhamii chloroplast genomes 
Tree physiology  2009;29(6):847-856.
Although bamboo is one of the most important woody crops in Asia, information on its genome is still very limited. To investigate the relationship among Poaceae members and to understand the mechanism of albino mutant generation in vitro, the complete chloroplast genome of two economically important bamboo species, Dendrocalamus latiflorus Munro and Bambusa oldhamii Munro, was determined employing a strategy that involved polymerase chain reaction (PCR) amplification using 443 novel primers designed to amplify the chloroplast genome of these two species. The lengths of the B. oldhamii and D. latiflorus chloroplast genomes are 139,350 and 139,365 bp, respectively. The organization structure and the gene order of these two bamboos are identical to other members of Poaceae. Highly conserved chloroplast genomes of Poaceae facilitated sequencing by the PCR method. Phylogenetic analysis using both chloroplast genomes confirmed the results obtained from studies on chromosome number and reproductive organ morphology. There are 23 gaps, insertions/deletions > 100 bp, in the chloroplast genomes of 10 genera of Poaceae compared in this study. The phylogenetic distribution of these gaps corresponds to their taxonomic placement. The sequences of these two chloroplast genomes provide useful information for studying bamboo evolution, ecology and biotechnology.
PMCID: PMC2762994  PMID: 19324693
Bambusoideae; biotechnology; phylogenetic analysis; Poaceae

Results 1-8 (8)