Search tips
Search criteria

Results 1-7 (7)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Two-Dimensional Stimulated Ultraviolet Resonance Raman Spectra of Tyrosine and Tryptophan; A Simulation Study 
We report an ab-initio simulation study of the ultrafast broad bandwidth ultraviolet (UV) stimulated resonance Raman spectra (SRRS) of L-tyrosine, L-tryptophan and trans-L-tryptophan-L-tyrosine (WY) dipeptide. Two-pulse one-dimensional (1D) SRRS and three-pulse 2D SRRS that reveal inter- and intra-residue vibrational coorelations are simulated using electronically resonant or preresonant pulse configurations that select the Raman signal and discriminate against excited state pathways. Multimode effects are incorporated via the cumulant expansion. The 2D SRRS technique is more sensitive to residue couplings than spontaneous Raman.
PMCID: PMC3622277  PMID: 23585708
2.  A Thioester Substrate Binds to the Enzyme Arthrobacter Thioesterase in Two Ionization States; Evidence from Raman Difference Spectroscopy 
4-Hydroxybenzoyl-CoA (4-HB-CoA) thioesterase from Arthrobacter is the final enzyme catalyzing the hydrolysis of 4-HB-CoA to produce coenzyme A and 4-hydroxybenzoic acid in the bacterial 4-chlorobenzoate dehalogenation pathway. Using a mutation E73A that blocks catalysis, stable complexes of the enzyme and its substrate can be analyzed by Raman difference spectroscopy. Here we have used Raman difference spectroscopy, in the non-resonance regime, to characterize 4-HB-CoA bound in the active site of the E73A thioesterase. In addition we have characterized complexes of the wild-type enzyme complexed with the unreactive substrate analog 4-hydroxyphenacyl-CoA (4-HP-CoA). Both sets of complexes show evidence for two forms of the ligand in the active site, one population has the 4-hydroxy group protonated, 4-OH, while the second has the group as the hydroxide, 4-O−. For bound 4-HP-CoA X-ray data show that glutamate 78 is close to the 4-OH in the complex and it is likely that this is the proton acceptor for the 4-OH proton. Although the pKa of the 4-OH group on the free substrate in aqueous solution is 8.6, the relative populations of ionized and neutral 4-HB-CoA bound to E73A remain invariant between pH 7.3 and pH 9.8. The invariance with pH suggests that the 4-OH and the -COO− of E78 constitute a tightly coupled pair where their separate pKas lose their individual qualities. Narrow band profiles are seen in the C=O double bond and C-S regions suggesting that the hydrolyzable thioester group is rigidly bound in the active site in a syn gauche conformation.
PMCID: PMC3280504  PMID: 22347769
Raman difference spectroscopy; thioesterase; ionization; conformation; enzyme-substrate complex
3.  Raman spectroscopy and CARS microscopy of stem cells and their derivatives† 
Journal of Raman spectroscopy : JRS  2011;42(10):1864-1870.
The characterisation of stem cells is of vital importance to regenerative medicine. Failure to separate out all stem cells from differentiated cells before therapies can result in teratomas – tumours of multiple cell types. Typically, characterisation is performed in a destructive manner with fluorescent assays. A truly non-invasive method of characterisation would be a major breakthrough in stem cell-based therapies. Raman spectroscopy has revealed that DNA and RNA levels drop when a stem cell differentiates into other cell types, which we link to a change in the relative sizes of the nucleus and cytoplasm. We also used Raman spectroscopy to investigate the biochemistry within an early embryo, or blastocyst, which differs greatly from colonies of embryonic stem cells. Certain cell types that differentiate from stem cells can be identified by directly imaging the biochemistry with CARS microscopy; examples presented are hydroxyapatite – a precursor to bone, and lipids in adipocytes.
PMCID: PMC3272468  PMID: 22319014
Raman spectroscopy; CARS microscopy; stem cells; live cells; differentiation
4.  Raman spectroscopy as a potentialmethod for the detection of extremely halophilic archaea embedded in halite in terrestrial and possibly extraterrestrial samples 
Journal of Raman spectroscopy : JRS  2009;40(12):1996-2003.
Evidence for the widespread occurrence of extraterrestrial halite, particularly on Mars, has led to speculations on the possibility of halophilic microbial forms of life; these ideas have been strengthened by reports of viable haloarchaea from sediments of geological age (millions of years). Raman spectroscopy, being a sensitive detection method for future astrobiological investigations onsite, has been used in the current study for the detection of nine different extremely halophilic archaeal strains which had been embedded in laboratory-made halite crystals in order to simulate evaporitic conditions. The cells accumulated preferentially in tiny fluid inclusions, in simulation of the precipitation of salt in natural brines. FT-Raman spectroscopy using laser excitation at 1064 nm and dispersive micro Raman spectroscopy at 514.5 nm were applied. The spectra showed prominent peaks at 1507, 1152 and 1002 cm−1 which are attributed to haloarchaeal C50 carotenoid compounds (mainly bacterioruberins). Their intensity varied from strain to strain at 1064-nm laser excitation. Other distinguishable features were peaks due to peptide bonds (amide I, amide III) and to nucleic acids. No evidence for fatty acids was detected, consistent with their general absence in all archaea.
These results contribute to a growing database on Raman spectra of terrestrial microorganisms from hypersaline environments and highlight the influence of the different macromolecular composition of diverse strains on these spectra.
PMCID: PMC3207228  PMID: 22058585
Raman spectroscopy; extremely halophilic archaea; halite; astrobiology; fluid inclusions; carotenoids; bacterioruberins; Martian subsurface
5.  Multiclass discrimination of cervical precancers using Raman spectroscopy 
Raman spectroscopy has the potential to differentiate among the various stages leading to high-grade cervical cancer such as normal, squamous metaplasia, and low-grade cancer. For Raman spectroscopy to successfully differentiate among the stages, an applicable statistical method must be developed. Algorithms like linear discriminant analysis (LDA) are incapable of differentiating among three or more types of tissues. We developed a novel statistical method combining the method of maximum representation and discrimination feature (MRDF) to extract diagnostic information with sparse multinomial logistic regression (SMLR) to classify spectra based on nonlinear features for multiclass analysis of Raman spectra. We found that high-grade spectra classified correctly 95% of the time; low-grade data classified correctly 74% of the time, improving sensitivity from 92 to 98% and specificity from 81 to 96% suggesting that MRDF with SMLR is a more appropriate technique for categorizing Raman spectra. SMLR also outputs a posterior probability to evaluate the algorithm’s accuracy. This combined method holds promise to diagnose subtle changes leading to cervical cancer.
PMCID: PMC3117583  PMID: 21691450
Raman spectroscopy; optical diagnosis; cervix; dysplasia
6.  Investigation of an unnatural amino acid for use as a resonance Raman probe: Detection limits, solvent and temperature dependence of the νC≡N band of 4-cyanophenylalanine 
Journal of Raman spectroscopy : JRS  2008;39(11):1606-1613.
The incorporation of unnatural amino acids into proteins that act as spectroscopic probes can be used to study protein structure and function. One such probe is 4-cyanophenylalanine (PheCN), the nitrile group of which has a stretching mode that occurs in a region of the vibrational spectrum that does not contain any modes from the usual components of proteins and the wavenumber is sensitive to the polarity of its environment. In this work we evaluate the potential of UV resonance Raman spectroscopy for monitoring the sensitivity of the νC≡N band of PheCN incorporated into proteins to the protein environment. Measurement of the Raman excitation profile of PheCN showed that considerable resonance enhancement of the Raman signal was obtained using UV excitation and the best signal-to-noise ratios were obtained with excitation wavelengths of 229 and 244 nm. The detection limit for PheCN in proteins was ~10 μM, approximately a hundred-fold lower than the concentrations used in IR studies, which increases the potential applications of PheCN as a vibrational probe. The wavenumber of the PheCN νC≡N band was strongly dependent on the polarity of its environment, when the solvent was changed from H2O to THF it decreased by 8 cm−1. The presence of liposomes caused a similar though smaller decrease in νC≡N for a peptide, mastoparan X, modified to contain PheCN. The selectivity and sensitivity of resonance Raman spectroscopy of PheCN mean that it can be a useful probe of intra- and intermolecular interactions in proteins and opens the door to its application in the study of protein dynamics using time-resolved resonance Raman spectroscopy.
PMCID: PMC2905815  PMID: 20648227
4-cyanophenylalanine; UV Raman spectroscopy; unnatural amino acid; nitrile
7.  Barcoding bacterial cells: A SERS based methodology for pathogen identification 
Journal of Raman spectroscopy : JRS  2008;39(11):1660-1672.
A principal component analysis (PCA) based on the sign of the second derivative of the surface enhanced Raman spectroscopy (SERS) spectrum obtained on in-situ grown Au cluster covered SiO2 substrates results in improved reproducibility and enhanced specificity for bacterial diagnostics. The barcode generated clustering results are systematically compared to those obtained from corresponding spectral intensities, first derivatives and second derivatives for the SERS spectra of closely related cereus group Bacillus strains. PCA plots and corresponding hierarchical cluster analysis (HCA) dendrograms illustrate the improved bacterial identification resulting from the barcode spectral data reduction. Supervised DFA plots result in slightly improved group separation but show more susceptibility to false positive classifications than the corresponding PCA contours. In addition, this PCA treatment is used to highlight the enhanced bacterial species specificity observed for SERS as compared to normal bulk (non-SERS) Raman spectra. The identification algorithm described here is critical for the development of SERS microscopy as a rapid, reagentless, portable diagnostic of bacterial pathogens.
PMCID: PMC2732026  PMID: 19714262

Results 1-7 (7)